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The microscopic mechanisms and characteristics of deformation and destruction in
uniaxial tension of carbon nanotubes (CNT) of different diameters and chirality have
been investigated within the framework of the quantum-mechanical approach. CNTs
with the ʺarmchairʺ (4, 4) and (5, 5) and ʺzigzagʺ (8, 0) configurations were con-
sidered under different conditions of loading. The results of calculation of the Young
modulus have shown that CNTs with a larger diameter have a higher strength (E =
1.2 TPa) than CNTs with a smaller diameter (E = 0.76 TPa). CNTs with the ʺarm-
chairʺ configuration are stronger (E = 1.2 TPa) than CNTs with the ʺzigzagʺ con-
figuration (E = 0.825 TPa). Thus, a computer experiment has shown both qualitative
and quantitative agreement with the experimental data known from the literature and
with the available theoretical calculations.

KEY WORDS: quantum-mechanical calculations, carbon nanotubes, struc-
ture, mechanical properties, moduli, strength

1. INTRODUCTION

Since their discovery and obtaining, carbon nanotubes (CNT) have aroused consider-
able interest in scientific circles. CNTs are distinguished by a special regular atomic
structure that makes them different from isotropic materials. An uncommon combina-
tion of linear dimensions, specific weight, deformation and strength characteristics is
inherent in CNT, therefore they have found a wide utility in engineering and medicine.
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Recently, the microstructure and mechanical properties of carbon nanotubes have
become the object of comprehensive scientific studies; however, direct natural experi-
ments require huge material and time expenditures, since high-precision, rare, and ex-
pensive equipment is used. By virtue of difficulties in conducting the experiments
and inapplicability of general analytical approaches of continuum to the analysis of
the mechanical behavior of nanotubes, their characteristics and special features of the
microscopic mechanism of deformation have been studied inadequately.

Under these conditions, computational approaches that allow virtual investigation
of the microscopic structure, properties, and mechanical behavior of carbon nanotu-
bes, depending on the atomic structure, as well as consideration of the microscopic
mechanisms of their deformation and destruction have acquired great significance.
Theoretical and numerical simulation become an alternative method of study that
makes it possible to solve new problems and conduct computational investigations,
thus leaving behind natural experiments.

Most of computational methods known from the literature and presently used in
the mechanics of carbon nanotubes are based on the approaches where a solid body
is treated as a continuum. A stress-strain state is modeled, in particular, by the finite
element methods with a step-by-step integration where the integration step is not re-
lated to the molecular structure of the material. To solve the corresponding equations
one has to introduce many parameters that take into account a chemical nature of
nanotubes. However, it is seen proceeding from the nature of any substance that there
exists a natural limit of its numerical division into small components. Atoms that
constitute this substance and carry information on its chemical properties make such
a limit. By virtue of this, it is quite natural to consider microscopic mechanical char-
acteristics of carbon nanotubes with account for their microscopic structure. An ap-
proach in which an atomic structure of nanoobjects makes explicitly one of the first
principles is represented by quantum-mechanical modeling within the framework of
which the studies of the present work have been conducted.

A combination of nanoscopic and macroscopic approaches is a specific feature of
the present theoretical modeling. A spatial structure of nanotubes, their energy and
force of deformation were calculated at the nanoscopic level within the framework of
quantum-mechanical approximation. In this case, deformations and destructions were
described as mechanical-chemical responses where the forces of deformation were
calculated as energy gradients along these coordinates. Then, using these forces, the
characteristics of deformation and destruction of nanotubes were calculated within the
framework of the macroscopic approach on the basis of the relationships of the linear
elasticity theory. Although here the forces of deformation clearly have a nanoscopic
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character, this approach has acquired a good reputation in studying a wide range of
nanoobjects [1–5].

In the present work, microscopic mechanisms and characteristics of deformation
and destruction in uniaxial deformation of carbon nanotubes of different diameters and
chirality were investigated. CNTs with the "armchair" (4, 4) and (5, 5) and "zigzag"
(8, 0) configurations were considered under different conditions of loading. Calcula-
tions were conducted within the framework of the software NDDO/sp-spd within
which calculations by the semi-empirical method NDDO with the AM1 parametriza-
tion in cluster approximation were realized. A specific feature of this modeling of de-
formation and destruction of molecular systems where the rupture of interatomic bonds
occurs is the use of the unrestricted Hartree–Fock (UHF) method. The following de-
formation and strength characteristics have been calculated: dependence of force and
energy of deformation on elongation of a nanotube; dependence of mechanical stress
on relative deformation; deformation work and energy of the rupture of bonds; the
elasticity (Young) modulus and the coefficient of rigidity; critical force, stress, and
relative deformation in destruction (strength characteristics).

2. GENERAL INFORMATION ON CARBON NANOTUBES

2.1 Discovery of Carbon Nanotubes and Special Features
   of Their Chemical Structure

In 1991, a Japanese scientist Iijima was the first to discover nanotubes in an elec-
tronic microscope [6]. This discovery marked the beginning of a new trend in carbon
studies. Nanotubes formed on carbon electrodes in an electric discharge in helium at
a high pressure and a temperature of 3000oC. The achievements in the technology of
synthesis allow one to obtain rather uniform nanotubes in an amount of grams. With
a diameter of about a nanometer a length of the obtained nanotubes reaches 1 µm
and more. Figure 1 gives the exterior view of a carbon nanotube.

An ideal nanotube is a cylinder obtained in rolling-up of a plane hexagonal lattice
of graphite (graphene plane) without seams. All atoms of carbon in carbon nanotu-
bes have sp2 hybridization (see Fig. 2), i.e., one s orbital and two p orbitals of the
peripheral electronic level hybridize thus giving three sp2 orbitals that lie in the
same plane at an angle of 120o and form σ-bonds with neighboring atoms of carb-
on. Thus, graphene sheets from which carbon nanotubes are formed are plane. Non-
hybridized p-orbitals are perpendicular to this plane and are overlapped pairwise
forming a single electron cloud that unites hexamerous (benzene) cycles that are the
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FIG. 1: An exterior view of a carbon nanotube

FIG. 2: Schematic of formation of sp2 hybridization of carbon atoms



structural basis of nanotubes. Such a system possesses high stability and is called
an aromatic electronic system. Thus, free electrons of a hexagonal plane produce a
nonzero density of electron clouds on both sides of the plane. This is a π-electronic
plane.

Mutual orientation of the hexagonal lattice of graphite and the longitudinal axis of
a nanotube determines a very important structural characteristic of a nanotube, which
has come to be known as chirality.

Chirality is characterized by two integer numbers (m, n) that indicate the position
of that hexagon of the lattice, which, as a result of rolling-up, must coincide with the
hexagon lying in the origin of coordinates. The said above is illustrated in Fig. 3 that
shows a part of the hexagonal graphene grid the rolling-up of which to a cylinder
leads to formation of single-wall nanotubes with different chirality. Nanotube chirality
also can be uniquely determined by an angle α formed by the direction of nanotube
rolling-up and the direction where the neighboring hexagons have a common side.
Two indices of chirality, m and n, and a nanotube length (in units of length of in-
teratomic distances) fully determine an ideal nanotube.

Quantum-Mechanical Studies of Deformation of Carbon Nanotubes 5
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FIG. 3: Schematic of rolling-up of a hexagonal graphene grid in formation of single-wall
nanotubes with different chirality



Chirality may affect the degree of anisotropy of physical and mechanical properties
of a nanotube. By a value of the parameters (n, m) we distinguish direct (achiral)
nanotubes of the "armchair" (n = m) and "zigzag" (m = 0 or n = 0) configurations
and spiral (chiral) nanotubes.

With mirror reflection a nanotube (n, m) changes over to a nanotube (m, n), there-
fore a tube of a general form is mirror asymmetric. Direct nanotubes either change
over to themselves in mirror reflection ("armchair" configuration) or change over to
themselves with an accuracy of a turn.

Depending on the chirality, nanotubes can possess both metallic conduction and
semiconductor properties. Metallic nanotubes conduct electric current at absolute zero
whereas conductivity of semiconductor tubes is zero at absolute zero and increases
with the temperature. Semiconductor properties manifest themselves in a tube due to
a slit at the Fermi level. The tube is metallic if (n−m) being divided by 3 gives an
integer number. In particular, all tubes of the "armchair" type are metallic.

Carbon nanotubes can be single-wall and multiwall. Multiwall nanotubes consist of
concentric graphite cylinders with both ends closed. End roundings possess, in addi-
tion to hexagons, a finite number of pentagons. Similar to graphite, the layers in such
a nanotube are spaced by a distance of 0.34 nm (for nanotubes with a diameter
smaller than 10 nm this distance increases, e.g., it is 0.39 nm for a diameter of about
2 nm).

According to the estimation made, the world-longest cable, 42,000 km — the dis-
tance from the space station to the Earth, can be made from a nanotube not produc-
ing high load at the expenses of its own weight and length.

2.2 Application of Carbon Nanotubes

Despite a relatively recent discovery, carbon nanotubes have acquired wide applica-
tion in different branches of science, technology [7], and chemistry [8]. In what fol-
lows, we list the main, currently known from the literature, trends of application of
carbon nanotubes:

– mechanics: ultrastrong fibers, composites, nanoscales;
– microelectronics: transistors, nanowires, transparent conducting surfaces, fuel ele-

ments;
– biology: connections between biological neurons and electronic devices in the

up-to-the-minute neurocomputer developments;
– physics: capsules for active molecules, storage of metals and gases, nanopipettes;
– optics: displays, light-emitting diodes (LED);
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– space technologies: cables for a space elevator;
– medicine: at the stage of active development;
– different engineering applications: single-wall nanotubes (individual, in small as-

semblies or networks) are miniature sensors for detection of molecules in the
gaseous medium or in solutions with ultra-high sensitivity (electric resistance
of a nanotube in adsorption of molecules on its surface and characteristics of
a nanotransistor may change); such nanosensors can be used in monitoring of
the environment and for military, medicine, and biotechnological purposes,
and others.

Thus, we can state that unique properties of carbon nanotubes find application,
e.g., in small-scale electronics — electric resistance of a nanotube can change due to
deformation and nanotubes can serve as sensors of deformations or vibrations. In
probe microscopy nanotubes can be used as a needle with a nanotube diameter (due
to high strength and the ability to bend this needle possesses, in addition to an in-
creased resolving power, an increased reliability). These needles are used in nanoli-
thography.

The most important aspect of application of nanotubes, that is based on the unique
mechanical properties of them, is creation of strengthened composite materials on
their basis. Despite the fact that manufacture of composites with nanotubes as a filler
is an obvious field of their application, a number of successive experiments reflecting
the advantages of using nanotubes as a filler over ordinary carbon fibers is scanty.
The main problem is in obtaining high adhesion between nanotubes and a composite
matrix in order to attain good transfer of load from the matrix to nanotubes in defor-
mation. Nanotubes are atomically smooth and have almost the same diameters and
length/diameter ratios as polymer chains (the most wide-spread composite matrix). In
this case, they are almost always organized in aggregate structures perceiving the
load in cooperation.

To achieve a maximum effect of strengthening, the nanocomposite nanotubes
should be distributed over the matrix volume. Strengthening of the composite in fill-
ing the matrix by nanotubes is achieved due to absorption of energy in increasing the
flexibility and elasticity of it. (A 25% increase of tensile strength was observed in a
nanocomposite with 5 wt.% of nanotubes.) Filling by nanotubes also increases the
electric conductivity of the material and improves the behavior of the nanocomposite
in compression loads compared with an ordinary carbon fiber.

The said above explains an increased interest to the study of mechanical properties
of carbon nanotubes.

Quantum-Mechanical Studies of Deformation of Carbon Nanotubes 7
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2.3 Experimental Study of Mechanical Properties of Carbon Nanotubes

Nanotubes have the highest parameters of mechanical characteristics among carbon fi-
bers. A traditional carbon fiber is about 50-fold stronger than steel (by the strength/
density ratio) and is widely used in strengthening of composites; however, develop-
ment of even stronger composites based on nanotubes is undoubtedly under demand.
Recent experiments on single nanotubes confirmed that they are one of most rigid
materials. A covalent carbon–carbon bond is one of the strongest in nature and a
regular structure of these bonds along the axis of a nanotube should provide an ex-
tremely high strength of material.

The known experimental data demonstrate almost the same deformation charac-
teristics of carbon nanotubes, namely, the Young modulus E = 0.8–1.2 TPa (with an
average value of 1.0 TPa), critical stress σcr = 100–120 GPa, critical relative defor-
mation εcr = 0.17–0.25 [9, 10]. In this case, absolutely different experimental meth-
ods and approaches were used to obtain these data. The Young moduli of nanotubes
were determined from observation of thermal oscillations in an electronic microscope.
The needles of atomic power microscopes in a scanning electronic microscope were
used for the same purpose. Nanotubes were studied on electronic substrates in com-
pression by a needle of a scanning power microscope. Finally, Pan et al. [11] speak
of direct measurement of the Young modulus of carbon nanotubes in tensile tests of
ropes of very long aligned multiwall parallel nanotubes, though in this case they state
lower moduli — from 0.2 to 0.8 TPa.

It is seen from the literature that experimental values of deformation characteristics
of carbon nanotubes strongly depend on their chirality, diameter, and the number of
walls and defects [10, 12].

2.4 Theoretical Investigations of Mechanical Properties of Carbon Nanotubes

According to theoretical estimates, the Young modulus of single-wall nanotubes
reaches 1 TPa [13] which corresponds to the same values for graphite in the direc-
tion of base planes. We are aware of a small number of theoretical investigations
where the continuum approach to the study of nanotubes was used, though it was as-
sumed that the continuum mechanics is inapplicable to the atomic or nanometer scale.
In [14], the applicability of the continuum beam theory to the description of deforma-
tion of carbon nanotubes was studied. The ranges of the parameters of nanotubes
where modeling of them in the form of shells or rod is possible have been distin-
guished.
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A number of works on investigation of the Young modulus of nanotubes, which
are based on the atomic-molecular approach, are known. The main method of model-
ing of the behavior of nanoscopic systems is the method of molecular dynamics [15].
In this method, the values of coordinates and velocities are calculated by the algo-
rithms of integration of the equations of motion with the specified conditions, which
are based on the Werle scheme. A set of interaction potentials and their parameters
that depend on the type of interacting atoms is determining in this case.

Quantum methods of molecular dynamics where different effective potentials are
introduced have been developed separately. Among them are the density functional
method, method and theory of pseudopotential, iterative diagonalization method, and
supercell method. These methods serve for the purpose of reducing the multiparticle
problem of motion of all atomic electrons in the field of ions to the problem of mo-
tion of a valence electron in the effective field of the ion core and internal electrons.
Although the enumerated quantum methods allow investigation of a number of prop-
erties of nanoobjects, they are rather resource consuming and complex in realization.
By virtue of this, semiempirical quantum mechanical approaches which allow one,
within the framework of the unrestricted Hartree–Fock method, to model deformation
and rupture of rather lengthy carbon nanotubes in cluster approximation in a reason-
able computation time, are especially topical.

3. METHODS OF MODELING

As the main quantum-mechanical method, within the framework of which the struc-
ture and mechanical properties of carbon nanotubes have been modeled in the present
work, we took the semiempirical NDDO method with the AM1 parametrization [16].
This method is realized within the framework of an original NDDO/sp-spd package.
The applied method is intended for calculation of the reference structural and energy
characteristics of polyatomic nano-sized clusters in the basic electronic state. In the
method used, an error in calculation of bond lengths is on the average 0.01 A° , va-
lence angles are calculated with an accuracy of several degrees, and generation heat
is calculated to better than 0.5–1.0 kcal/mol [16]. These values have the same order
of magnitude as typical errors in the data obtained experimentally. Thus, the method
applied represents experimental geometric and energy characteristics of molecular sys-
tems rather well, it is highly competitive with nonempirical calculations in accuracy
in considering geometric and energy characteristics, and greatly benefits from the rate
of calculation.

Quantum-Mechanical Studies of Deformation of Carbon Nanotubes 9
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The computational experiment was conducted in cluster approximation [17] where
carbon nanotubes were modeled by clusters of a rather large size (with a length of
several tens of nanometers and up to a hundred of atoms).

3.1 Package of Programs CLUSTER-Z1

The package of programs NDDO/sp-spd provides fulfillment of semiempirical quan-
tum-mechanical calculations in sp- and spd-bases of structural, electronic, energy, de-
formation, spectroscopic characteristics of atomic-molecular systems up to 999 atoms.
In this case, different semiempirical methods are realized. These methods are concep-
tually most close to ab initio methods and are somewhat exceeded by them in accu-
racy of calculations; however, they are superior to the above methods in the time of
calculation and possible dimensions of the considered molecular systems. Such meth-
ods are based on the NDDO (Neglect of Diatomic Differential Overlap) approxima-
tion. Semiempirical methods and the corresponding programs MNDO, AM1, and
PM3 are realized in the present package. These methods are intended for calculation
of polyatomic systems in the sp-basis. The necessity to expand quantum-mechanical
calculations by including the spd-basis has caused substantial modification of the
above-mentioned methods in the form of the NDDO-BM methods that is well para-
metrized and theoretically substantiated especially for calculation of large molecular
systems in the spd-basis. The method of weighting factors (MWF) that is also real-
ized in the program is based on introduction of weighting factors that scale the inte-
grals of Coulomb scattering into calculation. These weighting factors are the
parameters of the MWF; they substitute one-centered integrals that are the parameters
of the AM1 and PM3 methods. The developed program of MWF parametrization
gave the parameters of the required set of atoms that allow consideration of problems
with accuracy approaching to the accuracy of nonempirical computation techniques.

The use of the improved optimization methods, e.g., Fletcher algorithm (VA09A),
Broyden, Fletcher, Goldstein, and Shanno (BFGS) algorithm, the modified Newton–
Raphson (NRAF) algorithm, that are applicable to both exact localization of mini-
mum and determination of the saddle point in studying the response coordinate,
makes it possible to greatly reduce the expenditures for calculation (time and com-
puter) and to calculate complex-composition molecular systems including up to a
thousand of atoms, i.e., to several tens of nanometers, with complete optimization of
a spatial structure in a reasonable time.

The program complex NDDO/sp-spd includes the possibility of calculation of the
ground state of a molecular system by the restricted Hartree–Fock (RHF) and unre-
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stricted Hartree–Fock (UFH) methods suitable for molecular systems of closed and
open electron shells. In doing so, the package of programs allows optimization of
the spatial structure of molecular systems; calculation of heats of formation, dipole
moments, ionization potentials, polarizability of molecules, quadrupole moments, dis-
tribution of charges by atoms, distribution of electron density, electrostatic potentials
of molecules, Vaiberg indices that characterize the degree of cohesion of atoms, and
frequencies of harmonic oscillations of atoms; oscillation analysis in a harmonic ap-
proximation; and calculation of the position and intensity of IR and Raman scatter-
ing bands and the response coordinate. The package of programs envisages calcu-
lation of molecular systems in an electrostatic field, both linear and produced by a
system of point charges. Moreover, using the method of mechanical-chemical coor-
dinate of deformation that is realized in the package of programs in the form of in-
ternal (microscopic compression-tension) and outer (microscopic friction) modes, it
is possible to calculate microscopic deformation and strength characteristics of mo-
lecular systems.

3.2 Approximation of Mechanical-Chemical Coordinate of Deformation

To model restructuring of carbon nanotubes with an increase in deformation and to
analyze microscopic characteristics of deformation of molecular systems, the compu-
tational experiment is built, by analogy with natural mechanical tests, in the mode of
active loading. However, in such experiments an active load is applied to the speci-
men (deformation force and pressure are set) and then the change in the shape is
analyzed and elongation of the specimen is determined. In the computer experiment,
by virtue of the specifics of modeling, initially elongations of a molecular system are
specified step-by-step and the deformation force is calculated.

In what follows we give the description of the scheme of the computational ex-
periment. First, a microscopic model of a molecular system is constructed and quan-
tum-mechanical minimization of it is performed. Then, a mechanical-chemical
coordinate of deformation (MCD), a change of which allows description of the re-
quired sequence of deformation states, is selected. The microscopic coordinate of de-
formation is specified by two groups of atoms determining the planes of application of
the "deforming" force, direction, and type of deformation. The computational experi-
ment consists in consistent step-by-step deformation of a molecular system from the
stable initial state to rupture of bonds and destruction along MCD. Complete optimi-
zation of the spatial structure of a molecular system is performed at each step of
quantum-chemical calculation. The atoms determining MCD are excluded from the

Quantum-Mechanical Studies of Deformation of Carbon Nanotubes 11
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optimization process. The deformation force Fi obtained for the i-th MCD is deter-
mined as the gradient of the total energy of the system along this coordinate.

3.3 Calculation of Deformation and Rapture of Bonds in Open Shells

The main state of a carbon nanotube is a singlet one, which seemingly should lead
to the use of ordinary quantum-chemical schemes of calculation based on approxima-
tion of closed shells. However, due to the presence of weakly interacting redundant
electrons in a nanotube, in calculating the state of a nanotube one should take into
account spins of electrons as a result of which electronic properties must be calcu-
lated in approximation of open shells. The term "redundant electrons" is introduced to
emphasize the fact that a number of valence electrons of each of the carbon atoms of
a nanotube exceed by unity a number of atoms attached to it. Moreover, it is expe-
dient to model rupture of valence bonds, which, in the general case, can be both ho-
molythic (leads to formation of ions) and heterolythic, within the framework of the
method of open shells. As a consequence, the unrestricted Hartree–Fock (UFH)
method is used in practice.

3.4 Calculation of Deformation and Strength Characteristics

The energies (or heat of system formation ∆H) and forces Fi that are obtained in
nanoscopic quantum-mechanical calculation are used for calculation of the characteristics
of deformation, strength, and destruction of carbon tubes. To do this, a traditional mac-
roscopic approach based on the relationships of the linear elasticity theory is used.

In this case, such quantities as the total force of deformation of a molecular sys-
tem F = ΣFi, initial length of a nanotube L0, nanotube diameter D, pitch of elongation
δL, nanotube elongation ∆L = L − L0 (in particular, critical elongation ∆Lcr = Lcr − L0,
i.e., elongation of a nanotube in rupture of bonds), area of loading, i.e., the area of
the nanotube "end" to which the force of deformation is applied S = πhD (where h is
the parameter that characterizes a carbon tube thickness and is usually taken equal to
0.335 nm, an experimentally measured thickness of a graphite plate [21]).

The desired deformation and strength characteristics are calculated on the basis of

the Hooke law F = ES
L0

 ∆L = k∆L. The following quantities are calculated:

1) stress applied to the object σ = FS  = 

∑ 
i

 Fi

S ;
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2) a relative elongation of a nanotube ε = ∆L
L0

;

3) the Young modulus E = FS  L0

∆L
 = σ

ε
;

4) the coefficient of rigidity k = S
L0

 E;

5) deformation work Arupt = ∑ ∆Fi ∆Li A.

Moreover, rupture of bonds in a nanotube is characterized by the critical quanti-
tites: ∆Hcr, σcr, and εcr that are the heat of formation, stress, and deformation at a
critical (maximum) value of the deformation force Fcr, respectively, as well as by a

value of the energy of rupture of one C–C bond in a nanotube ∆Hb = ∆Hcr − ∆H0
N ,

where N – is number of C–C bonds in the direction of CNT deformation.

4. CALCULATION OF DEFORMATION AND DESTRUCTION
  OF CARBON NANOTUBES OF DIFFERENT CHIRALITY
  AND DIAMETER

The experimental works showed that deformation characteristics of carbon nanotubes
depend on their chirality and diameter, the number of walls and defects [10, 12]. To
confirm this proposition and to study microscopic mechanisms of deformation in each
specific case, in the present work we took the following models: one nanotube of the
"zigzag" (8, 0) configuration and two nanotubes with the "armchair" configuration
with different diameters (4, 4) and (5, 5). The computational experiment was con-
ducted in different regimes of loading for tension and compression and for different
points of application of the deformation force, i.e., mechanical-chemical deformation
was determined by the atoms of next to last carbon layers ("end deformation" mode)
and the atoms of the neighboring, second and third, carbon layers ("neighboring de-
formation" mode or "deformation of valence C–C bonds").

4.1 Deformation of a (4, 4) Carbon Nanotube, "End Deformation" Mode 

A cluster model of a (4, 4) nanotube comprised of 88 carbon atoms was obtained in
quantum-mechanical calculation. In this case, the position of all atoms of the nano-
tube was optimized. Such a model of a (4, 4) nanotube had a diameter D = 5.7 A°

Quantum-Mechanical Studies of Deformation of Carbon Nanotubes 13
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and an initial length L0 = 12.1 A° . Figure 4 gives an optimized structure of this
model and the scheme of introduction of the coordinate of mechanical-chemical de-
formation (MCD) for it in the "end deformation" mode.

For quantum-mechanical calculation of deformation forces and successive calcula-
tion of deformation characteristics, atoms of the first and second layers were fixed
(their coordinates were excluded from the process of optimization). The position of
the atoms of the last but one layer in space was determined in terms of the atoms of
the first and second layers in internal coordinates. Thus, rather long mechanical-
chemical coordinates of deformation were obtained. The lengths of these coordinates

were increased with a step of 0.1 A° , i.e., the atoms of the last but one layer step-by-
step moved away from the atoms of the second layer. The positions in space of the
atoms of all other layers were optimized completely. At each step of deformation the
energy of the system and the forces of deformation of all bonds between the atoms
of the second and last but one layers Fi were calculated as gradients of the total en-
ergy of the system by the selected coordinates of deformation. The total force of de-

formation of the molecular system is calculated as F = ∑  Fi.

Figure 5 presents several deformed structures of tubes and the corresponding elon-
gation of MCD. The last structure corresponds to the rupture of bonds in a tube.

It is seen that in deformation a tube becomes flat and longer. The final rupture of
the tube corresponds to a maximum of deformation forces Fcr. On rupture a tube is
divided into two parts: in our case, into a carbene chain and a shortened part of the
tube where the distances between the atoms are normalized. Figure 6 shows side
views of the both sides of the tube after destruction.

Based on the calculation results we constructed the dependences of the heat of sys-
tem formation and deformation forces of each MCD on MCD elongation and the de-

14 Yu. G. Yanovsky et al.
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FIG. 4: An optimized structure of the cluster model of a (4, 4) nanotube and a scheme of
introduction of the coordinate of mechanical-chemical deformation in the "end deformation"
mode



pendences of the total force of deformation and stresses on relative elongation (see
Figs. 7–10.

For the molecular system under consideration, we analyzed two modes of loading
— tension and compression. The corresponding curves of the dependences of the heat
of formation and deformation force on elongation are presented in Fig. 11a,b. Curves
1 belong to tension whereas curves 2 — to compression. The graphs show hysteresis
(i.e., the trend of the curves in both directions is not repeated) which indicates dissi-
pation or energy release in reloadings.

Mechanical characteristics calculated for a (4, 4) tube are given in Table 1.

Quantum-Mechanical Studies of Deformation of Carbon Nanotubes 15
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FIG. 6: Side view for a (4, 4) tube destructed at both ends

FIG. 5: Structure of a (4, 4) tube at several stages of deformation and the corresponding
elongations of the coordinate of mechanical-chemical deformation
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FIG. 7: Dependence of the heat of (4, 4) CNT formation on elongation

FIG. 8: Dependence of deformation forces on elongation for each coordinate of mechanical-
chemical deformation for a (4, 4) CNT
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FIG. 9: Dependence of the total force of deformation on relative deformation for a (4, 4)
CNT

FIG. 10: Dependence of strain stress on relative deformation for a (4, 4) CNT



4.2 Deformation of a (4, 4) Carbon Nanotube, "Deformation
   of Valence C–C Bonds" Mode

To model another version of loading, we took the same (4, 4) CNT model as was
discussed in the previous section. However, in this case, in order to consider defor-
mation and rupture of valence C–C bonds in a nanotube we selected MCD in another

18 Yu. G. Yanovsky et al.
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FIG. 11: Dependence of the force of deformation (a) and heat of formation (b) on elongation
in tension (curves 1) and compression (curves 2) for a (4, 4) CNT



way. Figure 12 presents the scheme of introduction of the mechanical-chemical coor-
dinate of deformation for the given case.

To calculate deformation characteristics, atoms of the first and second layers were
fixed (their coordinates were excluded from the optimization process). The positions
in space of atoms of the third row were determined in the internal coordinates via
the positions of atoms of the first and second layers. The length of bonds between
atoms of the first and second layers was increased by 0.1 A°  at each step. Thus,
atoms of the third layer step-by-step moved away from atoms of the second row. The
positions in space of atoms of all the remaining layers were fully optimized. Heat of
formation and deformation forces of all MCD between atoms of the second and third
layers were calculated at each step of deformation. In the case described, we ana-
lyzed deformation and rupture of covalent bonds in CNT. The results of modeling for
the case under consideration are given in Figs. 13 and 14 (cf. Figs. 5–10).

Table 2 summarizes all deformation and strength characteristics obtained for the
given case of CNT deformation.
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TABLE 1: Mechanical characteristics calculated for a (4, 4) carbon nanotube in "end deformation"

Critical
relative

deformation,
εcr

Critical
stress,

εcr,

GPa⋅10−9

Critical
deformation
force, Fcr,

N⋅10−9

Critical
heat of

formation,
∆Hcr,

kJ/mol

Destruction
work,
Arupt,

kJ/mol

Energy
of rupture

of one
bond,
∆Hb,

kJ/mol

Young
modulus,
E, TPa

Coefficient
of rigidity,

K, N/m

0.124 94.5 57.5 9433.7 3072.1 430.2 0.762 383

FIG. 12: Schematic of introduction of the coordinate of mechanical-chemical deformation in
the "deformation of valence C–C bonds" mode for a cluster model of a (4, 4) nanotube
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FIG. 14: Deformation characteristics of a (4, 4) CNT for the "deformation of valence C–C
bonds" mode

FIG. 13: Structures of clusters of a (4, 4) carbon nanotube at several stages of deformation
and corresponding elongations of the coordinate of mechanical-chemical deformation



4.3 Deformation of a (5, 5) Carbon Nanotube, "End Deformation" Mode

The model of a (5, 5) carbon nanotube had 100 atoms of carbon, L0 = 9.8 A° , D =
6.9 A° .

Figure 15 presents an optimized structure of this model and the scheme of intro-
duction of the coordinate of mechanical-chemical deformation (MCD) for it in the
"end deformation" mode. The scheme of introduction and calculation of MCD are de-
scribed in Section 4.1.

Figure 16 shows successive stages of deformation and destruction of a (5, 5) CNT
by an example of the structure of clusters of a (5, 5) carbon nanotube at several
stages of deformation and corresponding MCD elongation.

It is seen from the results of calculation of critical (maximum) deformation forces
(and from the figures) that rupture of this tube, as well as in the case of the model
of a (4, 4) tube, occurred at the 15-th step.

Figures 17–20 show the dependences similar to those presented in Figs. 7–10.
Table 3 gives the calculated deformation characteristics.

Quantum-Mechanical Studies of Deformation of Carbon Nanotubes 21

Volume 1, Number 1, 2010

TABLE 2: Mechanical characteristics calculated for a (4, 4) carbon nanotube in "deformation of
valence C–C bonds"

Critical
relative

deformation,
εcr

Critical
stress,

εcr,

GPa⋅10−9

Critical
deformation

force,
Fcr, N⋅10−9

Critical
heat of

formation,
∆Hcr,

kJ/mol

Destruction
work,
Arupt,

kJ/mol

Energy
of rupture

of one
bond,
∆Hb,

kJ/mol

Young
modulus,
E, TPa

Coefficient
of rigidity,

K, N/m

0.033 102.9 62.6 7383.5 1125.0 152.5 3.113 1565.5

FIG. 15: An optimized structure of the cluster model of a (5, 5) carbon nanotube and a
scheme of introduction of the coordinate of mechanical-chemical deformation for it in the
"end deformation" mode
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               ∆L = 0

         ∆L = 1.5 A°  (Fmax)           ∆L = 1.4 A°

            ∆L = 1.3 A°

FIG. 16: Structures of clusters of a (5, 5) tube at several stages of deformation and the cor-
responding elongations of the coordinate of mechanical-chemical deformation

FIG. 17: Dependence of the heat of (5, 5) CNT formation on elongation
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FIG. 18: Dependence of the deformation force of bonds on elongation for a (5, 5) CNT

FIG. 19: Dependence of the total force on deformation for a (5, 5) CNT



4.4 Deformation of a (8, 0) Carbon Nanotube, "End Deformation" Mode

The model of a (8, 0) carbon nanotube had 96 atoms of carbon, L0 = 10.0 A° , D =
6.3 A° .

Figure 21 presents an optimized structure of this model and the scheme of intro-
duction of the coordinate of mechanical-chemical deformation (MCD) in the "end de-
formation" mode. The scheme of introduction and calculation of MCD are similar to
those described in Section 4.1 

Figure 22 shows successive stages of deformation and destruction of a (8, 0) CNT.
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FIG. 20: Dependence of stress on deformation for a (5, 5) CNT

TABLE 3: Mechanical characteristics calculated for a (5, 5) carbon nanotube in "end deformation"

Critical
relative

deformation,
εcr

Critical
stress,

εcr,

GPa⋅10−9

Critical
deformation

force,
Fcr, N⋅10−9

Critical
heat of

formation,
∆Hcr,

kJ/mol

Destruction
work,
Arupt,

kJ/mol

Energy
of rupture

of one
bond,
∆Hb,

kJ/mol

Young
modulus,
E, TPa

Coefficient
of rigidity,

K, N/m

0.143 158.9 58.5 10930.7 3370.9 933.9 1.113 418.2
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FIG. 21: An optimized structure of the cluster model of a (8, 0) nanotube and a scheme of
introduction of the coordinate of mechanical-chemical deformation in the "end deformation"
mode

               ∆L = 0              ∆L = 1.0 A°

                            ∆L = 1.1 A°  (Fmax)

FIG. 22: Structures of clusters of a (8, 0) carbon nanotube at several stages of deformation
and the corresponding elongations of the coordinate of mechanical-chemical deformation



It is seen from the results of calculation of critical (maximum) deformation forces
(and from the figures) that rupture of this tube, as well as in the case of the model
of a (4, 4) tube, occurred at the 11-th step. The calculated value of the Young modu-
lus is E = 0.737 TPa.

5. DISCUSSION OF THE RESULTS

As is seen from the above-given material, in the work we studied a microstructure
and mechanical properties of carbon nanotubes. Here, the geometry, energy, and
forces of deformation of nanotubes were calculated at the nanoscopic level using
quantum-mechanical methods; then these forces were used for calculation of mechani-
cal characteristics at the macroscopic level using the relationships of the elasticity
theory.

Approximations of the mechanical-chemical coordinate of deformation, a semiem-
pirical NDDO method with the AM1 parametrization, unrestricted Hartree–Fock
(UHF) method, and cluster approximation (all realized within the package of pro-
grams NDDO/sp-spd) were introduced.

Deformation and strength characteristics for tubes of different diameters and chiral-
ity were studied. Different versions of loading were considered. It is found that the
Young modulus increases with an increase in the CNT radius (for the "armchair’
configuration it is higher than for the "zigzag" configuration).

A high calculated strength of an individual C–C bond in CNT is commensurable
with the strength of bonds in benzene. Microscopic mechanisms of deformation are
revealed. The calculated macroscopic mechanical characteristics of CNT are in good
agreement with the experimental data in both value and the presence of the depend-
ence of deformation on chirality and geometric parameters of single-wall CNTs.

All the results obtained are tabulated in Table 4 where the calculated deformation
and strength characteristics for all models of loading of carbon nanotubes are given.

The results of calculation of the Young modulus for carbon nanotubes show that

– CNTs with a large diameter (E = 1.2 TPa) are stronger than CNTs with a
smaller diameter (E = 0.76 TPa);

– CNTs with the "armchair" configuration are stronger than tubes of the same di-
ameter but with the "zigzag" configuration.

The calculation revealed an extreme strength of bonds between the neighboring
atoms of carbon in nanotubes (E = 3.1 TPa) which is in good agreement with analo-
gous results obtained in benzene (E = 3.3 TPa) [23].
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Thus, we should emphasize that both qualitative and quantitative agreement with the
experiments and the available theoretical calculations was obtained in computer ex-
periments.

6. CONCLUSIONS

In the present work, mechanical characteristics of carbon nanotubes are studied by
the methods of quantum mechanics. The experimental data known from the literature
and available theoretical calculations of structural, energy, and mechanical properties
of carbon nanotubes are analyzed. Complex quantum-mechanical modeling of the me-
chanical behavior of carbon nanotubes was performed in approximation of the me-
chanical-chemical coordinate of deformation. In this case, deformation forces were
calculated within the framework of quantum-mechanical approximation as a response
to deformation of the system. These quantities were used for calculation of macro-
scopic characteristics determining mechanical and strength properties of carbon nano-
tubes. By virtue of the fact that carbon nanotubes are nanoobjects in themselves, the
suggested description of the process of CNT deformation was as much as possible
adapted to the scheme of a natural experiment.
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TABLE 4: Deformation and Strength Characteristics for Carbon NanoTubes by Different Deformation Modes

Sistem

Critical
relative

deformation,
εcr

Critical
stress,

εcr,
GPa⋅109

Critical
deformation
force, Fcr,

N⋅10−9

Critical
heat of

formation,
∆Hcr,

kJ/mol

Destruction
work,
Arupt,

kJ/mol

Energy
of rupture

of one
bond,
∆Hb,

kJ/mol

Young
modulus,
E, TPa

Coefficient 
of rigi-

dity,
K, N/m

(4, 4)
CNT, end
deformation

0.124 94.5 57.5 9433.7 3072.1 430.2 0.762 383

(4, 4)
CNT,
deformation
by neighboring
rows

0.033 102.9 62.6 7383.5 1125.0 152.5 3.113 1565.5

(5, 5)
CNT, end
deformation

0.143 158.9 58.5 10930.7 3370.9 933.9 1.113 418.2

(8, 0)
CNT, end
deformation

0.123 90.5 48.0 3250.2 1270.6 405.6 0.737 342.8



As a result, a rather good agreement with the experiment (both quantitative and
qualitative) was obtained in the present calculations. It is known from the literature
that deformation characteristics and, first of all, the Young moduli for carbon nanotu-
bes depend on the diameter and chirality of tubes. Actually, it was shown in the cal-
culations that the Young modulus increases with an increase in the diameter of
nanotubes. It is also found that the Young moduli for nanotubes with the "armchair"
configuration are somewhat higher than those for nanotubes in the "zigzag" configu-
ration. And finally, in the present work we obtained good quantitative results on cal-
culations of the Young moduli, which virtually coincide with the experimental data.

The work was carried out with financial support of the Russian Foundation for
Basic Research (grant No. 08-01-00390a).
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1. INTRODUCTION

Layered silicates, in particular, Na+-montmorillonite (natural clay) are the promising
natural materials for being used as nanofillers to obtain polymer nanocomposites [1,
2]. Usually, the introduction of small amounts of organoclay (up to 10 wt.%) into a
polymer matrix results in substantial enchancement of the elasticity modulus of re-
ceiving nanocomposites. Although at the present time there are theoretical models for
describing a change in the elasticity modulus of nanocomposites filled with organo-
clay which are based on the notion of the so-called "effective particles" [3], these
models do not take account of two factors, which are most important for theoretical
description of multiphase polymeric systems: the interfacial adhesion level and the
molecular characteristics of a polymer matrix. The first factor has acquired a special
importance after the discovery of the nanoadhesion effect, which assumes the avail-
ability of a much higher interfacial adhesion level in polymer nanocomposites in
comparison with traditional composites filled with particles (fibers) of micron size
[4]. Therefore, the purpose of the present paper is to study theoretically the basic me-
chanical characteristics (elasticity modulus, yield stress, strain at failure) of poly-
mer/organoclay nanocomposites taking into account the indicated-above factors.

2. EXPERIMENTAL

For the nanocomposites based on polyimide (PI), Na+-montmorillonite (MMT) with
particles of average size of 50 µm was used as a nanofiller. The first series of or-
ganically modiefed MMT (MMT-16C) was prepared by ions change reaction in water
with the use of concentrated hydrochloric acid, the second series (MMT-OM-m) was
also obtained by a reaction in water with the use of N-[4-(4’-aminophenoxy)] phenyl-
phthalimide. The PI/MMT-16C and PI/MMT-OM-m nanocomposites were prepared
by polymerization in situ, the details of which are given in [5, 6]. The MMT content
amounts to 1–3 wt.% in the PI/MMT-16C nanocomposites and 0.5–5.0 wt.% in the
PI/MMT-OM-m nanocomposites.

The mechanical properties of PI/MMT nanocomposites were obtained with the use
of the universal Instron tester of model 4465 at a temperature of 293 K and strain
rate of �1.1 × 10−3 s–1. Dumbbell samples were prepared from films of thickness 0.1
mm, basic length of 75 mm, and width of 4 mm [5].

For nanocomposites based on polyethylene, linear low-density polyethylene
(LDPE), of mark Dowlex 2032, having the melt flow index of 2.0 g/10 min and den-
sity of 0.926 g/cc, which corresponds to the crystallinity degree of 0.49, was used.

32 Dzhangurazov et al.

International Journal of Nanomechanics. Science and Technology



Modified Na+-montmorillonite (MMT), obtained by the cation exchange reaction be-
tween MMT and quaternary ammonium ions, was used as a nanofiller [7].

The low-density polyethylene/montmorillonite (LDPE/MMT) nanocomposites were
prepared by blending components in a melt using the Haake twin-screw extruder at a
temperature of 473 K [7].

Tensile specimens were prepared by injection molding on Arburg Allrounder 305-
210-700 molding machine at a temperature of 463 K and pressure of 35 MPa. Ten-
sile tests were performed using the Instron tester of model 1137 with direct digital
data acquisition at a temperature of 293 K and strain rate of �3.35 × 10−3 s–1. The
average deviation in the determination of the elasticity modulus was 7% with the
yield stress being equal to 2% [7].

The data of [8] were also used for nanocomposites based on isotactic polypropylene
(PP) of industrial Shell Co. manufacture, filled with Na+-montmorillonite with the
weight content of the latter Wn = 2.5, 5.0, and 10.0 wt.%. Dioctadecildimethylam-
monium bromide (DODAB) plus the polyethyleneoxide-polyethylene (PEO-PE) block-
copolymer (conventionally abbreviated as PP/MMT-1); PEO-PE (PP/MMT-2); DODAB
plus PEO-PE with isobutylene (PP/MMT-3), and PEO-PE plus isobutylene (PP/MMT-
4) were used as modifiers. The detailed description of the procedure of preparing
specimens was given in [8].

Tensile tests of PP/MMT nanocomposites were carried out on film specimens
(length 10 mm, width 3 mm, and thickness 0.2 mm) obtained by pressing from melt
at a temperature of 473 K. Tensile tests were conducted at a temperature of 293 K
and strain rate of 8.3 × 10–3 s–1 [8].

3. RESULTS AND DISCUSSION

3.1 The Reinforcement Degree of PI/MMT Nanocomposites

In [2], the relationship allowing one to connect the reinforcement degree of nanocom-
posites En  ⁄ Em with the molecular characteristics of a polymer matrix was obtained:

En
Em

  =  1  +  0.19Wn
 1 ⁄ 2lst , (1)

here En and Em are the elasticity moduli of the nanocomposite and polymer matrix,
respectively, Wn is the nanofiller weight content (in wt.%), and lst is the statistical
segment length for the polymer matrix chain (in nm).

Mechanical Behavior of Nanocomposites 33

Volume 1, Number 1, 2010



To estimate lst, it is necessary to calculate the fractal (Hausdorff) dimension df of
the nanocomposite structure, which can be made by the equation [9]

df  =  (d  −  1) (1  +  ν) , (2)

where d is the dimension of the Euclidean space in which a fractal is considered (it
is obvious that in our case d = 3), ν is the Poisson ratio estimated by the results of
mechanical tests with the aid of the relationship [10]

σY
En

  =  
1  −  2ν

6 (1  +  ν)
 , (3)

where σY is the yield stress of the nanocomposite.
The characteristic ratio C∞, which is an indicator of the polymer chain statistical

flexibility [11], is related to the structural characteristic df by the equation [12]

C∞  =  
2df

d (d  −  1) (d  −  df)
  +  43 . (4)

Finally, the length of the statistical segment lst can be determined by the formula
[13]

lst  =  l0C∞ , (5)

where l0 is the length of the main chain skeletal bond which is equal to 2.05 A°  for
polyimide [14].

The calculation of the value of En  ⁄ Em according to Eqs. (1)–(5) yields understated
values of this parameter: En  ⁄ Em = 1.15–1.59, since the experimental values of the
reinforcement degree for the nanocomposites studied are within the range 1.11–3.65
[5, 6]. The cause of this discrepancy is obvious enough: Eq. (1) takes into account
the polymer chain flexibility of the nanocomposite with the aid of the parameter lst,
but does not take into account the interfacial adhesion level. The accounting for the
last factor can be achieved with the aid of the parameter b, which is used in heat ex-
pansion of composites and is determined according to the formula [15]

αn  =  αn
mix  −  b ⎛⎝αn

mix  −  αn
T ⎞⎠ , (6)
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where αn, αn
mix, and αn

T are the values of the nanocomposite heat expansion coeffi-
cient, obtained experimentally and calculated according to the mixtures rule and
Turner equation, respectively.

Since the calculation by the Turner equation gives a lower limiting value for the
heat expansion coefficient, then it follows from Eq. (6) that b = 1 at αn = αn

T, i.e.,
when perfect adhesion is reached [15]. For a larger number of polymer composites
with various polymer matrices and fillers the values of b were obtained within the
range �0.1−1.0 [15]. The nanoadhesion effect supposes much higher values of b in
the nanocomposites case. So, for particulate-filled phenylone/aerosil nanocomposite
the value of b can reach �12, which corresponds to the condition αn < αn

T [4]. The
value of the parameter b or interfacial adhesion level, according to the results of me-
chanical tests, can be estimated as follows. It is known [2] that the reinforcement de-
gree of polymer nanocomposites can be determined by the following percolation
relationship:

En
Em

  =  1  +  11 ⎛⎝ϕn  +  ϕif ⎞⎠
 1.7 , (7)

where ϕn and ϕif are the relative volume fractions of the nanofiller and interfacial re-
gions, respectively.

The following relationship between ϕif and ϕn for exfoliated layered silicates was
obtained [2]:

ϕif  =  1.91ϕnb . (8)

Thus, Eq. (8) demonstrates that in the nanoadhesion case the value of ϕif increases
b times in comparison with the perfect adhesion for which b = 1. Equation (8) sub-
stituted into formula (7) gives the following relationship:

En
Em

  =  1  +  11 [ϕn (1  +  1.91b)] 1.7 , (9)

which takes into account the interfacial adhesion (nanoadhesion) level in determining
the nanocomposites reinforcement degree.

Returning to Eq. (1), we note that the only parameter that can be influenced by
the interfacial adhesion level in this equation is the statistical segment length. It can
be supposed that the enhancement of the interfacial adhesion level, characterized by
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the growth of the parameter b, or by the intensification of the polymer matrix with
montmorillonite platelets surface interaction restricts the mobility of polymer chains
in the interfacial layer and results in higher rigidity (straightening) of these chains in
comparison with thebulk polymer matrix or increase in lst [16], which can be ex-
pressed with the aid of the statistical segment effective length lst

 eff:

lst
 eff  =  l0C∞ b . (10)

Taking into account relationship (10), Eq. (1) can be written as follows:

En
Em

  =  1  +  0.19Wn
 1 ⁄ 2lst b . (11)

The value of b can be calculated with the aid of Eq. (9) with the assumption that
ϕn = Wn. These estimations have shown that for the nanocomposites studied the pa-
rameter b varies within the range 2.40–5.74, i.e., for the PI/MMT-16C and PI/MMT-
OM-m nanocomposites the nanoadhesion effect (b > 1) is observed. Figure 1 presents
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FIG. 1: A comparison of the experimental En  ⁄ Em and calculated from Eq. (11) values of the
reinforcement degree (En  ⁄ Em) T for the PI/MMT-16C (1) and PI/MMT-OM-m (2) nanocom-
posites



a comparison between the experimental ratio En  ⁄ Em and reinforcement degree values
(En  ⁄ Em) T calculated by Eq. (11) for the polyimide/montmorillonite nanocomposites.
As one can see, in this case there is a good correspondence between the theory and
experiment: the (En  ⁄ Em) T value varies within the range 1.56–3.71 and its average
discrepancy with experimental values of En  ⁄ Em amounts to about 16%.

3.2 Yield Stress of Low-Density Polyethylene/Montmorillonite Nanocomposites

As a rule, an introduction of layered silicates into a polymer matrix results in a sub-
stantial (up to 1.5 times) increase in the nanocomposites yield stress [2, 7, 8]. Such
an effect is important from the practical point of view, since the attainment of the
yield stress σY restricts the exploitation range of polymer materials from above. The
analysis of the yield process within the framework of the cluster model of the amor-
phous state structure of polymers [12, 18] shows that the attainment of the yielding
point is connected with the decay of the densely-packed regions of the polymers
structure, i.e., local order domains (clusters) and crystallites, in the applied mechani-
cal stress field. An introduction of a nanofiller into a polymer matrix results in the
complication of the nanocomposite structure obtained which requires account for the
influence of the newly formed structural formations. Thus, in [19] it is shown by an
example of the PP/MMT nanocomposites that the σY value for these materials is de-
termined by the crystallites and interfacial regions, and the latter were formed by epi-
taxial crystallization on the surface of the layered nanofiller platelets [2]. Therefore,
below we will carry out a structural analysis of the yield process for low-density
polyethylene/organoclay nanocomposites (LDPE/MMT) [7].

As is noted above, in polymer materials the attainment of the yield stress σY (re-
alization of the yield process) is connected with the decay of densely-packed regions
[12, 18]. In the case of the LDPE/MMT nanocomposites, the crystallites, local order
domains (clusters) in an amorphous phase, and interfacial regions with the relative
fractions K, ϕcl, and ϕif, respectively, or any variant of the sum of these densely-
packed regions represent such regions. The estimation of the indicated relative frac-
tions of structural components can be performed as follows. The crystallinity degree
K was calculated according to the equation [20]

K  =  0.32C∞
 1 ⁄ 2 , (12)

where the value of the characteristic ratio C∞ was determined by Eq. (4).
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It should be noted that estimations according to Eq. (12) yield the value of K
within the range 0.47–0.54 which corresponds well to the calculation of K in terms
of the density for the LDPE matrix, which is equal to 0.49. The relative fraction of
clusters ϕcl was calculated with the aid of the equation [12]

df  =  3  −  6 
⎛
⎜
⎝

ϕcl
C∞ S

⎞
⎟
⎠

 1 ⁄ 2
 , (13)

where S is the cross-sectional area of the macromolecule, which is equal to 14.4 A° 2 for
polyethylenes [21].

And finally, the relative fraction of the interfacial regions ϕif can be calculated
with the aid of Eq. (7). Within the framework of the cluster model of the amorphous
state structure of polymers, theoretical estimation of the yield stress σY was per-
formed according to the equation [12]

σY  =  
GbB ρd

1 ⁄ 2

2π
 , (14)

where G is the shear modulus, bB is the Burgers vector, and ρd is the density of
structural linear defects, i.e., their total length per unit volume of polymer material.

The value of G was determined from the following fractal relationship [22]:

G  =  
En
df

 . (15)

For polymer materials the Burgers vector bB is a function of polymer chain flexi-
bility characterized by C∞ and estimated as follows [12]:

bB  =  ⎛⎜
⎝

60.5
C∞

⎞
⎟
⎠

 1 ⁄ 2
 ,   A°  . (16)

The cluster model assumes that the segments of the polymer chains participating in
the densely-packed regions of the polymer material are the linear defects of the struc-
ture [12]. Therefore the value of ρd can be calculated by the equation [12]

ρd  =  
ϕdens

S  , (17)
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where ϕdens is the relative fraction of the densely-packed regions.
As was noted above, for the LDPE/MMT nanocomposites K, ϕcl or ϕif or their

sum in any possible variant can be accepted as ϕdens. In the present paper, to esti-
mate ρd by Eq. (17), the following structural parameters were selected: ϕcl, K,
ϕcl + ϕif, and K + ϕif. In Fig. 2, a comparison of the experimental dependences and
those calculated according to Eq. (14) of the yield stress σY on the nanofiller weight
content Wn is presented. It is apparent from the data of Fig. 2 that the following
structural parameters: σif, as giving the understated values of σY, and also K + ϕcl
and K + ϕif, as giving obviously the overstated values of σY, can be excluded from
consideration. At small values of Wn, the value of σY is checked by the crystalline
phase and at Wn ≥ 5 wt.% the transition to the case occurs where the yield process
structural component is checked by the sum (ϕcl + ϕif). Such transition is due to the
change in the crystalline phase deformation mechanism of the LDPE/MMT nanocom-
posites. In [23] it was supposed that the drawing occurred as a result of the straight-
ening of the crystalline and amorphous molecular sequences, and, in this case, the
limiting draw ratio λlim can be expressed in terms of the times number f, which is
passed by the macromolecule through the same crystallite:
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1
λlim

  =  Kf   +  
(1  −  K) 1 ⁄ 2

n1 ⁄ 2
 , (18)

where n is the number of equivalent statistical links between the nodes of macro-
molecular entanglements in a melt, further assumed equal to 300 [24].

It is obvious that the value of f determines the number of folds which are formed
by the macromolecule in the folded chains of the crystallite [24]. The condition f ≥ 2
is necessary for fulfillment of folds formation. The calculation by Eq. (18) with the
use of experimental values of λlim [7] demonstrated that at Wn = 5 wt.% f = 3.25, i.e.,
somewhat higher than 2, and at Wn = 7 wt.% f = 1.90, i.e., in this case, f < 2. Thus,
the reduction of f, i.e., the impossibility of the straightening of the crystalline molecu-
lar sequences [23], is the cause of the transition of the structural component of the
checking yield process from crystallites to clusters and interfacial regions.

It was a widespread opinion that there was the proportionality between the elastic-
ity modulus and yield stress for polymer materials [25]. In Fig. 3, the relation of
σY and En for the LDPE/MMT nanocomposites is given, which demonstrates the ab-
sence of the postulated proportionality: at En increasing 2.76 times the value of σY
increases only by a factor of 1.59. The cause of the disproportion in the change of
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En and σY obvious from the plot of Fig. 3 follows from Eqs. (14) and (15): the pro-
portionality postulated in [25] can be realized only at constant molecular and struc-
tural characteristics of polymer material [which are interrelated, see Eq. (4)], but this
condition is not fulfilled for the LDPE/MMT nanocomposites, for which the dimen-
sion of df varies within the range 2.528–2.730 with Wn = 0–7 wt.%. Therefore, the
relation between σY and En must be written as follows [10]:

σY  =  
En
6γL

 , (19)

where γL is the Gru
..

neisen lattice parameter connected with the dimension df by the
relationship [19]

γL  =  
df

2 (d  −  df )
 . (20)

The combination of Eqs. (19) and (20) allows one to obtain the relation between
σY and En, with account for the change in the nanocomposites structure:
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σY  =  
En (d  −  df )

3df
 . (21)

In Fig. 4, the comparison of experimental σY values and the σY
T yield stress values

calculated from Eq. (21) for the LDPE/MMT nanocomposites is presented. As one
can see, in the case of the account for the change in the structure characterized by
the dimension df, one obtains linear correlation between σY and En.

3.3 Deformability of the PP/MMT Nanocomposites

As a rule, the introduction of small amounts of organoclay (up to 10 wt.%) reduces
sharply the plasticity of nanocomposites, which can be characterized by the limiting
strain up to failure εf, in comparison with the polymer matrix. So, in [8] the structure
and deformation behavior of the PP/MMT nanocomposites were studied and the re-
duction in εf by two orders on introduction of 2.5–10 wt.% of organoclay was re-
vealed. A similar effect was observed for a number of other nanocomposites with an
amorphous glassy [26] and semicrystalline [7, 27] matrix. Such a rather strong and
common effect requires more thorough investigation. Therefore, a structural analysis
of the sharp reduction in plasticity on introduction of layered silicate will be per-
formed below by an example of the PP/MMT nanocomposites.

A comparison between the results of the mechanical tests of the PP/MMT nano-
composites has shown that the increase in the reinforcement degree En  ⁄ Em was ac-
companied by the reduction in the plasticity of these materials characterized by the
limiting strain up to failure εf. In Fig. 5, the relationship between the parameters
En  ⁄ Em and εf in the logarithmic coordinates for the PP/MMT nanocomposites is
given. From the data of this figure a sharp nonlinear reduction in εf on an increase
in En  ⁄ Em follows and at En  ⁄ Em � 3 the value of εf is close to zero (εf � 2.5%). The
reinforcement degree of nanocomposites can be determined from the percolation rela-
tion (7), from which it follows that an increase in the solid-state component in the
structure of nanocomposites defined by the sum (ϕn + ϕif) results in an increase in
the reinforcement degree En  ⁄ Em and, hence, in the reduction of εf. This effect was
shown in Fig. 6 in the diagram form, where the dependence of εf on (ϕn + ϕif) in the
logarithmic coordinates is given for the PP/MMT nanocomposites.

Let us consider theoretically the empirical correlations given in Figs. 5 and 6. As
is known [28], the limiting strain up to failure εf can be determined theoretically
from the equation:
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FIG. 6: The dependence of the limiting strain up to failure εf on the relative fractions of the
sum of nanofiller ϕn and interfacial regions ϕif in the logarithmic coordinates for the PP/MMT
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εf  =  C∞
 Dch − 1  −  1 , (22)

where Dch is the fractal dimension of a part of the polymer chain between its fixa-
tion points (chemical cross-linking nodes, physical entanglements, local and long-
range order, etc.), that characterize the molecular mobility extent of a polymer
material [12, 18].

The estimation of the value of C∞ was performed according to Eq. (4) and the di-
mension Dch was calculated with the aid of the following formula [12]:

2
ϕdens

  =  C∞
 Dch , (23)

where the sum (ϕcl
red + ϕn + ϕif) was used as ϕdens. The reduced value of the clusters

relative fraction ϕcl
red takes into account the availability of crystalline regions in the

PP polymer matrix and is determined as follows [12]:

ϕcl
red  =  ϕcl (1  −  K) , (24)

where K and ϕcl values were calculated from Eqs. (12) and (13), respectively.
A comparison of the experimental εf and εf

T calculated by Eq. (22) as the limiting
strain up to failure values is given in Table 1. As one can see, a good enough cor-
respondence of the theory and experiment is obtained, although in the majority of
cases the condition εf

T > εf is fulfilled. The latter observation is due to two factors.
Firstly, the power dependence in Eq. (22) gives an increased error. Secondly, the
theoretical value of εf

T is determined for an ideal defectless nanocomposite, whereas
in real materials defects always exist, and this results in the reduction of εf in com-
parison with εf

T.
The only substantial discrepancy is observed for the PP/MMT-4 nanocomposite

with the MMT content of 2.5 wt.% (εf = 345%, εf
T = 86%). We will consider the

physical causes of this discrepancy, for which the Gent and Madan model [Eq. (18)]
will be used [23]. In Table 1, the values of f for the PP/MMT nanocomposites, ob-
tained from Eq. (18) using experimental values of λlim, are presented. As one can
see, the condition f ≥ 2 is fulfilled for the PP/MMT-4 nanocomposite with the MMT
content of only 2.5 wt.%. In this case, the theoretical value of εf (εf

 fold) can be esti-
mated from the following equation:
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εf
 fold  =  εf

T f  +  εf
T  =  εf

T ( f  +  1) . (25)

The calculation by Eq. (25) gives εf
 fold = 327%, which corresponds well to the ex-

perimental value εf = 345% for the indicated nanocomposite. In Figs. 5 and 6, the
vertical dashed lines indicate the critical values of En  ⁄ Em and (ϕn + ϕif) correspond-
ing to the criterion f = 2. This criterion demonstrates that at En  ⁄ Em ≥ 1.5 or (ϕn +
ϕif) ≥ 0.17 in the PP/MMT nanocomposites the straightening of the crystalline mo-
lecular sequences from folded-chain crystallites of PP is suppressed, and only the
drawing of chains in amorphous and interfacial regions with f < 1 is possible, which
results in the sharp reduction of the plasticity of the indicated materials. Similar cal-
culation for the PP matrix gave the following values of the parameters: εf

T = 127%,
f = 8.7, εf

 fold = 1232%, that correspond well to the value εf = 901% [8].

4. CONCLUSIONS

The results obtained in the present work have demonstrated a strong influence of the
interfacial adhesion (nanoadhesion) level on the reinforcement degree of poly-
imide/montmorillonite nanocomposites. The intensification of the interaction between
the nanofiller and the polymer matrix characterized by the parameter b results in a
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TABLE 1: The values of the limiting strain up to failure εf, εf
T and of the folding parameter f for

the PP/MMT nanocomposites

Nanocomposite MMT content, wt.% εf, % εf
T, % f

PP/MMT-1
5 8 12 0.64

10 4 9 0.65

PP/MMT-2
2.5 11 23 0.61
5 14 22 0.65

10 9 18 0.63

PP/MMT-3
2.5 10 25 0.61
5 8 19 0.61

10 6 28 0.62

PP/MMT-4
2.5 345 86 2.80
5 33 44 0.75

10 23 29 0.70

Volume 1, Number 1, 2010



substantial (by a factor of b) change in the flexibility of the polymer chains in the
interfacial layer in comparison with the bulk polymer matrix. The proposed modified
equation for the determination of the reinforcement degree of nanocomposites with
account for both the polymer matrix molecular characteristics and interfacial adhesion
(nanoadhesion) level gives a good correspondence to experiment.

The cluster model of the amorphous state structure of polymers coupled with the
fractal analysis and anharmonicity concept provides a correct quantitative description
of the yield process of the LDPE/MMT nanocomposites. The increase in the content
of organoclay results in the reduction in the straightening number of the crystalline
molecular sequences that defines the transition of the structural component of the
checking yield process from crystallites to clusters and interfacial regions. Such a
transition causes a decrease in the yield stress by 27%. The linear relationship be-
tween the yield stress and elasticity modulus of the LDPE/MMT nanocomposites can
be obtained on allowing for their structural changes only in the case of the change in
the organoclay content.

The enhancement of the reinforcement degree of nanocomposites, which is due to
the growth of the total relative fraction of nanofiller and interfacial regions, results in
the reduction of their plasticity characterized by the limiting strain up to failure. A
theoretical analysis has revealed that this reduction is determined by a decrease or
suppression of the straightening of the crystalline molecular sequences from folded-
chain crystallites.
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Kinetic effects related to flows of gases and gas mixtures in capillaries and porous bod-
ies are discussed. The models of porous media and the methods for calculation of ki-
netic coefficients are described. Much attention has been paid to the dusty-gas model.
Results of calculation of the kinetic coefficients for small and large values of the Knud-
sen number are presented with due account for incomplete accommodation of molecules
on the surfaces of capillary walls. Special features of gas flows in ultra-fine channels and
the effects related to the action of surface forces, surface diffusion, entrainment of gases
by phonons and quasi-one-dimensionality of gas flows have been considered. The effects
of the asymmetry of gas transport through multilayer membranes have been discussed.

KEY WORDS: gas mixture flow, non-equilibrium thermodynamics, kinetic
theory of gases, Knudsen regime, thermal slip, viscous slip,
diffusion slip, capillary, porous media, dusty-gas model,
diffusion pressure effect, gas mixture separation, thermo-
molecular pressure drop, asymmetry effect, surface forces,
surface diffusion, surface fluxes, sieve effect.

1. INTRODUCTION

Recently, the study of gas and liquid flows in ultra-fine channels and heat transfer
processes in them has evoked much interest. The appearance of such studies is related
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to minituarization of diverse devices, development of new materials and nanotech-
nologies. Such flows are encountered in various electronic devices, in development of
liquid-crystal displays, jet printers, fuel elements, membranes and filters of new gen-
eration, and in a number of other technological processes [1–6]. A heavy growth of
the number of publications on the processes of heat and mass transfer in ultra-fine
channels resulted in development of an independent trend of investigations which has
its own specifics, is called microfluidics, and the essence of which is well covered in
some reviews [1–3]. 

We should note that gas flow in ultra-fine channels is assumed to be rather well
studied since it occurs in the so-called free-molecular regime that is described thor-
oughly within the framework of the classical methods of the rarefied gas dynamics
[7, 8]. Recent studies show, however, that this problem is far from being completed
since a number of new factors have been found here which affect the flow of gases
in nano-sized channels (see, e.g., [5, 9]). Even more far from being completed is the
region of gas flow in the regime that is intermediate between the free-molecular and
hydrodynamic flows, especially it refers to gas flows in channels of complex geome-
try which are usually used in real devices. Effects that are unusual for this region
have been mentioned, in particular, in our reviews [10–12].

All said above can be referred to gas flows in a slip regime as well. In addition
to different problems related to the analysis of flow in channels of complex geome-
try and combination of heat and mass fluxes [4], in this regime there virtually still
remained unstudied effects caused by the action of surface forces which, as is
shown in [13], can appreciably affect gas slip. We note that an account of gas slip
can also play an important role in the description of the effect of slip of fluids,
which is an integral part of microfluidics [3]. The possibility itself of fluid slip
along a solid surface was apprehended rather long ago and on the phenomenological
level its account under the boundary conditions was introduced, e.g., in the classical
monograph by Happel and Brenner [14]. Fluid slip was revealed in special real ex-
periments [15, 16] conducted with fluids not wetting the surface. Slip of a nonwet-
ting fluid is explained by different reasons [3, 15, 17]. Along with a purely formal
explanation, e.g., due to a decrease of viscosity in the boundary layers, this effect is
treated [15] as a real slip caused by the presence of thin gas interlayers near the
solid surface. This means that to describe slip of nonwetting fluids one should,
strictly speaking, consider gas flows in ultra-thin layers.

In this review, we discuss, mainly, classical ways of describing the flow and dif-
fusion of gases in capillaries and porous bodies. This is related to the fact that these
methods are well substantiated and checked on a great number of real systems; there-
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fore, they can be useful in solution of various practical problems. We shall also men-
tion a number of new effects which were observed in flows of gases and gas mix-
tures in ultra-fine channels.

2. BASIC MODELS OF POROUS MEDIA

To the first model of porous media, which is still urgent, we can refer a model of
cylindrical capillaries. Gas flow in a long cylindrical capillary was calculated at the
beginning of the last century by Knudsen [18] and Smoluchowski [18] for a free-mo-
lecular flow that is characterized by a large value of the Knudsen number Kn =
l ⁄ R >> 1 (l is the free path, R is the characteristic radius of a pore or capillary).
Then it was shown that in flow of gases and gas mixtures in capillaries and porous
bodies various physical effects (diffusion pressure effect, separation of gas mixtures,
thermomolecular pressure drop, etc.) manifest themselves under the action of gradi-
ents of pressure and temperature. These effects are determined to a great extent by
a value of the Knudsen number, channel geometry, and structure of a porous me-
dium. Due to this reason, along with solution of problems for channels of simple
geometry, much attention was paid to search for models which allow analysis of
flows in channels of more complex geometry that are much closer to real porous
bodies. Among the works dealing with theoretical investigation of a free-molecular
flow in a porous medium we should mention, first of all, the work by Derjaguin
[20] where he calculated gas permeability of a porous body and found the relation
between this parameter and the specific surface of a porous medium irrespective of
its geometry. The results of this work were then confirmed by the methods of a nu-
merical experiment [21].

Of particular interest is flow and diffusion of gas mixtures at intermediate Knud-
sen numbers (Kn � 1), i.e., in the transition regime from free-molecular to viscous
flow with slip. In a number of works, this problem for long channels of a regular
geometric shape (plane channel, round cylindrical channel, etc.) was solved using the
linearized kinetic equation with a model collision integral. For flows of a pure gas, a
detailed review of this problem is given in [22], for a gas mixture, references to the
corresponding works can be found in [23–25]. On a semi-phenomenological level, ef-
fects related to transition from the slip regime to a free-molecular flow, which were
found in real experiments, are discussed in [26]. On the other hand, rather general re-
sults for mass and heat transfer in capillaries can be obtained based on the kinetic
eqution with an exact collision integral [27–29].
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Expressions for averaged fluxes in a capillary can be used for description of flow
and diffusion in a porous medium if the latter is considered as a block formed from
a set of long capillary tubes (a capillary model of a porous medium). At the same
time, alternative models which allow one to consider a porous medium as an ensem-
ble of particles rigidly fixed in space have been developed; in this case, gas–surface
interaction is allowed for by treating the motionless particles as giant molecules that
form one of the components of the gas mixture.

A general idea of such a model was suggested by Derjaguin and Bakanov [30,
31], Kagan [32, 33], and Evans, Watson and Mason [34–36] independently. A
pseudomolecular (near-Knudsen) regime of gas flow in porous media was described
by Derjaguin and Bakanov in 1957. Kagan developed the theory of diffusion, baro-
and thermal diffusion of gas mixtures in porous media (1956–1957) on the basis of
the model which he called the "wall gas" model. A that time, his works were of top
secret since they were directly related to the problem of separation of uranium iso-
topes by the method of gas diffusion [37]. In works of American scientists (1961–
1963), a similar model, called the "dusty-gas" model, was developed. Two approaches
led to actually the same results since both of them were based on the equations of dif-
fusion written in the Stefan–Maxwell form and obtained by the Chapman–Enskog
method for a multicomponent gas mixture [38, 39]. Diffusion, viscosity, and heat
transfer in multicomponent mixtures were then studied by Zhdanov, Kagan and
Sazykin [40] on the basis of the 13-moment approximation of the Grad method [41]
which allowed one to consider the influence of viscous momentum transfer on diffu-
sion of the components and to obtain new results in calculation of barodiffusion in a
viscous flow of mixture. In this case, the expression for thermal diffusion factor in a
multicomponent gas mixture turns to be simpler than that in the known monograph by
Hirschfelder et al. [38]. It should be noted that on the basis of the equations obtained
in [40], Mason et al. [42] completed formulation of their "dusty-gas" model. During
last years, alternative dusty-gas models have appeared, one of which [43] we consider
in the present review.

A model of rectilinear capillaries and a dusty-gas model were used in considering
a number of more complex, from the physical point of view, problems related to
flow of vapor–gas mixtures through porous bodies. To them refer an analysis of the
influence of phase conversions occurring on the inner surface of channels on the
flow and diffusion of gases [44–46], account for force interaction of gas molecules
with the surface of capillary walls [47, 48], gas transfer accompanied by adsorption
of gas molecules [49–53], combined transport of gas in a capillary volume and over
its surface in an adsorption layer [54], transfer of gases through multilayer mem-
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branes [55], flows in membranes of complex geometry [56]. Flow of dense gases in
rectilinear channels was analyzed in [57, 58]; in this case, in [57], the influence of
dispersion interaction of molecules with the surface of capillary walls was taken into
account. In what follows we show that a long-range part of the potential "gas/sur-
face" exerts an appreciable effect on both isothermal and nonisothermal flows of
gases and gas mixtures.

A gas flow in porous bodies with account for the effect of external forces, com-
bined transfer of molecules in the vapor phase and film flow, and motion of menisci
were considered within the framework of the capillary model. The monograph of
Churaev [15] is devoted to the formulation of these problems and consideration of a
number of other problems of transfer in porous bodies and thorough comparison of
theoretical and experimental results. In the present paper, we do not treat the men-
tioned group of problem The review is aimed mainly at consideration of the methods
and results of the calculation of diffusion and heat transfer in capillaries and porous
media at arbitrary Knudsen numbers and at analysis of a number of interesting physi-
cal effects arising during flow of gas mixtures through them. Comparison of the re-
sults obtained for the dusty-gas model with the data of the strict kinetic theory
describing diffusion of gases in capillaries allows one to find the limit of applicabil-
ity of different models in practical calculations.

We emphasize one more aspect of the problems discussed in the present review.
Most of the physical effects that will be considered in what follows allow a simple
experimental verification. This refers, first of all, to such phenomena as thermomolecu-
lar pressure drop and diffusion pressure effect. The presence of substantiated theoreti-
cal results on flow and diffusion of gases in capillaries and porous bodies allows one
to use comparison of experimental data with the theory for determining a number of
kinetic parameters characterizing interaction of gas molecules with each other and with
a wall (in particular, the coefficient of accommodation of the tangential momentum of
molecules on a wall). We also touch upon the problems related to the flow of gases
in nano-sized channels, the effective lateral dimension of which is commensurable
with the size of molecules, when the character of the motion of molecules undergoes
great changes and substantial modification of kinetic models is needed.

3. NONEQUILIBRIUM THERMODYNAMICS OF CHANNEL FLOWS

First we consider some general phenomenological relations that follow from the non-
equilibrium thermodynamics of discontinuous systems [59]. An ordinary presentation
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of such systems presupposes the presence of two large closed volumes connected by
a narrow capillary tube, porous partition or membrane. Let the system be occupied
by an N-component gas mixture with the differences (jumps) of the main variables of
state (pressure, temperature, and concentration of components) being present between
the volumes. The character of variation of the mixture parameters in the volumes is
determined by the balance equations of substance and energy which are written with
account for mass and heat transfer through the cross section of the connecting chan-
nel. The corresponding fluxes, averaged over the channel cross section, are written in
quasi-stationary approximation by ordinary linear equations, relating these fluxes with
the gradients of the main macroscopic parameters. The boundary conditions for these
equations (at the inlet to and outlet from the channel) correspond to slowly changing
values of the parameters in the volumes. The sidewalls of the channel are assumed
adiabatically insulated and impermeable for the substance, so the transfer occurs only
along the channel axis. More general relations of nonequilibrium thermodynamics
which take into account the permeability of sidewalls of a channel for heat transfer
were discussed in [60].

In [59], entropy production was calculated within the framework of hydrodynamic
approximation. The obtained phenomenological equations of nonequilibrium thermo-
dynamics were also used for the Knudsen regime of gas flow. At the same time, the
possibility of applying the methods of nonequilibrium thermodynamics to description
of gas flows in channels in the intermediate regime was argued for a long time. The
first great success in overcoming these challenges was achieved in [61] where it is
shown that kinetic entropy production in gas coincides with phenomenological one. In
this case, however, it is necessary to take into account entropy production not only at
the expense of intermolecular collisions, but also at the expense of collisions of
molecules with the surface of channel walls. We show this in a rather general form
without defining specifically the structure of a capillary or a capillary-porous body.
First of all we note that, within the framework of the classical nonequilibrium ther-
modynamics of discontinuous systems [59], linear phenomenological expressions for
flow can be obtained by averaging local fluxes of mass and energy over the channel
cross section, which, in turn, are found from the ordinary expressions for entropy
production in the gas mixture. The procedure of averaging affects only the redeter-
mining of the phenomenological coefficients, for which, as previously, the Onsager
relations are valid. The kinetic theory, based on the linearized Boltzmann eqution, al-
lows not only substantiation of such linear relations between the fluxes and thermo-
dynamic forces, but also determination of the explicit form of the kinetic coefficients
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of the Onsager matrix. We give the deduction of the expression for entropy produc-
tion with account for the effect of surface forces [9].

A nonequlibrium state of a multicomponent mixture in the steady-state case is de-
scribed by a system of the linearized kinetic Boltzmann equations [9, 39]

vα� 
∂Φα

∂x�
  +  vαz 

⎡
⎢
⎣

⎛
⎜
⎝

mαvα2

2kT   −  52
⎞
⎟
⎠
 
∇zT
T   +  

∇zp
p   +  

∇zyα
yα

  +  
Uα (x�)

kT  
∇zT
T

⎤
⎥
⎦

=  ∑ 
β

 Lαβ (Φα,  Φβ) , (3.1)

where Φα is the correction to the Maxwell distribution function fα0 for the compo-
nent α, vα is the velocity of molecules, p is the pressure, T is the gas temperature,
yα = nα  ⁄ n is the molar concentration of the component α, ∇z is the operator of the
gradient along the channel axis (axis z), βα = mα  ⁄ kT (mα is the mass of the compo-
nent α, k is the Boltzmann constant), Uα (x�) is the potential of interaction of mole-
cules with the surface of channel walls, Lαβ is the Boltzmann linearized collision
integral, and x� is the coordinate in the channel cross section.

We now consider separate components of entropy production which can be ob-
tained on the basis of the system of kinetic equations (3.1). The entropy production
caused by intermolecular collisions is given by the following expression [9, 39]:

Replacing L(Φ) by the left-hand side of the kinetic equation (3.1), integrating with
respect to velocities, and averaging over the channel cross section, we obtain

with integration being done with respect to the perimeter of the channel cross section.
Here Σc is the cross-sectional area, v� is the component of the velocity of molecules
normal to the channel surface, the designation �...� corresponds to the averaging over
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the channel cross section. In this case, u = ∑ 
α

Cαuα is the mass-averaged velocity of

the mixture, wα = uα − u is the diffusion velocity (where uα is the macroscopic veloc-
ity of the component), Cα = ρα  ⁄ ρ is the mass concentration of the component α,

ρα = mαnα is the mass density of the component α, ρ = ∑ 
α

ρα, Jq
 ′ = Jq − 52  ∑ 

α = 1

2

 pαwα

is the reduced heat flux, Jq is the heat-flux density, Jα is the flux density of the
number of particles of the component α, and pα is the partial pressure. The quantity
dα is determined as

dα  =  ∇yα  −  (yα  −  Cα) ∇ ln p . (3.4)

The expression for entropy production (3.3) differs form the classical one by the
last term on the right-hand side. This term disappears in the limit of both small and
large Knudsen numbers. This fact was likely the basis for arguments against the ap-
plicability of nonequilibrium thermodynamics at intermediate Knudsen numbers. In
[61], however, it was noted that the entropy production (3.3) is not the total entropy
production in a gas, since it does not take into account collision of gas molecules
with the bounding walls. In the case of adiabatic walls, entropy production in colli-
sion of gas molecules with the walls is equal to an inverse flow of entropy from the
gas phase to the wall. Calculation of this flux is not complex. The density of the en-
tropy flux calculated by the known formulas of the kinetic theory is [61]

J s  =  k2 [v ,  Φ2 (R)]  +  
Jq

 ′

T  . (3.5)

Hence we find the entropy production on the surface of channel walls normalized to
the channel cross section

As a result, for complete entropy production �∆S� = �∆Sm� + �∆Sσ� we have the
expression
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In the absence of potential interaction of molecules with a wall, expression (3.7)
changes over to the well-known result

For channels of regular geometry, the kinetic theory allows also distinguishing of
one more part of entropy production — surface entropy production. It may have its
own phenomenological equations of nonequilibrium thermodynamics. We consider
these equations in one of the sections below.

According to the principles of nonequilibrium thermodynamics, based on the ex-
pression for entropy production (3.7) we can write the relationships between the
fluxes averaged over the cross sections of capillaries or a porous body and the gradi-
ents of thermodynamics parameters of a binary gas mixture in the presence or ab-
sence of surface forces as [59]

The effect of surface forces must be taken into account for rather fine channels.
Such fluxes will be considered at the end of the present review. Now we focus our
attention on the situation when the effect of surface forces can be neglected (though
generalization of the given relations to this case does not offers difficulties). In this
case, we have
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We transform expression (3.8a) since sometimes it is convenient to use the molar-

averaged velocity um = ∑ 
α

yαuα instead of the mass-averaged velocity of the gas mix-

ture. For a binary mixture of gases it is easy to establish the equality

�u�  =  �um�  +  
m1  −  m2

ρ
 ny1y2 (�u1�  −  �u2�) . (3.9)

Taking into account that

d1z  =  ∇zy1  +  
m2  −  m1

m1y1  +  m2y2
 y1y2 

∇zp
p

 , (3.10)

we can write the system of phenomenological equations for �umz�, �u1z� − �u2z�, and
�Jqz

 ′ � in the form [25, 59]

The kinetic coefficients Λij (as well as λik) satisfy the Onsager reciprocity relations
(Λij = Λji).

We introduce the flux of the component α, JαD, in the system of coordinates,
where �um� = 0; in the case of a binary mixture, we have

J1D  =  J1  −  Jmy1  =  ny1y2 [�u1�  −  �u2�] , (3.12)

where Jα = nα �uα� and Jm = n �um�.
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In the general case, the expression for the diffusion flux of the first component
can be written in the form

Here D is the coefficient of diffusion, αp and αT are the baro- and thermal diffu-
sion factors of a binary gas mixture.

Comparison of Eqs. (3.13) and (3.11) gives

Λ11  =  T
py1y2

 D ,   Λ1m  =  Tp  Dαp ,   Λ1q  =  TDαT . (3.14)

According to the above-given definition, the total heat flux for a binary mixture is
determined by the expression

where p = nkT.
The second term on the right-hand side of expression (3.15) appears due to the fact

that the total heat flux is determined relative to the mass-averaged velocity of the mix-
ture, i.e., in the reference frame, where �u� = 0. In the reference frame, where the
molar-averaged velocity of the mixture is zero (�um� = 0), this term disappears, there-
fore for the heat flux Jq

 m in this reference frame the condition Jq
 m = Jq

 ′ takes place.
The main aim of the following presentation is to discuss the existing methods and

results of calculation of the coefficients Λij and application of relations (3.9) and
(3.12) in analysis of the kinetic phenomena arising in diffusion of gas mixtures in
capillaries and porous media. In the general case, these coefficients are complex func-
tions of effective Knudsen numbers, molar concentrations, masses of the components,
effective collision cross sections, and coefficients of accommodation for scattering of
molecules on the surface.

The symmetry of the coefficients of the Onsager matrix in the expressions for total
fluxes (3.8) and (3.11) can be proved both within the framework of statistical presen-
tation of nonequilibrium thermodynamics and on the level of a purely kinetic ap-
proach, if we use the symmetry of the kernel of the collision operator and the kernel
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of the operator of scattering of gas molecules by the surface. For flows of a pure gas
and binary mixtures, the symmetry of the coefficients Λik and λik was proved in [28,
29, 62–65]. As is known, in both hydrodinamics and electrodynamics there exist
common relations named as the reciprocity theorems [14, 66] which follow directly
from the main equations and can be successfully used in specific calculations. Such
a situation is also observed in the kinetic theory of gases, where application of the
reciprocity relations allows substantial simplification of calculations in solution of
specific problems. Besides, the reciprocity theorems make it possible to draw certain
conclusions on the properties of the symmetry of kinetic coefficients [14, 67, 68].
The proofs based on the reciprocity theorems do not need use of the concepts of
nonequilibrium thermodynamics, therefore they may be treated as an independent
confirmation of the Onsager reciprocity relations.

In the kinetic theory, the reciprocity relations were first formulated and used in the
works of Waldmann [69–71]. As applied to the problem of a pure gas flow in a cap-
illary they were obtained in [72], and in [73–78] they were used to prove the sym-
metry of the kinetic coefficients related to external gas flows past solid bodies.

For the case of flow of a multicomponent mixture under the action of differences
of pressure ∆p and temperature ∆T in a capillary connecting two vessels, the reci-
procity theorem takes the form [71, 78]

∑ 
α

 ∫ 
Σw

 (ΦαPIvα�ΦαT) dΣw  =  0 , (3.16)

where ΦαP and ΦαT are the corrections to the Maxwell distributions which corre-
spond to gas mixture flows under the effect of the gradients of pressure and tempera-
ture, respectively, and integration is made over the wall surfaces of capillaries and
vessels bounding the gas, and I is the operator of inversion in the space of velocities.
The reciprocity theorems have a similar form for other cases where, for example, a
flow under the action of the concentration gradient is treated as one of the pairs. To
write them we only need to substitute ΦP or ΦT by the corresponding corrections.

In the considered case of flow of a multicomponent mixture under the action of
the differences of pressure ∆p and temperature ∆T in a capillary connecting two ves-
sels, integration in (3.16) gives [62]

[�umT� ∆p  ⁄ T0  −  �JqP
 ′ � ∆T  ⁄ T0

 2] Σc  =  0 , (3.17)
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where �umT� and �JqP
 ′ � are, respectively, the molar velocity of the mixture caused by

the temperature gradient and the reduced heat flux due to the pressure gradient —
both are mean over the capillary cross section Σc.

It can be proved by the reciprocity theorems [72] that integral fluxes are deter-
mined by the differences of hydrodynamic parameters at the ends of the capillary and
are independent of the character of distribution of these parameters along the capil-
lary length. These theorems, as has already been mentioned, are convenient for prov-
ing the symmetry of kinetic coefficients. Thus, using (3.8) and (3.11) we can write

�umT�  =  Λmq 1
T 2 ∆T

L  ,   �Jqp
 ′ �  =  Λqm 1T ∆p

L  ,

where L is the capillary length. Substituting these expressions into (3.17) and taking
into account that the differences of temperature and pressure are independent parame-
ters, we come to the condition of symmetry of the kinetic coefficients Λqm = Λmq.

4. THE KNUDSEN REGIME (Kn >> 1)

We consider the procedure of calculation of the coefficients in the free-molecular re-
gime for a gas mixture flow in a long cylindrical capillary. It is convenient to use
a well-known expression for a number of molecules dnA which cross the surface
element dA per time unit along the line forming the angle ϕ with the normal to the
surface and having the velocity in the range from v to v + dv within the spherical
angle dω

dnA  =  n (β  ⁄ π) 3
 ⁄ 2 exp (−βv2) v3 cos ϕdωdvdA . (4.1)

Here n is the number density of molecules, β = m  ⁄ 2kT, m is the molecule mass, and
k is the Boltzmann constant.

For the flow of energy transferred by the same molecules we have

dεA  =  mv2

2  dnA . (4.2)

Integration of equalities (4.1) and (4.2) with respect to velocities gives total fluxes
of particles and energy through the surface dA within the spherical angle dω
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dNA  =  n
4π

 �v� cos ϕdωdA ,

dEA  =  2kTdNA ,
(4.3)

where �v� = (8kT  ⁄ πm) 1
 ⁄ 2 is the mean thermal velocity of gas molecules.

Let dA be the surface element of the cross section of a long cylindrical tube. For
small gradients of density and temperature for two cross sections lying at a distance
z from each other we approximately have

n′ (T ′) 1
 ⁄ 2  �  nT 1 ⁄ 2  +  z∇z (nT 1 ⁄ 2) ,

n′ (T ′) 3
 ⁄ 2  �  nT 3 ⁄ 2  +  z∇z (nT 3 ⁄ 2) .

(4.4)

Following the well-known procedure of calculation of the number of molecules
crossing dA after the last collision of them with the surface element of the tube at a
distance z from the given cross section [35], we can find the expression for the
fluxes of the component α and of its energy through the surface unit of the capillary
cross section of the following form:

Jα  =  nα �uα�  =  −DαK T −1 ⁄ 2 ∇z (nα T 1 ⁄ 2) ,

JEα  =  −2kDαK T −1 ⁄ 2 ∇z (nα T 1 ⁄ 2) .
(4.5)

Here DαK is the so-called Knudsen coefficient of diffusion of the component α.
For a cylindrical capillary of radius R we have [79]

DαK  =  23 R �vα� bα , (4.6)

where �vα�  =  (8kT  ⁄ πmα)
 1 ⁄ 2 and bα = (2−κα)  ⁄ κα, κα is the fraction of molecules

diffusely reflected by a capillary wall (the coefficient of accommodation of the tan-
gential momentum).

It is convenient to rewrite Eq. (4.5) in the form
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Using Eqs. (4.7) for determination of the reduced heat flux, �Jq
 ′� = ∑ 

α

JEα − 5
2 kTJm

and the values of �um� and �u1� − �u2�, in the case of a binary gas mixture (α = 1.2)
we have

For the coefficients in the expression for the diffusion fluxes of component 1
(3.14) we find

D  =  D12
 K   =  D1K y2  +  D2K y1  =  

y1y2p
T  Λ11 ,

αp
 K  =  

D1K  −  D2K

D12
K   =  

m2
1 ⁄ 2b1  −  m1

1 ⁄ 2b2

(m1 ⁄ 2b)y
 ,   αT

 K  =  − 12 αp
 K , (4.9)

where

(m1 ⁄ 2b)y = m1
1 ⁄ 2b2y1 + m2

1 ⁄ 2b1y2 .

In contrast to the ordinary diffusion in the opposite limit (Kn << 1), the coefficient
of Knudsen diffusion does not depend on pressure, it is proportional to the capillary
radius and depends on the coefficient of accommodation κα. It is also important that
in the Knudsen regime the barodiffusion and thermal diffusion factors are related by
a simple expression αT

K = − (1  ⁄ 2) αp
K. All obtained relations hold also for homogene-

ous and isotropic porous media. In this case [80],
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DαK  =  43 K0 �vα� , (4.10)

where K0 is the constant characterizing a porous medium. A value of K0 can be ob-
tained from measurements of the gas permeability of a porous medium in the Knud-
sen flow regime.

5. DIFFUSION AND HEAT TRANSFER IN A VISCOUS MIXTURE FLOW

To analyze diffusion transfer in a gas mixture at small Knudsen numbers (a viscous
flow regime) we use the equations of momentum transfer (the equation of motion)
for the component α [40, 81]

where dα  ⁄ dt � ∂ ⁄ ∂t + (uα∇), pα = nαkT is the partial pressure, (divπ^α)i = ∂παij  ⁄ ∂xj
corresponds to the i-th component of the "viscous friction force" acting on the com-
ponent α in the volume unit, and Fα is the external force acting on the molecule of
species α.

The partial tensor of viscous stresses is expressed in terms of the derivatives of
the mass-averaged velocity

παij  =  −ηαWij , (5.2)

where Wij = ∂ui  ⁄ ∂xj + ∂uj  ⁄ ∂xi − (2 ⁄ 3) δij∂ul  ⁄ ∂xl and ηα is the partial coefficient of
viscosity (not to be mixed with the viscosity of a pure component) that is determined

such that the mixture viscosity η = ∑ 
α

ηα. The term Rα on the right-hand side of (5.1)

expresses the mean variation of the momentum of molecules of species α in intermo-
lecular collisions ("diffusion force of friction").

In the simplest approximation of the kinetic theory [79] Rα is given by the ex-
pression

Rα  =  − ∑ 
β

 
nα nβ kT
n [Dαβ]1

 (uα  −  uβ) , (5.3)
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α α

α α α α α αρ +∇ + π − = (5.1),



where [Dαβ]1 is the coefficient of the binary diffusion of the components α and β in
the first approximation of the Chapman–Cowling theory [82].

For the case of slow stationary flows, we can drop the first (inertia) term on the
left-hand side of the equation of motion (5.1) and write this equation with account
for (5.2) in the form

∂pα
∂xi

  −  ηα 
∂Wij
∂xj

  −  nα Fαi  =  Rαi . (5.4)

Thanks to the condition ∑ 
α

 Rα = 0, summation of (5.4) over all mixture compo-
nents yields

η 
∂Wij
∂xj

  =  ∂p
∂xi

  −  ∑ 
α

nα Fαi . (5.5)

Substituting (5.5) into (5.4), we find

Equation (5.6) was obtained for the first time in [40] within the framework of the
10-moment Grad approximation. More general equations of the 13-moment approxi-
mation [40, 81] involve the thermal diffusion terms and corrections of the second ap-
proximation to the coefficients of diffusion and barodiffusion. Account of thermal
diffusion corresponds to the appearance of the following term on the right-hand side
of Eq. (5.6):

−  ∑ 
β

 yα yβ ααβ
T ∂ ln T  ⁄ ∂xi ,

where ααβ
T  is the generalized thermal diffusion factors for a multicomponent mixture.

The expression for ααβ
T  can be presented as [81]
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Here µαβ = mα mβ  ⁄ (mα + mβ) is the reduced mass of particles of species α and β,

Cαβ
 ∗  is the coefficient greatly dependent on the character of intermolecular interaction

[39], and λα is the partial thermal conductivity determined such that λ = ∑ 
α

 λα is the

total thermal conductivity of mixture. We consider diffusion transfer along z in a bi-
nary gas mixture. In the absence of external forces, the expression for the diffusion

flux J1D
 as takes the form

where [αT]1 = α12
T  and for [αp

v]1 we have [40]

[αp
v]1  =  1

η
 
⎛
⎜
⎝

η2
y1

  −  
η1
y2

⎞
⎟
⎠
 . (5.9)

The supercript "as" indicates that corresponding fluxes are determined in the gas
volume at a distance from the wall, i.e., without account for the Knudsen layer on
the wall (see below). The expressions for partial viscosity and thermal conductivity,
which are necessary for the calculation of αp

v and αT, can be found in [40, 81].
We also present the expression for the total heat flux in a viscous flow for the

case of a binary mixture, which is obtained in the 13-moment approximation [9, 40]

Here λ and [αT]1 are, respectively, the thermal conductivity and the thermal diffu-
sion factor of a binary mixture, the expressions for which can be found in [39, 81].
The last term on the right-hand side of (5.10) corresponds to the Burnett contribution
which can also be obtained within the framework of an ordinary Chapman–Enskog
procedure [9, 81].

We note that the modified expression for the barodiffusion factor in a viscous flow
[αp

v]1 turns to be much more complex than the known expression:

αp  =  (m2  −  m1)  ⁄ (m)y ,   (m)y  =  m1y1  +  m2y2 , (5.11)
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that follows form an ordinary (Burnett) approximation of the Chapman–Enskog theory
[81]. In the general case, αp

v appears to be the function of not only the masses of
molecules and relative concentrations of components, but also of the ratios of effec-
tive cross sections of scattering of molecules.

Table 1 gives the values of the coefficients αp
k, αp

v, and αp, which are calcu-
lated for some specific gas mixtures using the parameters of interaction of the Len-
nard-Jones potential and are borrowed from [38]. Concentrations of the components
are assumed to be the same (y1 = 0.5), the component with the subscript 1 correspond
to lighter molecules. The last column gives the values of the barodiffusion factor in
a capillary α

__
p calculated with account for contribution of Knudsen layers (see expres-

sion (6.20) in Section 6). An appreciable difference in the masses of molecules is
characteristic for the first four mixtures in the table which provides a relative
closeness of the values of αp

K, αp
v, and α

__
p. The next four mixtures are charac-

terized by both a relative closeness of masses and the difference in the effective
cross sections of scattering of molecules. This leads to a noticeable difference of
αp

v and α
__

p from αp
K and αp and even to the change in the sign of these quantities.

It is just these mixtures for which accurate results of the kinetic theory become
substantial.

It is also useful to give approximate expressions for a mixture with a small rela-
tive difference of masses and effective cross sections of scattering of molecules of
the components that are obtained by expansion of the general expressions into a se-
ries with respect to small parameters. The barodiffusion factors αp

K and αp in this
case are
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Table 1: Barodiffusion factor of gas mixtures

Mixture αp
k αp [αp

v]1 [α
__

p]1

H2−Ar 1.2686 1.8092 1.3399 1.3043
He−Ar 1.0383 1.6357 0.9004 0.9694
N2−Ar 0.1770 0.3512 0.2425 0.2098
H2−N2 1.1566 1.7335 1.1863 1.1715
D2−He 0.0003 0.0006 0.1865 0.0934

Ar−CO2 0.0484 0.0968 –0.1326 –0.0421
N2−C2H4 0.0002 0.0004 –0.2215 –0.1106
Ne−C2H4 0.1638 0.3254 –0.3275 –0.0818



αp
K  �  

m2  −  m1
m2  +  m1

 ,   αp  �  2 
m2  −  m1
m2  +  m1

 . (5.12)

The use of the model of molecules–hard spheres with diameters d1 and d2 — in
calculation of αp

v gives

[αp
v]1  �  1.13 (m2  −  m1)  ⁄ (m2  +  m1)  −  1.50 (d2  −  d1)  ⁄ (d2  +  d1) (5.13)

An account for corrections of the second approximation to the barodiffusion factor
αp

v substitutes the numerical coefficients 1.13 and 1.50 for 1.41 and 1.26.

6. TRANSFER PHENOMENA IN A CAPILLARY
  AT INTERMEDIATE KNUDSEN NUMBERS

Calculation of the coefficients Λik at arbitrary Knudsen numbers for channels of dif-
ferent geometry (a plane channel, a long cylindrical channel, etc.) is usually based on
the use of the linearized kinetic Boltzmann equation with assignment of the corre-
sponding boundary conditions for the distribution function on channel walls. In this
case, the model presentation of the collision integral (the BGK model [5] or S-model
[83] for a pure gas, the Hamel–Oguchi model [84] or the McCormak model [75] for
a gas mixture) is used as a rule. A review of different methods of solution of the
linearized Boltzmann equation, which are used for determining the fluxes of mass
and energy (averaged over the channel cross section) in the case of a pure gas, can
be found in [22].

For the case of an isothermal gas-mixture flow (∇zT = 0) the expressions for aver-
aged fluxes of mixture components in a round cylindrical channel were obtained in
[86, 87] using the model collision integral in the Hamel–Oguchi form. In this case,
for solution of the system of integral equations obtained from the model kinetic equa-
tions by integration with respect to the characteristics [5, 87] and written for longitu-
dinal velocities of the components, the variational method [7] (or the Bubnov–
Galerkin method [88]) is used. The choice of the trial function for distribution of ve-
locities over the channel cross section in the form of the constant provides transition
to exact solutions within a free-molecular mixture flow (Kn >> 1). To obtain satisfac-
tory results in the other limiting region (Kn << 1) it suffices to use the quadratic trial
function.
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Unfortunately, the BGK model (or the Hamel–Oguchi model for a gas mixture)
does not guarantee simultaneous correct description of mass and heat transfer in a
gas and, in particular, does not allow for the effects of thermal diffusion in a mix-
ture. In this case, more suitable is the McCormak model [85] (or the generalized
Gross–Jackson model [89]) that is based on the equivalency of the N-th order mo-
ments from the accurate and model collision integrals. The use of this model allows
one to obtain rather correct expressions for diffusion and heat transfer within a hy-
drodynamic limit. For the case of an isothermal gas flow in plane and cylindrical
channels on the basis of the McCormak model the effects of viscous slip, diffusion
slip, and barodiffusion in a mixture at small Knudsen numbers were studied by the
method of total momenta [23]. The same model (or the 3-rd order Gross–Jackson
model) was used in [24] for calculation of macroscopic velocities of the mixture
components in an isothermal flow in a capillary at intermediate Knudsen numbers by
a numerical method of solution of the system of integral equations. The expressions
for all coefficients Λik at arbitrary Knudsen numbers are obtained in [90] for the case
of a nonisothermal motion of mixture on the basis of solution of the system of inte-
gral-moment equations by the Bubnov–Galerkin method.

In [91, 92], these coefficients were calculated for a flow of some specific mixtures
of inert gases in plane and cylindrical channels by applying the method of discrete
velocities to the solution of the linearized kinetic equation by the McCormak model.

The expressions obtained in [90] are the complex functionals of the well-known
Abramowitz functions [93] and a thorough analysis of their dependence on the pa-
rameters of mixture molecules, relative concentration of components, and the Knud-
sen number turns to be rather laborious in a general case. In what follows, we
consider more illustrative expressions obtained within the limit of relatively small
Knudsen numbers corresponding to a viscous regime of the flow with a slip.

In the hydrodynamic limit (Kn << 1), a mass-averaged velocity of the gas mixture
in a round cylindrical channel of radius R is determined by the expression [94]

uhz (r)  =  − 1
4η

 (R 2  −  r2) ∇zp  +  uz
as (R) , (6.1)

where an ordinary sticking condition (uhz(R) = 0) is substituted by the condition
which envisages the difference of the tangential velocity of gas on the wall from
zero. Actually, the case in point is some dummy velocity of gas on the wall (slip ve-
locity) the assignment of which provides a correct limiting transition to the values of
the velocity at a distance from the wall and which is determined by an ordinary
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Navier–Stokes equation [5]. The slip velocity on the wall was determined in a great
number of works using different methods of solution of the linearized kinetic
Boltzmann equation with model and exact collision integrals. For a binary gas mix-
ture, the general expression for the slip velocity takes the form [22, 23]

uτas  =  Ap 
∂uτas

∂xn
  +  AT ∂T

∂xτ
  −  σ12

(v) y1y2 (u1τ
as  −  u2τ

as) , (6.2)

where the derivatives are taken along the normal (xn) and tangential (xτ) coordinates
to the surface and the difference of velocities corresponds to asymptotic values, i.e.,
to the solution at a distance from the wall (x → ∞). The coefficients Ap, AT, and
σ12
(v) are called the coefficients of viscous, thermal, and diffusion slip. In the general

case, there also exists a "second-order slip" related to the non-zero second derivative
of velocity along the normal coordinate. In addition to the second-order slip, when
allowing for the corresponding corrections to the Knudsen number for the cylindrical
channel, we should take into account the dependence of the coefficients Ap, AT, and
σ12
(v) on the surface curvature [95–98].
For the mass-averaged velocity of the mixture (averaged over the capillary cross

section) we have

where

�J1D
 as�  =  ny1y2 (u1τ

as  −  u2τ
as)

is determined by expression (5.8).
When writing (6.3), we used the relation

∂uτas

∂xn
  =  − 

∂uhz
∂r

⎪
⎪
⎪r = R

  =  1
2η

 R∇zp . (6.4)

Often, it turns to be more convenient to use expressions for the molar-averaged
velocity of mixture in a channel. By virtue of condition (3.9) relating u and um, for
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the molar-averaged velocity �umz� in a capillary with account for determination of
the diffusion flux (5.8) we have

where

σ12  =  σ12
(v)  +  

m1  −  m2
(m)y

 .

The coefficients Ap, AT, and σ12D12 are proportional to the effective mean free path
of molecules l, since their calculation is closely related to the account for the behavior
of the distribution function in a thin Knudsen layer with a thickness of several free
paths. In the case of a pure gas, it is convenient to define l by the expression

l  =  
√⎯⎯π
2  

η
p  ⎛⎜
⎝

2kT
m

⎞
⎟
⎠

 1 ⁄ 2
 , (6.6)

where η is the gas viscosity, and to introduce the dimensionless slip coefficients [22]

σp  =  
√⎯⎯π
2l  Ap ,   σT  =  1l  

⎛
⎜
⎝

πmT
2k

⎞
⎟
⎠

 1 ⁄ 2

 AT . (6.7)

A review of the methods and results of calculation of the coefficients σp and σT
can be found in [22, 99].

The simplest result is obtained when the Maxwell method is used and when it is
assumed that the distribution function of molecules falling on the wall remains the
same as that at a distance from the wall. In the case of completely diffuse reflection
of molecules from the wall, when the coefficient of accommodation of the momen-
tum of molecules κ = 1, we have

σp  =  
√⎯⎯π
2   =  0.8862 ,   σT  =  0.75 ,
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More exact expressions which allow for variation of the distribution function in the
Knudsen layer can be obtained using the variational method of solution of the linear-
ized Boltzmann equation [7, 100]. The simplest choice of the trial function in this
method (equivalent to the use of the generalized Maxwell method or the approximate
Loyalka method [101]) in the case of a pure gas and for the specular-diffuse model
of scattering of molecules on a wall (κ ≠ 1) leads to the results [102]

σp  =  2  −  κ
κ

 0.8862 (1  +  0.1366κ) ,   σT  =  0.75 (1  +  0.5κ) . (6.8)

For κ = 1 we have

σp  =  1.007 ,   σT  =  1.125 .

These values turn to be close to exact values obtained by the numerical methods
for the BGK model [7]

σp  =  1.016 ,   σT  =  1.149 .

For the model of molecules–hard spheres the numerical methods of integration of
the kinetic equation give [103]

σp  =  0.985 ,   σT  =  1.015 .

The results of calculation of the slip coefficients for a pure gas by other methods
(the method of elementary solutions, method of half-space moments, etc.) can be
found in [7, 22, 99].

We also present the results for Ap and AT for the case of a binary gas mixture.
Here the use of the ordinary Maxwell method gives [104, 105]

Ap  =  
⎛
⎜
⎝

πkT
2

⎞
⎟
⎠

 1 ⁄ 2

 1
(m1 ⁄ 2)y

 
η
p  ,   AT  =  15 

(m3 ⁄ 2)y
(m1 ⁄ 2)y (m)y

 
λ
p  , (6.9)
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where η and λ are, respectively, the viscosity and thermal conductivity of the gas
mixture.

More accurate results obtained by the variational method for the case of the specu-
lar-diffuse and more general models of scattering of molecules on a wall can be
found in [106, 107]. 

Of special interest are the expressions for the coefficient of diffusion slip σ12 that
was calculated by different methods in a number of works. The idea of diffusion slip
was first presented by Kramers and Kistemaker [108]. The elementary considerations
equivalent to the Maxwell method lead to the result

σ12  =  
m1

1 ⁄ 2  −  m2
1 ⁄ 2

(m1 ⁄ 2)y
 . (6.10)

The verified expressions obtained by the Grad 13-moment approximation for the
distribution function at a distance from the wall were considered in [104, 105]. More
acceptable, however, are the expressions obtained by the variational method [106,
107] (or by the approximate Loyalka method [101, 109]) or by the method of full
and half-space moments [23, 110, 111]. In [112], the coefficient of diffusion slip was
calculated on the basis of the direct numerical integration of the linearized kinetic
equation for the model of molecules–hard spheres.

In what follows, we present a value of σ12 obtained by the variational method
[106] for the case of fully diffuse scattering of molecules on the wall (neglecting the
corrections of the second approximation to the kinetic coefficients)

σ12  =  12 
⎡
⎢
⎣

m1
1 ⁄ 2  −  m2

1 ⁄ 2

(m1 ⁄ 2)y
  +  1

η
 
⎛
⎜
⎝

η1
y1

  −  
η2
y2

⎞
⎟
⎠

⎤
⎥
⎦
 . (6.11)

General expressions for the coefficient of diffusion slip with an arbitrary character
of scattering of molecules on the wall can be found in [106, 109, 111, 113].

We now consider the problem of obtaining the expression for the diffusion flux in
the mixture (averaged over the capillary cross section) with account for the boundary
condition on the channel wall. For this sake we use Eq. (5.1). For a stationary iso-
thermal flow in the cylindrical channel in the absence of external forces Eq. (5.1) can
be rewritten in the form
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Integration of (6.12) for r going from 0 to R leads, in the case of a binary mix-
ture, to the following expression for the averaged diffusion flux

A value of the partial tensor of viscous stresses on the inner surface of the capil-
lary differs from its value at a distance from the wall. The latter is given by the ex-
pression

π1rz
as   =  − r2 

η1
η

 ∇zp .

Calculation of π1rz(R) with account for variation of the distribution function in the
Knudsen layer on the basis of the modified Maxwell method at κ1 = κ2 = 1 gives
[114]

Substittion of (6.14) into (6.13) leads to the result

J1D  =  −n [D12]1 ⎛⎜
⎝
∇zy1  +  [α

__
p]1y1y2 1p ∇zp⎞⎟

⎠
 , (6.15)

where

[α
__

p]1  =  12 ⎛⎝[αp
K]1  +  [αp

v]1⎞⎠ . (6.16)

This expression was obtained by another method in [28]. Comparison of (6.16) and
(6.11) shows that the equality [α

__
p]1 = −σ12 takes place. Thus, the fulfillment of the

reciprocity Onsager relations Λ1m = Λm1 is confirmed by direct kinetic calculation.
As for the thermal diffusion term in the expression for �J1D�, it remains un-

changed in the considered approximation during averaging. If we also take into ac-
count the second-approximation corrections to the kinetic coefficients, then instead of
(6.15) we have [113]

1

1/2 1/2 1/21/2
1 1 1 2

1 1 21/2 1/2
1 8( ) ( ) .

4 4( ) ( )

as as
rz z z

y y
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In this case, for the barodiffusion factor there still holds expression (6.16) where
[αp

v]1 must be replaced by [αp
v]2 [23] and [αp

K]1 by [αp
K]2 − δ, where δ is the correc-

tion to the coefficient of diffusion slip which was calculated in [105].
For the case of mixture with slightly differing masses and effective diameters of

molecules of the components and also with a small difference of the coefficients of
accommodation, using the model of molecules–hard spheres we have [113, 115]

For κ2 = κ1 = 1 we obtain

[α
__

p]2  =  1.274 
m2  −  m1
m1  +  m2

  −  0.5975 
d2  −  d1
d2  +  d1

 . (6.18a)

Comparison of [αp
v]2 and [α

__
p]2 shows a close dependence of these parameters on

the difference of masses of molecules and a twice smaller dependence on the differ-
ence in cross sizes of scattering of molecules.

The expressions for �umz� and �J1D� obtained above allow one to find a form of
the coefficients Λik in the capillary for the viscous flow regime with a slip. Compari-
son with (3.8) gives

The above analysis of the terms related to slip effects turns to be incomplete. It
was shown in [27–29] that the boundary conditions to the equations of motion of a
mixture in a capillary include, along with the slip velocity, the so-called Burnett

1 1[ ] [ ] .1 2 1 2 1 1 21 12 2[ ] y y y p y y Tz p z T zD p T
J n D ⎛ ⎞

∇ + α ∇ + α ∇⎜ ⎟
⎝ ⎠
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terms and flows localized in the Knudsen layer. The latter represent some moments
of the Knudsen part of the distribution function (i.e., differences between the true dis-
tribution function and the distribution function at a distance from the wall) that are
calculated directly on the channel wall. An example of such simultaneous account
for the Barnett terms and contribution of the Knudsen layer to diffusion transfer in
the channel (calculation of π1rz(R) on the wall) was demonstrated above in calcula-
tion of the averaged diffusion flow (6.17). In the general case, expressions for the
mass-aversged velocity �uz�, diffusion flow �J1D�, and heat flux in a binary mixture
�qz� — all averaged over the cross section of the cylindrical capillary — can be pre-
sented in the form [27, 29]

We note that contribution of Burnett terms has already been taken into account in
the expressions for J1D

 as (5.8) and Jqz
 as (5.10). As for jm, jwα, and jq, they are deter-

mined with the help of the Knudsen part of the distribution function f0αϕα by the ex-
pressions [29]

where in the expressions including [...] integration is fulfilled only with respect to ve-
locities and a value of the Knudsen distribution function on the surface of capillary
walls is taken, and on the right-hand side of subsequent expressions integration is
made over the capillary cross section. In this case, Φt and Φd

α are the Chapman–En-
skog solutions for the problem of heat conduction and diffusion of a gas mixture,
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ΦB is the Burnett solution of the kinetic problem for the Poiseuille flow. In expres-
sions (6.21), only near-wall layers make contribution to the fluxes jm, jwα, and jq,
since the Knudsen function f0αϕα differs from zero at distances of the order of free
path l from the surface of capillary walls.

The moments of the distribution function on the channel wall or fluxes that are lo-
calized in the Knudsen layer were calculated in a number of works [23, 28, 63, 113–
116]. First we consider a pure gas. In this case, relations (3.8) take the form

�uz�  =  −Λmm 
∇zp
T   −  Λmq 

∇zT
T 2  ,

�Jqz�  =  −Λqm 
∇zp
T   −  Λqq 

∇zT
T 2  . (6.22)

We present the expressions for Λik that follow from (6.20) and (6.21) and that are
calculated by the variational method [63, 113]

Λmm = R
 2T

8η
 ⎛⎜
⎝
1 + 4σp Kn + 2κ Kn2 − 20

3 √⎯⎯π
 Kn3⎞

⎟
⎠
 ,

Λmq = − ηT
ρ

 σT ⎡⎢
⎣
1 − 4

√⎯⎯π
 1
1 + 0.5κ

 Kn⎤
⎥
⎦
 ,

Λqm = − 15 λT 2

p  ⎡⎢
⎣
1 + 0.5κ − 4

√⎯⎯π
 Kn⎤

⎥
⎦
 ,

Λqq = λT ⎛⎜
⎝
1 − 95 κ

√⎯⎯π
 Kn⎞

⎟
⎠
 . (6.23)

Here λ = (15  ⁄ 4) (k  ⁄ m) η is the gas thermal conductivity; the Knudsen number is
determined as Kn = (m  ⁄ 2kT) 1 ⁄ 2 η  ⁄ pR = (2  ⁄ √⎯⎯π) l  ⁄ R.

Each coefficient of the Onsager matrix contains a number of terms over the pow-
ers of Kn to the terms quadratic by the Knudsen number being included (we recall
that η � Kn and λ � Kn). Most obvious is the structure of the coefficient Λmm. In
this case, the parabolic profile gives the term (−R 2  ⁄ 8η) ∇zp and slip effects related
to the first and second derivatives of the hydrodynamic velocity (viscous slip of the
first and second order, respectively) make contribution of the order of Kn and Kn2.

Volume 1, Number 1, 2010

Gas Flow and Diffusion in Nano Sized Capillaries 77



Moreover, there is contribution to z caused by distortions of the profile of gas flow ve-
locity in the Knudsen layer and specified by the terms of the order of Kn2 and Kn3.

For the heat flux caused by the temperature gradient, the contribution of the Knud-
sen layer amounts to a value of the order of Kn relative to the bulk term correspond-
ing to heat transfer via an ordinary mechanism of heat conduction.

A curious situation is realized in the case of cross phenomena, i.e., mass transfer
due to the temperature gradient and isothermal heat transfer under the effect of the
pressure gradient. As would be expected the Onsager relations (Λmq = Λqm) hold.
However, the nature of some contributions to each of these coefficients turns to be
different. So, in the first order over the Knudsen number in the expression for �uz�
the main term is that related to the coefficient σT = 0.75 (1 + 0.5κ) that describes ther-
mal slip. The correction to this term of the order of Kn is determined by the distortion
in the boundary layer of the velocity profile. As for the isothermal heat flux, fulfill-
ment of the Onsager relations in the first order over the Knudsen number is provided
by the account of two terms, namely, the bulk (Burnett) flow � (2  ⁄ 5) (λT∇zp  ⁄ p) and
the Knudsen heat flux that makes contribution of the same order as the bulk term. The
next over the order of Kn term is generated by distortion in the Knudsen layer of the
isothermal bulk heat flux that is uniform over the cross section.

General expressions for the coefficients Λik in the plane and cylindrical channels in
the case of a gas mixture have a rather complex form [113, 115]. As a simpler exam-
ple we present the expressions for the coefficients Λ11, Λ1m, and Λ1q in the case of
mixture with a small relative difference of masses and effective diameters of mole-
cules of the components calculated for the model of molecules–solid spheres [115]

In solving the problem of gas flow in capillaries at small Knudsen numbers by the
methods of nonequilibrium thermodynamics, along with the integral equations of
transfer (3.8) and (3.11) we can introduce the so-called local equations for the kinetic
coefficients of which the eigen relations of the Onsager symmetry hold [63, 117–
120]. These relations also include fluxes (6.21) and asymptotic velocities of gas slip
on the channel walls.
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Total entropy production in gas flow in a capillary is given by expression (3.6)
We now consider that part of entropy production which is determined by the bulk
distribution function

∆Sb  =  −k [Φb ,  L (Φb)] , (6.25)

where Φbα are the bulk (or asymptotic) Chapman–Enskog solutions for a nonequili-
brium multicomponent mixture [82].

Using the known solutions for Φbα [82, 120] we find the bulk entropy production
that is averaged over the cross section of a cylindrical capillary

where the bulk components of the corresponding fluxes and velocities are labeled by
the index b (this is, for example, expression (6.1) for a mass-averaged gas velocity).

Subtracting the entropy production �∆Sb� from (3.6), we obtain the so-called
boundary entropy production

where the boundary fluxes are determined by expressions (6.21).
The last term in (6.27) can be calculated using the bulk distribution function [120].

As a result, for a cylindrical capillary we have [120]

where

0

2
00

1
0

1

2
( ) [ , ( )],

N

b z z
qzb bz

b b
zNzz z b

T pS J u
TT

p kw w d v R
T R

−

β=
β β

∇ ∇′< ∆ >= − < > − < >

− < > − < > − Φ∑ (6.26)

Volume 1, Number 1, 2010

2
00

0

0

1 2

1

5
2

[ , ( )],

z z
q w m

N
w wN

rz b
N

T pS j kT j j
TT

j jp kd v R
T n n R

αΣ
α

− β
β

β= β

∇ ∇⎛ ⎞∆ = − − −⎜ ⎟ ρ⎝ ⎠

⎛ ⎞
⎜ ⎟− − + Φ⎜ ⎟⎝ ⎠

∑

∑ (6.27)

0 0

2 2[ , ( )] ( )

( ) ,

r b h

z z
zB Bh

k v R ku R
R r

T pu R a c nb d
kT T α α

α

′Φ = −

⎡ ⎤∇ ∇η× + + +⎢ ⎥η⎣ ⎦
∑ (6.28)

Gas Flow and Diffusion in Nano Sized Capillaries 79



cB  =  − [vr
2vz

2Φp ,  Φb] ,

aB  =  − [vr
2vz

2Φp ,  Φt] .

Here Φp is the Chapman–Enskog solution for the gas mixture viscosity.
The system of phenomenological equations corresponding to the entropy production

∆SΣ with account for (6.28) can be written in the form

For small Knudsen numbers (Kn << 1) when the Knudsen part of the distribution
function f0αϕα is localized in a thin boundary layer near the wall, the first equation of
(6.29) describes the effects of viscous, diffusion, and thermal slip, and baroslip. The
next three equations characterize diffusion and heat and mass transfer in boundary lay-
ers. In this case, Eqs. (6.29) supplement expressions for fluxes (3.8) and (3.11) serv-
ings as if the system of boundary conditions for multicomponent mixture flow in a
channel.

At intermediate and large Knudsen numbers separation of system (6.29) has a for-
mal character and its interpretation is difficult. In these regimes of mixture flow, sys-
tem (6.29) indicates only the possibility of separation of certain parts, that are
calculated by the Knudsen distribution function, from total fluxes (3.8) and (3.11).

In the case of a simple gas, the system of equations (6.29) has a simpler form
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For the kinetic coefficients, in Eqs. (6.29) and (6.30) we can also establish the va-
lidity of the Onsager symmetry relations [115]. They were calculated in a number of
works [63, 97, 116–119, 121]. Their values can also be obtained by subtracting the
corresponding bulk contributions from the kinetic coefficients (6.24). These coeffi-
cients and the corresponding boundary conditions (6.29) play an important role in the
problems of external rarefied gas flows past a body. For flows in capillaries and po-
rous bodies they play and auxiliary role and allow one to give physical interpretation
of different contributions into kinetic coefficients (6.24).

7. THE DUSTY-GAS MODEL

The dusty (or wall) gas model was developed in order to describe, on the unified
basis, the flow and diffusion of a gas mixture in a porous body within the entire
range of characteristic Knudsen numbers in the range from the free-molecular to vis-
cous regime of flow. The model is based on a number of basic concepts [33, 42, 80]:

1) dust particles (porous medium) represent one of components of a gas mixture.
They are motionless and are uniformly distributed in space, i.e., ud = 0 and
∇znd = 0, where the subscript d refers to the dusty component;

2) in the presence of the pressure gradient in a gas some external force acts on
dust particles ensuring their immobility;

3) diffusion and viscous motions in a gas mixture are independent, therefore

uα  =  uα
D  +  uv , (7.1)

where the viscous component of the flow velocity uv does not cause relative motion
of mixture components.

Condition 2) is the decisive one for the dusty-gas model. We can show [63] that
a force necessary for keeping particles of species d at rest is equal to
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ndFd  =  ∇zp . (7.2)

Considering dust particles as molecules with a very large mass, we can use the
known results of the kinetic theory for gas mixtures [38–40]. In this case, for the in-
terdiffusion coefficient of particles of an ordinary gas and dust particles Dαd the ex-
pression that relates it with the Knudsen coefficient of diffusion under determination
DαK is introduced.

If the above-mentioned conditions along with a number of obvious assumptions
[80] are met, then equation of diffusion (5.6), that has a form of the Stefan–Maxwell
relations, takes the form

Here, for simplicity, external forces that can act on gas particles are disregarded.
At the same time, the presence of force (7.2) leads to the fact that terms related to
viscous transfer of momentum are cancelled in the equations.

Equations (7.3) describe transfer of gas mixture components in the reference frame
where viscous transfer of gas as a whole is absent (uv = 0). Actually, uv is the veloc-
ity of viscous flow, averaged over the cross section, �uv�. For porous bodies [80]

�uv�  =  − 
B0

η
 ∇zp , (7.4)

where B0 is some geometric characteristic (the Darcy constant) which is found em-
pirically. In the case under consideration, nαuα = nα �uα� is also the flow of compo-
nent α averaged over the cross section. It is necessary to somewhat modify the
expression for the coefficient of diffusion in order to take into account the effect of
the medium porosity ε and pore tortuosity q on it:

Dαβ  =  (ε  ⁄ q) [Dαβ]1 . (7.5)

We note that equations similar to (7.3) were obtained first by Present and de Be-
thune [122] for a round cylindrical capillary by elementary considerations based on the
method of momentum balance. In this case, B0 = R 2  ⁄ 8, Dαβ = [Dαβ]1, and DαK is
given by equality (4.6).
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In the context of the method of momentum balance Eqs. (7.3) can be interpreted
as follows: the first and second terms on the left-hand side of the equation are, re-
spectively, mean variation of the momentum of molecules of component α during
their collision with the capillary walls or a porous medium and during collision with
molecules of other species. The Knudsen and diffusion "friction forces" related to
these variations are counterbalanced together with the gradients of partial pressure of
the components.

Equations (7.3) are written in the approximation that corresponds to the first Chap-
man–Cowling approximation without regard for thermodiffusion [39] or to the 10-mo-
ment approximation of the Grad method [40]. The expressions, which allow for
thermal difusion and corrections of the second approximation, can be obtained from
the equations of the 13-moment approximation of the Grad method. In the dusty-gas
model this leads to the possibility of describing thermotranspiration and thermal dif-
fusion in a porous medium. Here we omit consideration of these problems due to the
complexity of the corresponding expressions (see [80]).

Equations (7.3) can be easily solved relative to molar fluxes of the components
which gives the expression for Jα = nα �uα�. A useful relation for fluxes follows im-
mediately from summation of Eqs. (7.3) over α, since the sum of the terms corre-
sponding to diffusion forces of friction vanishes. The relation takes the form

∑ 
α = 1

N

  
Jα

DαK
 = − 1

kT ∇zp 
⎛
⎜
⎝

⎜
⎜
1 + 

B0

η
 p  ∑ 

α = 1

N

  
yα

DαK

⎞
⎟
⎠

⎟
⎟
 . (7.6)

In the absence of the pressure gradient for a binary mixture it follows from this
equation that

− 
J1
J2

  =  
D2K
D1K

  =  ⎛⎜
⎝

m1
m2

⎞
⎟
⎠

 1 ⁄ 2

 
b2
b1

 , (7.7)

which at b1 = b2 corresponds to the known Graham law of diffusion [80].
In the general case, instead of expressions for fluxes J1 and J2 it is more conven-

ient to deal with the total molar fluxes of the mixture Jm = J1 + J2 and diffusion flow
J1D = y2J1 − y1J2. Then, by definition

J1 = y1Jm + J1D ,   J2 = y2Jm − J1D . (7.8)
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The expressions for Jm and J1D obtained as a result of solution of Eqs. (7.3) have
the form

Jm = Jv − 
D1KD2K

D12
 K  ∇zp + 

D1k − D2K

D12
 K  J1D ,

J1D = −nDeff ⎡⎢
⎣
∇zy1 + αp

Ky1y2 1p ∇zp⎤
⎥
⎦
 , (7.9)

where Jv = n �uv� and Deff is the ffective coefficient of diffusion, determined as

1
Deff

  =  1
D12

 K   +  1
D12

 . (7.10)

For the coefficients D12
 K and αp

K formulas (4.9) hold.
Comparison of Eqs. (7.9) and (3.8) gives

Λ11 = T
py1y2

 Deff ,

Λ1m = Λm1 = Tp  Deff αp
K ,

Λ1D = Tp  ⎡⎢
⎣
B0

η
 p + 

D1KD2K

D12
 K

 + (αp
K) 2Deffy1y2⎤

⎥
⎦
 . (7.11)

In the limit Kn >> 1 we have Jv → 0, Deff → D12
 K, and expressions for Λik coincide

with those presented in (4.8). In the other limiting case (Kn << 1), the coefficient of
diffusion Deff tends to D12, but αp is not equal to αp

v but coincides with the constant
of barodiffusion in the Knudsen regime αp

K. We note that in the considered dusty-gas
model the barodiffusion factor remains the same within the entire range of variation
of the Knudsen number. This is not unexpected since the viscous friction force is not
a part of Eq. (7.3). In fact, this force acts differently on the components of a gas
mixture in a viscous flow. Moreover, as follows from the results of the previous sec-
tion, a value of the constant of barodiffusion (in lengthy channels of regular geome-
try) is also appreciably affected by the account of the behavior of the distribution
function of molecules in a thin Knudsen layer near the wall.

We note that for a pure gas it follows from (7.6) that
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Jm  =  − 1
kT ⎛⎜

⎝
DK  +  

B0

η
 p⎞

⎟
⎠
 ∇zp . (7.12)

The additivity of the diffusion (Knudsen and viscous flows is confirmed by meas-
urements of the permeability of porous media [45, 123]; however, for capillaries, as
is known there is an ill-defined minimum of permeability in the region close to the
free-molecular regime of flow, which can be explained, taking into account correction
of the second approximation of the theory [80].

It is easily seen that the term D1KD2K  ⁄ D12
 K  in the expression for Λmm in the re-

gion of small Knudsen numbers can be interpreted as correction due to viscous slip.
In the case of a capillary model of a porous medium, with account for (4.6) and
(4.9) we have

D1KD2K

D12
 K   =  28 ⎛⎜

⎝

8kT
π

⎞
⎟
⎠

 1 ⁄ 2
 R 1

(m1 ⁄ 2)y
 ,

and this correction is in full conformity with the coefficient of viscous slip Ap (6.9)
obtained by the Maxwell method. The effective coefficient of diffusion Deff in the
expression for diffusion flux is written in the form which, for a mixture with close
masses of molecules of the components, was first suggested by Bosanquet and Pol-
lard and Present [124]. Applying in this case a value of the coefficient of binary dif-
fusion [D12]1 to the model of hard spheres, we can present the expression for Λ11 in
the region of small Knudsen numbers in the form

Λ11  =  T
py1y2

 [D12]1 (1  −  0.797 Kn) , (7.13)

which is in satisfactory agreement with the behavior of Λ11 following from the strict
kinetic theory for a round cylindrical capillary [see formula (6.24)].

We now refer to one of alternative models of a porous medium (binary friction
model) which has been recently suggested by Kerkhof [43]. The idea of the model
originates from the possibility (mentioned in [80]) of transformation of the equations
of diffusion (7.3) such that the term responsible for viscous transfer was included in
the terms describing diffusion of the components and thus the Stefan–Maxwell equa-
tions with the "generalized" coefficients of diffusion were obtained. To do this, Eq.
(7.6) is solved relative to ∇zp that is substituted into (7.3). In [43], it is suggested to
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include the terms responsible for viscous transfer of momentum in each component
of the mixture to the diffusion term along with the Knudsen coefficient of diffusion.
As a result, the equations of diffusion in a porous medium for the considered model
take the form

fαKnαuα  +   ∑ 
β = 1

N

  
nαnβ

n [Dαβ]1
 (uα − uβ) = − 1

kT ∇zpα , (7.14)

where fαK is the coefficient of "friction" of component α with the wall, that is deter-
mined as

fαK
  −1 = AαK = DαK + 

B0p
ηα

 yα . (7.15)

Here ηα is the partial viscosity of component α with η = Σηα being the total vis-
cosity of the mixture.

It is easy to note that the expressions for fluxes of the components or fluxes Jm
and JαD obtained in these equations retain the previous structure of expressions (7.9)
in which the viscous fluxes Jv must be omitted and the coefficients DαK must be re-
placed by new coefficients AαK. For a pure gas, an ordinary expression for fluxes
(7.12) follows from the suggested model. Of highest interest in this case is the ex-
pression for the diffusion fluxes in a binary mixture, which follows from (7.14)

J1D =  −A12 eff 
⎡
⎢
⎣
∇y1  +  

A1K  −  A2K

A12
 K  y1y2 

∇p
p

⎤
⎥
⎦
 . (7.16)

Here

A12
 K  =  A1K y1  +  A2K y1 ,   A12 eff

 −1   =  (A12
 K) −1  +  [D12]1

 −1 . (7.17)

The most important result following from the considered model is the fact that in
the region of small Knudsen numbers this model provides the limiting transition to
the barodiffusion factor in a viscous flow αp

v (5.9), and in the region of a free-mo-
lecular flow it leads to an ordinary Knudsen quantity αp

K (4.9). As in the traditional
dusty-gas model, the issue on the account of the effect of Knudsen layers at small
Knudsen numbers remains open.
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It should be noted however that behavior of the effective coefficient of diffusion at
intermediate Knudsen numbers somewhat differs from that predicted by the Bosan-
quet and Pollard and Present formula (7.10). To estimate the observed dependence of
Deff on the Knudsen number we consider, as usually, the case of a mixture of mole-
cules with close masses and cross sizes of scattering. For the model of molecules–
hard spheres the corresponding estimates give

A K  =  DK (1  +  0.166 Kn−1) ,   
D12
DK

  =  0.796 Kn .

As a result

Deff  =  
D12

1  +  0.796 Kn2 ⁄ (0.166  +  Kn)
 .

Thus, only when Kn >> 0.17 the behavior of Deff corresponds to ordinary results pre-
dicted by the dusty-gas model. On the contrary, when Kn << 0.17 we have Deff =
D12 (1 − 4.8 Kn2) which gives a much quicker tendency of Deff to D12, since their
difference decreases in proportion to the square of the Knudsen number, rather than
the first power of this number, as follows from the ordinary theory and which is con-
firmed by more accurate calculations for capillaries [see formula (6.24)].

8. SOME KINETIC EFFECTS

Linear phenomenological relations for a total molar flux Jm, diffusion flux J1D, and
heat flux Jq, which follow from (3.8), in combination with the expressions for the
coefficients Λij, which were discussed in the previous sections, can serve as a basis
for analysis of a number of kinetic effects in a gas mixture that arise in its flow and
diffusion in a capillary or porous medium. To them, in particular, refer the Graham
law of diffusion at a constant gas pressure [80] and the effects of time-variation of gas
parameters (pressure, temperature, concentration of mixture components) in volumes
connected by a packet of capillary tubes or porous medium, if at the initial instant of
time there exists some fixed difference of values of one of these parameters at the
inlet to and outlet from the channels. Mass flows arising in this case in capillaries or
a porous medium due to the gradients of pressure, concentration, and temperature can,
under certain conditions, compensate each other and lead to establishment of some dy-
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namic equilibrium in the system, which is characterized by the difference in macro-
scopic parameters of the mixture in the volume. We consider some of these effects
in more detail.

8.1 Cross Diffusion at Constant Pressure

One of classical experiments on gas diffusion in capillaries or porous media is in in-
dependent measurement of cross fluxes of the mixture components J1 and J2 at a
constant pressure in the system, when the packet of capillaries and porous medium
are washed from two sides by two different gases. The condition of the absence of
the pressure gradient in the system means vanishing of the mass-aversged velocity of
mixture u. In this case, an ordinary hydrodynamic approach leads to the relation

J1
J2

  =  − 
m2
m1

 . (8.1)

Among other things, in the experiments of Graham [80], which were conducted at
the end of the previous century and which were confirmed in subsequent measure-
ments made much later [125–128], the "square root" law was established which is
valid for any flow regime in a channel — from the Knudsen regime to the viscous
slip regime:

J1
J2

  =  − ⎛⎜
⎝

m2
m1

⎞
⎟
⎠

 1 ⁄ 2
 . (8.2)

As has already been mentioned in the previous section, relation (8.2) obviously
follows from the equations of the dusty-gas model if we assume diffuse scattering of
molecules on the wall being absolutely completed. For an alternative Kerkhof model
[43] this law is fulfilled in the region close to a free-molecular mode of regime flow,
and in the other limiting region (Kn << 1) it takes the form

J1
J2

  =  − 
η2
η1

 
y1
y2

 . (8.3)

In the slip flow regime, the equations for total and diffusion fluxes through a cap-
illary in the absence of the pressure gradient are written as
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Jm  =  −σ12 J1D ,   J1D  =  −nD12∇zy1 .

Then, allowing for (7.8) we obtain

J1
J2

  =  − 
1  −  y1σ12
1  +  y2σ12

 . (8.4)

When the elementary formula (6.10) is used for the coefficient of diffusion slip
σ12, the ordinary Graham law (8.2) follows from (8.4). In a more general case, the
ratio of the diffusion fluxes depends not only on the ratio of masses of molecules
but also on their effective cross sizes of scattering. Table 2 gives the values of the
ratio of the flows (−J1  ⁄ J2) taken with the opposite sign and calculated by formulas
(8.2)–(8.4) for pairs of gases which has been considered in Table 1. We note that
the data of the last column in Table 2 are obtained using the coefficient σ12 = −αp
calculated by the variational method [formula (6.16)]. In this case, it was taken that
y1 = y2 = 0.5 and κ1 = κ2 = 1.

The comparison with the experimental data of [125–128] made in [110] shows that
there is a somewhat better agreement between the theory and experiment when the
data from the third column of Table 2 are used. At the same time, for mixtures the
molecules of which strongly differ by masses, with account for the available accuracy
of flow measurements any theoretical expression is, in principle, admissible. 

So, for example, for He–Ar mixture, results of different measurements give for the
flow ratio the values of 3.18 [126] and 3.75 [128] which appeared to be more close
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TABLE 2: Ratio of fluxes (−J1  ⁄ J2) for different mixtures

Mixture Eq. (7.2) Eq. (7.3) Eq. (7.4)
H2−Ar 4.469 6.0551 4.747
He−Ar 3.160 2.630 2.880
N2−Ar 1.194 1.276 1.234
H2−N2 3.742 3.915 3.760
D2−He 1.000 1.205 1.096

Ar−CO2 1.049 0.875 0.958
N2−C2H4 1.000 0.801 0.895
Ne−C2H4 1.178 0.719 0.923
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to the square root law. It is probably necessary to make more precise measurements
of flux in order to draw a conclusion on the advantages of one or another theory.
This note is of special importance for mixtures of molecules with close masses where
the account of differences in the coefficients of accommodation of molecules on the
channel wall becomes significant [110].

8.2 Diffusion Pressure Effect

This effect is observed in the system consisting of two closed volumes V1 and V2
connected by a packet of narrow capillaries or a porous medium. If at the initial in-
stant of time the pressure at all points is the same and concentrations of the mixture
components in volumes V1 and V2 differ (e.g., if at the initial instant the volumes are
occupied by different gases), then the available difference in the velocity of diffusion
of components in channels leads to appearance of the pressure difference between the
volumes ("diffusion pressure effect"). The character of the dependence of ∆p on time
is determined by the ratio of diffusion and hydrodynamic flows through the connect-
ing channels, and the difference of pressures attains a maximum, when the total
molar flow of the mixture vanishes, i.e., when diffusion transfer is fully compensated
by ordinary hydrodynamic transfer due to the pressure gradient. The theory of diffu-
sion pressure effect was considered from different points of view in [106, 129–131],
experimental measurements were conducted in [129, 130, 133].

The pressure difference and variation of the concentration of components in the
volumes can be found from the consideration of the balance of the number of parti-
cles of each mixture component in the volumes with due regard for flows of compo-
nents from one volume to another. In particular, the equation for determination of the
pressure difference arising between the volumes takes the form

d
dt ∆p  =  kT

V  sJm . (8.5)

Here V = V1V2 (V1 + V2) and s is the total cross-sectional area of the connecting chan-
nels. To completely solve the problem, the flow must be expressed in terms of the
differences of pressures and concentrations in the volumes and Eq. (8.5) must be sup-
plemented by the equations for variation of concentrations which follow from the bal-
ance equations.

In the Knudsen regime (Kn >> 1), the times of relaxation for the difference of con-
centrations and pressure have the same order of magnitude, therefore ∆p(t) reaches a
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maximum and then rather quickly decreases to zero. In this case, the expression for
∆p(t) is found from the balance condition for each component with account for the
expressions for flows given by equalities (4.7). For a maximum pressure difference
∆pmax between the volumes the corresponding result can be presented in the form

∆pmax
p0

 = (∆y1)0 ⎡⎢
⎣
exp ⎛⎜

⎝

− γ ln γ
γ − 1

⎞
⎟
⎠
 − exp ⎛⎜

⎝
− ln γ

γ − 1
⎞
⎟
⎠

⎤
⎥
⎦
 , (8.6)

where (y1)0 = y1(0) − y1(L) and γ = (m2b1  ⁄ m1b2) 1 ⁄ 2 at the instant of time t = 0. Here
it is assumed that κ1 = κ2 = 1.

In the other limiting region (Kn << 1), the values of concentrations in the volumes
change much slower than the pressure; therefore, the established maximum difference
of pressures decreases to zero very slowly. In this case, a good approximation for de-
termining ∆pmax is the use of the condition of vanishing of the total molar mixture
flow under the assumption that the difference of concentrations in the volumes remains
equal to its initial value. Thus, from the condition �um� = 0 there follows the relation

∇zp  =  − 
Λm1
Λmm

 p∇zy1 , (8.7)

which, in the case of a round cylindrical capillary and without account for correction
to viscous slip, can be rewritten as

dp  =  (8η  ⁄ R 2) σ12D12dy1 . (8.8)

Integration of relation (8.8) along the channel length gives

∆pmax  =  (8D12  ⁄ R 2)     ∫ 
y1(0)

y2(0)

    σ12ηdy1 . (8.9)

For a gas mixture with (m2 − m1)  ⁄ (m1 + m2) << 1 and (d2 − d1)  ⁄ (d2 + d1) << 1 the
use of equations (6.18a) leads to the result
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2
max

1
2 1 2 1 ,
2 1 2 1

4.8 1.274 0.598p m m d dKn ym m d dp
⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

∆ − −= − ∆+ + (8.10)

Gas Flow and Diffusion in Nano Sized Capillaries 91



where ∆y1 = y1(0) − y1(L).
It follows from (8.10) that diffusion pressure effect for such mixtures greatly de-

pends not only on the difference of masses of molecules but also on the difference
in the effective cross sizes of scattering (and also on the difference of the coefficients
of accommodation of molecules on the wall) and can therefore have any sign.

To compare the theory with the experiment it is useful to introduce the effective
coefficient of diffusion slip; thus

∆pmax  =  (8D12  ⁄ R 2) (σ12)eff ηdy1 , (8.11)

whence it follows

σ12max  =    

∫ 
y1(0)

y1(L)

    σ12ηdy1

η
__

∆y1
 ,

where η
__

 is determined at y1 = y2 = 0.6.
Table 3, composed on the basis of the data from [110], gives the values of

(σ12)eff calculated by the results of measurements [129, 133] in comparison with the
theoretical values of [σ12]2 = − [αp]2 calculated by the variational method [107] for
fully diffuse scattering of molecules on the wall. In this case, only those results of
measurements on the packet of capillaries of radius R are used, which correspond to
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TABLE 3: Coefficient of diffusion slip

Mixture − (σ12) exp [111] − (σ12) eff Mixture − (σ12) exp [115] − (σ12) eff

H2−N2 1.10 1.21 H2−N2 1.08 1.23
N2−Ar 0.21 0.21 N2−Ar 0.25 0.21

N2−CO2 0.18 0.18 C2H4−Ne 0.033 0.031
N2−O2 0.082 0.091

N2−C2H4 0.04 0.10
Ar−CO2 0.026 0.030
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the region of small values of the Knudsen number. The minus sign for the coeffi-
cients of diffusion slip is stipulated by the fact that a lighter molecule in each con-
sidered pair of gases is taken as component 1. As is seen from the table, quite
satisfactory agreement between the experimental and theoretical results is observed.

A thorough calculation of the diffusion pressure effect for a system consisting of
equal volumes connected by a packet of capillaries has recently been conducted in
[24] for the whole range of the Knudsen number on the basis of the linearized model
of the third-order collision integral. The results of calculations show a satisfactory
agreement with the data of experiments [133] for the mixtures H2−N2, Ar−CO2,
N2−Ar, and Ne−C2H4 at arbitrary Knudsen numbers. Figures 1 and 2 present the re-
sults of calculations and experimental dependences for two pairs of gases for which
an anomalous behavior of the diffusion pressure effect was observed in the experi-
ments. Especially impressive is the explanation (obtained on the basis of the kinetic
theory) of a sign of the effect for the Ar−CO2 mixture, which is opposite to the or-
dinary one and change of the sign of the effect with variation of the Knudsen num-
ber for the Ne−C2H4 mixture. We note that for other systems which do not show
anomalies the agreement between the theory and experiment is much better from the
quantitative point of view: within the limit of experimental accuracy the theory repro-
duces the observed dependences.
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FIG. 1: Theoretical (1) and experimental (2) dependences of the diffusion pressure effect
on total pressure for CO2−Ar mixture
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8.3 Separation of Gas Mixture

An effect, which in a certain sense is opposite to a previous one, is the appearance
of the difference of concentrations in the volumes separated by a packet of capillaries
or a porous medium, if a constant pressure gradient is maintained between the vol-
umes ("effect of separation"). The existence of this effect forms the basis for the in-
dustrial diffusion method of separation of gas mixtures, which played an important
role in solution of the problem of separation of uranium isotopes [134].

Specifying a value of the stationary difference of pressures at the ends of the chan-
nels ∆p = p(0) − p(L), we can, taking into consideration the condition J1 = Jmy1(L),
find the difference ∆y1 = y1(L) − y1(0), which indicates the absence of the diffusion
flux at the outlet from the channels. Using relation (3.12) we can write

Jm [y1 (L)  −  y1]  =  J1 (1  −  y1)  −  J2y1 . (8.12)

As a result, with account for specific expressions for fluxes Jm and Jα we come to
the linear differential equation for y1 the solution of which allows one to find the

FIG. 2: Theoretical (1) and experimental (2) dependences of the diffusion pressure effect
on total pressure for C2H4−Ne mixture
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distribution of concentration along the channel length and, consequently, a value of
the difference of concentrations ∆y1 [106, 130, 134].

In the Knudsen regime of flow, the solution has the form

∆y1  =  αp
Ky1 (L) y2 (L) ∆p

p0
 , (8.13)

where the Knudsen constant of barodiffusion αp
K from (4.9) is determined by a value

of y1(L) at the outlet from the channels.
In the limit of the viscous slip flow (Kn << 1) for the case of mixture with

(m2 − m1) ⁄ (m2 + m1) << 1 and (d2 − d1)  ⁄ (d2 + d1) << 1, substitution of Jm and J1D
into (8.12) leads to the equation

dy1
dp   +  ap [y1  −  y1 (L)]  +  α

__
py1 (0) y2 (0) 1p  =  0 , (8.14)

where a = R 2  ⁄ 8η(pD12) and α
__

p is given by expression (6.18).
Solution of such equation has the form [25]

∆y1 = α
__

py1(0)y2(0)     ∫ 
p(L)

p(0)

    1p exp ⎡⎢
⎣
− a2 (p2(0) − p2dp⎤

⎥
⎦
 . (8.15)

If ∆p  ⁄ p0 << 1 and κ1 = κ2 = 1, we approximately have

A review of some theoretical methods of analysis of the separation effect can be
found in the paper of Masignone [134]. A comparatively small number of works
[135–137] is devoted to experimental investigation of the separation effect. The
change of sign in the separation effect was observed in the mixtures Ar−CO2 and
Ne−C2H4. For the ratio of masses of molecules close to unity the effect of mixture
separation in the Knudsen regime of flow can be determined by the difference in the
coefficient of accommodation of molecules on the wall. In the other limiting region,
the experimentally observed negative effect is predicted by expression (8.16).
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2 2 1 2 1
1 2

2 1 2 1

0.2084.8 1.247 0.598 1 exp .
(0)

m m d d py Kn
m m d d pKn

⎡ ⎤⎛ ⎞⎛ ⎞− − ∆⎢ ⎥∆ = − − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+ + ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
(8.16)
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8.4 Thermomolecular Pressure Drop and Thermal
   Diffusion Mixture Separation

We now consider the effects arising in the case when a stationary fixed difference of
temperatures ∆T = T(0) − T(L) is maintained between the volumes. In this case, the ef-
fect of thermomolecular pressure drop (TPD) for a pure gas is studied rather well
[30]. The corresponding expressions for the pressure difference ∆p arising between
the volumes were obtained and analyzed both for the limiting cases of flows and at
arbitrary Knudsen numbers. A review of the results on TPD for a pure gas can be
found in [22].

In the case of a binary gas mixture, a stationary state is attained when both an av-
eraged total molar flux of mixture and diffusion fluxes vanish. Then, using Eqs.
(3.11), we find

∆p
∆T

  =  − 1T 
Λ11Λmq  −  Λm1Λ1q
Λ11Λmm  −  Λm1Λ1m

 . (8.17)

In the Knudsen regime, substitution of expressions for Λij from (4.8) into (8.17)
leads to the known result

∆p
∆T

  =  12 pT , (8.18)

which is obtained in the case of a pure gas. In the limit of small Knudsen numbers
and for a gas mixture with (m2 − m1)  ⁄ (m2  +  m1) <<1 and (d2 − d1)  ⁄ (d2 + d1) << 1,
we have

∆p
∆T

  =  4.5 pT Kn2 1  −  1.50 Kn
1  +  4.03 Kn

 . (8.19)

The presence of the stationary temperature gradient in the channel also leads to the
effect of thermal diffusion mixture separation. The arising difference of concentra-
tions between the volumes ∆y1 = y1(0) − y1(L) can be found in this case from the
condition J1D = 0 and relation (8.17) between ∆p and ∆T. Then

∆y1  =  − 1p ⎛⎜
⎝
Λ1q  +  12 Λ1mp⎞

⎟
⎠
 1
Λ11

 
∆T
T  . (8.20)
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It is interesting to note that ∆y1 = 0 in the Knudsen regime, although in the region
of intermediate Knudsen numbers ∆y1 ≠ 0. In particular, for Kn << 1 we have

∆y1  =  − ⎛⎜
⎝
αT  +  12 α

__
p
⎞
⎟
⎠
 y1 (0) y2 (0) ∆T

T (8.21)

and for a gas mixture with (m2 − m1)  ⁄ (m2 + m1) << 1 and (d2 − d1)  ⁄ (d2  +  d1) << 1

In the steady state, an ordinary effect of separation due to thermal diffusion in a
mixture is partially compensated by an opposite effect related to barodiffusion. As a
result, the total effect of separation decreases and in the Knudsen regime it even
vanishes (to be continued).

2 1 2 1
1 1 2

2 1 2 1
0.153 0.176 (0) (0) .

m m d d Ty y y
m m d d T

⎛ ⎞− − ∆∆ = − + −⎜ ⎟⎜ ⎟+ +⎝ ⎠
(8.22)
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