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TSAGI Science Journal 40(6), 641-644 (2009)

MIL L. MIKHAIL AND TSAGI

On November 22, 2009, 100 years had passed since the birtte afutstanding Rus-
sian scientist and helicopter designer M. L. Mil. During pgegiod 1947 to 1970, first as
design manager and then chief designer, Mikhail L. Mil wathatforefront in the engi-
neering of outstanding helicopters, civil and militaryibepters of the mark “Mi”. De-
veloped by the experimental design office (EDO), these tiglars are known all over
the world and are in great demand on the domestic and foregghen More than 90%
of the helicopters currently produced in Russia are the “Milicopters, having the ba-
sic design laid out by M. L. Mil. In Soviet times the “Mi” helipters exceeded the he-
licopters of other countries by total capacity.

M. L. Mil was closely related to TsAGI throughout his extrdmrarily creative career
in the pursuit of multifaceted research interests.

GYROCOPTERS

Mikhail Mil, being a student of the Faculty of AerodynamicENovocherkassk Poly-
technic Institute, was absorbed by the theory and pracfigg/mcopter creation and
studied with interest all the available works on the issnel929 he wrote a letter to
Nikolay I. Kamov, a known designer of gyrocopters, in whiah demonstrated deep
knowledge in this area, requesting a position which woulowahim to work under
his supervision during the student holidays. His reques granted. That summer he
worked as an assistant engineer on the flight tests of theggter KASKR-1 of Kamov
and Skrzhinsky design. In 1930 M. Mil, although he was cutyeim Taganrog, requ-
ested that he perform his pregraduation practical workeaDipartment of Experimen-
tal Aerodynamics of TSAGI, and in 1931 he began working is ttepartment as a full
staffer. His assignment was to perform calculations anéexental investigations with
regard to gyrocopter aerodynamics. In 1933 the gyrocoptias in the Department of
Experimental Aerodynamics was reorganized under the Dapat of Special Design
of TsAGI, which was engaged in the design of helicopters amdappters. Mikhail Mil
was appointed head of the gyrocopter aerodynamic caloal&tiam in the Department
of Special Design.

Throughout 1940 a number of TSAGI gyrocopters were desigimeldconstructed at
the Department of Special Design. All these works were peréal by Mil's team. But
Mil was not restricted to the implementation of aerodynaneisearch, computational
investigations, and wind tunnel tests; he literally “wasii all the questions related to
the development, flight test support, design, and consrucThus, while developing
the A-6, “ground resonance” type self-oscillations werecassfully eliminated with
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the active participation of Mil. These works successfulpmbined the talents of two
outstanding scientists—V. A. Kuznetsov and M. L. Mil.

In March 1940 M. L. Mil was employed in factory no. 290 and beeghe deputy of
the design manager N. I. Kamov. He participated in the priolu@nd organization of
the A-7 gyrocopters used in the battles of Yelnya in Auguspt&mber 1941, for which
he was awarded the Order of Red Star and other medals.

AIRCRAFTS

In May 1943 M. L. Mil returned to TSAGI, where neither gyro¢epnor helicopter re-
search and design existed at that time. Organized at thenreeadation of 1. V. Ostos-
lavskiy in laboratory no.1 was the Aircraft Stability and @l Group. Mil had begun
to study these issues in 1940. The vast experience he gaimieg) dhis works on gyro-
copters proved useful to him. In his role as chief of the AafcStability and Control
Group in laboratory no.1 of TsAGI, Mil focused not only on ¢ simplification and
improvement of pilot comfort, but he also directed his dfdioward aircraft combat
applications—increasing the accuracy of aircraft sh@ptind bombing—which was, of
course, of special interest in wartime.

Theoretical analysis of the perturbed motion of the aitasgbn entrance to gusts
and the definition of loads on the controls were carried ol fEquirements to the loads
on the control stick were formulated for the weakly stabterait in order "to connect”
the pilot with the vehicle. Practical proposals to instglesial shock dampers on the
control stick or springs on the control crank in the longihadl channel were confirmed
experimentally in the T-101 wind tunnel and on real airgaftflight tests.

During this period Mil and his colleagues studied the infeof friction in the
control circuit on the flight performances of aircrafts inale They established that a
significant friction in the longitudinal or transverse camtchannel was perceived by
the pilot as a reduction of the longitudinal or, respectivéteral aircraft stability and
resulted in a decrease of the controllability estimatiorthef maneuverable aircrafts.
Recommendations were made regarding acceptable frichime fvalues in the control
systems of different aircrafts, as well as acceptableiogiatbetween the value of friction
forces and the gradient of load growth by the stick deflectwaviding regular aircraft
controllability. Standardized instructions on frictioartrol in the aircraft control system
were developed.

All these investigations were aimed at improving the lifterag ratio of the serial
military vehicles 1-16, DB-3 (Il-4), SK-1, SK-2, OKO-6 bi$, AGG-3, Pe-2, La-5, and
II-2, which was extremely important during the war. Durifgese years Mil worked
closely with aircraft designers S. V. llyushin, S. A. Lavéoh and A. |. Mikoyan. After
the war M. L. Mil, as a member of staff, was sent to Germany fuanere they brought
the T-107 wind tunnel which operates at TSAGI at present. dtoler 1943 M. L. Mil
defended his PhD thesis on the issues surrounding aircedifility and controllability.
For his work in this area he was awarded the Order of the Fiatkidar of 24 Class.

TsAGI Science Journal



Mil L. Mikhail and TsAGI 643

HELICOPTERS

After World War Il Mil's research focused on rotary wing aiafts. Based on his works
on rotor aerodynamics, in October 1945 he successfullyndefé his PhD thesis and
became the head of the department in laboratory no.1 of Ts&kdre he assembled a
close-knit, like-minded group and aimed the work of his d&pant toward helicopters.
Together with V. I. Yaroshenko, in a short time he developedrginal method of heli-
copter aerodynamic calculation based on direct consideraf the vehicle polar. This
method was necessary for Mil for practical purposes. On his mitiative he began
to develop the experimental three-seat helicopter EG-ISAGT, which was designed
in the classical single-rotor scheme with the tail rotor,M#13 engine, and with an
original device performing automatic increase of flighbdity. April 9, 1946 this heli-
copter project was submitted to the Ministry of Aircraft Bugtion Commission, which
supported the project but with a number of recommendations.

Based on the decision of the Ministry of Aircraft Producti@ommission, Mil pro-
posed to build a full-scale helicopter plant for the testsha T-101 wind tunnel. In
accordance with Mil's idea, this plant was created for sagitor helicopter produc-
tion, but without devices counteracting the reactive manfiemm the rotor, gear, and
other units. This significantly reduced the time for thisppla&onversion” to helicopters.

The laboratory for solving scientific problems related ttdwgpter construction and
aircraft spin was created in 1947 based on the TsAGI T-LG&cabwind tunnel. M. L. Mil
was appointed head of the laboratory and its helicoptepsddf course, Mil's experi-
ence working with rotary-wing and aircraft equipment cdnited to this decision of
joining seemingly different directions. Employees of tlei¢opter sector (more than 20
people) formed the basis for the future EDO of Mil. Almost earf them had previous
experience in the design and construction of rotary-wingigggent. Therefore, Mil's
knowledge in the area of aerodynamics, design, and cotistnuaf both a vehicle as a
whole and its individual units, as well as his experienceighfldevelopment of rotary-
wing equipment, were overwhelmingly important. The cobesind purposefulness of
like-minded fellows contributed to the fact that in a verypghime the full-scale heli-
copter was built and tested in the T-101 wind tunnel. In themn of 1947 the full-scale
model of the three-seat helicopter EG-1, created in Milwtatory, was approved by
the government commission.

December 12, 1947 the Council of Ministers of the USSR adbatspecial resolu-
tion to create a communications helicopter for the Armedt€siof the USSR. Accord-
ing to this resolution, the design teams of A. S. Yakovlef. Bratukhin, and M. L. Mil
were ordered to create prototypes of the new helicopteus; tievelopment of the com-
munications helicopter was actually a competition. Thelgson also obligated the
deputy minister of aircraft production to organize at TsAB& Experimental Design
Office on Helicopters and to approve the design manager EDIO, M. L. Mil. De-
cember 12 is the official date of creation of the EDO named aitel.. Mil. By the end
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of July 1948 the EDO was located in the building of the T-10Bigal wind tunnel at
TsAGI. It was later relocated in Tushino and after that to diRgkaya str. at Moscow.
But Mil worked at TsAGI part-time until the mid-1950s.

Created under the leadership of M. L. Mil before 1970 werettbkicopters Mi-1,
Mi-4, Mi-6, Mi-10, V-7 (with the jet drive), Mi-2, Mi-8, Mi-4 (amphibian), V-12, Mi-20
(project), and Mi-24. The research and development fohali¢ helicopters to a greater
or lesser degree was carried out at TSAGI.

It should be noted that the close cooperation of TSAGI withCEDas sometimes
accompanied by serious discussions on questions of pléndijiscussions with regard
to the transverse scheme helicopter V-12 were especiatlyTTeAGI was in principle
against this scheme. But Mil's leadership guided the diouns ultimately ensuring
that the correct decision was made—to proceed with plansiitd the vehicle. Being
the head of the EDO, M. L. Mil always promoted and advanceddbas in which he
believed. On important issues he was known to lobby the gowent directly, even
making his case personally to Khrushchev. From this pointief, M. L. Mil was not
only a designer, but by present standards, an excellentgeana

M. L. Mil's activity at TSAGI since 1943 and after in the EDO wvaf great impor-
tance to the formation and development of Russian sciendédnalicopter engineering
schools.

"We have a great future, but we remember our relationshimc€ptually we are the fol-
lowers of the great Russian school of aerodynamics, foubglddikolai E. Zhukovsky,
and of his disciples B. N. Yuriev and A. M. Cheremukhin. Irdrgty we came out of
TsAGI, and therefore we are related to the science by blasl.ti” (From the speech
of M. L. Mil on the meeting devoted to the TRnniversary of EDO.)

TsAGI Science Journal
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APPLICATION OF A NEW MATHEMATICAL
TOOL (1D SPECTRAL PORTRAITS OF
MATRICES) TO THE PROBLEM OF
AEROELASTICITY VIBRATIONS OF TURBINE
BLADE CASCADES

S. K. Godunov*, V. B. Kurzin, V. G. Bunkov & M. Sadkane

Sobolev Institute of Mathematics Siberian Branch of the Russian Academy of Sci-
ences 4, Acad. Koptyug avenue, Novosibirsk, 630090, Russia

* Address all correspondence to S. K. Godunov E-mail: godunov@math.nsc.ru

Analysis of possibilities of current conventional programs for definition of the nonsymmetrical matrix
spectrum, associated with the problems of dynamic stability in aeroelasticity, was fulfilled. The feature
of bending-torsion flutter of a wing with multiple oscillation frequencies near the flutter boundary
was educed. The problem of flutter was studied by using the method of dichotomy.

KEY WORDS: dichotomy quality, spectral portrait, non-symmetrical matrix

1. INTRODUCTION

Design of integral structures is always based on compuistisimulating operations of
these structures under certain conditions. Such conditstiould be described by the
limitations, providing operational efficiency and safetydaavoiding structural failure.
Admissible errors should be given for the numerical valuethe limiting parameters,
which guarantee reliability of recommendations, basedercalculations.

In aeroelasticity theory, the computational procedureding with spectral analyses
of matrices are of great importance. It is well known thatdtability criterion is reduced
to the following statement: all eigenvalues of definite ricas, obtained during model-
ing, lie strictly in the left part of the complex plane. A nedliquestion arises: “What
accuracy is required for computing these eigenvalues?”

The examples, indicating that there is no clear-cut answéri$ question, are pre-
sented below. The formulation of the question should be firemtliaccording to the clas-
sical Lyapunov theory. Based on this theory and on its modeneralizations, an algo-
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646 Godunov et al.

rithm, using the spectral dichotomy criteria and 1D spégtoatraits of matrices, illus-
trating spectrum fibration, is suggested.

Naturally, the used computational procedures should nieefdllowing require-
ment: their results must satisfy the guaranteed accurdityagss. This requirement can
be met if standard algorithms included into public-domaifivgare used in engineering
computations are based on the following natural postulate.

Postulate: Only those numerical functiofigd) of N x N or N x M matrices can be
calculated, which satisfy the following inequalityf (A) — f(B)|| <w ||A — BJ|. Here,
w = wl||A]l, f(A)]is aknown function, independent 8f and M (matrix dimensions);
||All, ||A — B|| are the matrix norms.

An example of admissible functiors;(A) are the singular values of matri,

A=QDP*, Q*Q=1Iy, P*P=1Iy, M <N

oy O 0
0 Op—1 0
0 0 oM
0 0 0 0

M

The admissibility follows from the inequalityo; (A + B) — 0 (A) | < Omax (B) =
I1B]|.

An example of inadmissible functiona; =A;(A) are the eigenvalues of the quadra-
tic N x N matrix A. This can be understood from the following numerical exampth
the integer-valued % 7 matrixC":

289 2044 336 128 80 32 16

1152 30 1312 512 288 128 32

—-29 —1980 756 384 1008 224 48

C= 512 128 640 0 640 012 128
1053 2136 —604 —384 —856 800 108

—287 4 1712 —128 1968 -30 2032

—2176 —187 —1465 —512 —441 —-1152 —189

One can try to find its spectrum with the help of somemiaB procedure, using the
standard number representation. For matri@endC”’, which must have identical spe-
ctra, the same procedure will give different results,

TsAGI Science Journal



Problem of Aeroelasticity for Vibrations of Turbine Bladastades 647

A1 (C) = 6.5824 A (CT) =8.0444

A2 (C) =4.0313 + 434210 Ay (CT) = 4.9557 4 5.66443
A3 (C) =4.0313 —4.3421i A3 (CT) = 4.9557 — 5.6644i
A1 (C) = —1.4668 4 5.3883i A4 (CT) = —1.8107 + 7.0037:
A5 (C) = —1.4668 — 5.3883i A5 (CT) = —1.8107 — 7.0037i
N (C) = —5.8557 +2.3387i  Ag (CT) = —7.1672 + 3.0701:
A7 (C) = —5.8557 — 2.3387i A7 (CT) = —7.1672 — 3.0701:

The matrixC' is obtained ag’ = L~ RL, where

1 2028 256 128 64 32 16
0 —2 1024 512 256 128 32
0 0 4 512 1024 256 64
R=10 0 0 0 512 512 128
0 0 0 0 —4 1024 156
0 0 0 0 0 2 2048
0 0 0 0 0 0 -1
1000000
0100000
1010000
L= 0001000
0010100
1000010
0110101

From here, one can see that the actual eigenvalué€saoé
M=0, A==-1,A3=41, Ay =-=2, A5 =42, A\¢ = —4, A\ =+4

The reason for the demonstrated paradox is as follows. g#reialues, computed in
MATLAB, are the precise eigenvalues of perturbed matrices apgeiarithe course of
computation rather than those inherent in the mairitself. And the spectrum of pertur-
bations of the matrix under consideration covers the edtimain where the computed
values lie.

Here is another simple example. Consider235 matricesA + w B, where

-1 10 O
-1 10
A=
O 10
-1
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648 Godunov et al.

is a two-diagonal matrix, whilé has only one nonzero element, equal to unity, and is
located in the lower-left corner:

0 0 0
B =

0 0 0

1 0 0

If w = 0, then the spectrum of + w5 lies in the left half-plane; itv = 10 x 8725 ~
2.6 x 10722, then the eigenvalues of + w B contain\ = 1/4.

These examples raise the following question: How shoulduseeLyapunov theo-
rem, which asserts that the solutions of the systlemhit = A-x are stable if, and only
if, the spectrum ofA lies strictly in the left half-plane? The point is that thisrhulation
is, in fact, a vulgarization of the Lyapunov theorem. Lyapuproved that the constraint
Re(A;) < 0 (for all A;) is necessary and sufficient for a positive definite solufibR=
HT > 0 of the Lyapunov matrix equatiol A + A*H + C = 0 to exist for all positive
definiteC'=C"* > 0. The Lyapunov functionHx,z) diminishes with increasingon the
solutions ofz = Az; hence,

l=@I < VIH|TH l2(0)]]

How can one compute the coefficiept]| || || 7 ]| [the ratio of the maximal and min-
imal axes of an Lyapunov ellipsoid, where the trajecte(y) lies]? This coefficient de-
pends not only on matrix, but also on the choice of the right part@fin the Lyapunov
matrix equation. Therefore, the stability analysis shawdtionly include the solvability
of the equationH A + A*H + C = 0, but also introduce some particul@f, providing
an acceptable value Qf || H|| || H 1]

On the basis of these arguments, mentioned in Ref. [1], itsuggested to find/
from the equatiorf A+ A*H +2 || A|| I = 0 and to take as the characteristics of the sta-
bility quality the value ok = || H|| , which ensures the validity of the following estimate:

K

2 (t)]] < Ve 1A%z (0))] = Ve " |z (0)]], T= T

Here,k = k (A) is the solution of the extremal problem

/ e (&) dt
0

/ exp (=2t | AJ) [l (0)]] dt

0

K (A) = sup
z(0)

TsAGI Science Journal



Problem of Aeroelasticity for Vibrations of Turbine Bladastades 649

The parametert = /|| A|| is the characteristic time of solution decay. The inequalit
[k (A+ B) —«(A)| < 133 (4) (| B/ || All ) [this holds if(||B||/[| Al ) < 107 ]
shows thak = k (A) is stable with respect to perturbations of the matrix cagrgd in
terms of the postulate formulated above.

It turned out [2, 3] thatd = H(A) can be represented as a matrix integral
AT
H(A) = A1 / [A* +iwI] M A —iwl]  dw
T

which makes sense not only for Gourwitz matrices with thespe, located strictly in
the left half-plane. For the convergence of this integraly the absence of eigenvalues
at the imaginary axis is necessary. The value || H || can be considered as a criterion of
spectral dichotomy with respect to the imaginary axis, &idn estimating the distance
of A; (A4) from this axis, regardless of the number of eigenvalues enléft half-plane
and those in the right half-plane.

The curve of the dependence of the dichotomy critekdal — al) ona illustrates
spectrum fibration by straight lines Rg = a, parallel to the imaginary axis. Examples
illustrating the use of such graphs (1D spectral portraitsjome simple problems of
aeroelasticity are given below.

The first example, illustrating the use of dichotomy critetiis a simple flutter mo-
del, proposed by TsAGI [4], in which the plate-airfoil is cigtered as a system with four
degrees of freedom. When ignoring the aerodynamic efféusyibrations of the plate
are described by

d

& _ay 37.7 O
dt a— 169

dy - 899

a z O 1792

Aerodynamic effects are modeled by adding new elementsniiipg on the flow ve-
locity v to the coefficients of the system. The system acquires thanfiolg form:

do _ —vDz — (G +v*F)y
dt
dt
1 0
Y 1
D =0.73-10 1
0 1
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650 Godunov et al.

0 —0.197-1072 0 0

o 0.12-1073 0 —0.419-1072 0.171-1073
I 0.176-107% 0 0
0 —0.154-1073 0 0

Fibration of the spectrum of this system with lines, patdlethe imaginary axis,
for different velocitiesv is shown in Figs. 1a and 1b by the solid curve; the dashed curve
showst = k/ || A||. It is convenient to superimpose the spectral zones in oneefigith
Re(@\) as the abscissa axis and the veloeitgs the ordinate. The shaded area in Fig. 1c
(internal area, bounded by the dot-and-dashed curve) dottmain of ReX) values, such
thatlg \/k > 3.95; the external area refers tg/k > 3.75. The middle area, bounded
by the white curve, is the domain where= k/ || A|| > 3.75.

The graphs presented allow one to evaluate the criticagfluglocity, obtained from
the computed ratio Ra;) / || A|| and from the proposed criterian(A). The admissi-
ble error fork (A) should be chosen by analyzing the accuracy of modeling tiee ph

435

430

4251

420

Velocity V

415 - 1
410}
405 - el |

400

395 i i \ L > ¥ I i
=35 -3 2.5 -2 -1.5 -1 05 0 0.5

Dichotomy parameter Re(%)
c)
FIG. 1: Spectrum stratification by the straight lines of an imagireatis at various ve-
locities: (a)V =395 m/s, (b =411 m/s, and (c) spectral zones.
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nomenon by differential equations and validated againséemental data. Subspaces,
corresponding to clusters of eigenvalues (projectione tiregm or their bases), are com-
puted simultaneously with the spectral portraits. Thisved one to indicate the cell-
diagonal canonical form of the matrix examined and, by camguhe similar transform
matrix, find its condition number.

The canonical form of matrid (v = 411) is

—-3.67e —1.01e 0 0 0 0 0 0
+0 +2
1.17¢  —-1.32e O 0 0 0 0 0
+0 +0
0 0 4.30e  3.93e —2.64e 2.68e 0 0
+2 +2 +1 +0
0 0 —4.76e —4.33e 2.92e —2.96e 0 0
0 0 7.85e 7.11e —1.79¢ 188 O 0
-1 -1 +2 +1
0 0 7.75e 7.01e —1.77e 1.76e O 0
+0 +0 +3 +2
0 0 0 0 0 0 6.73e 9.77e
-1 +1
0 0 0 0 0 0 —1.21e —1.67¢
+0 +0

Q[ ||| = 267.0132

As an example for test computations of spectral portraits)d consider coupled bending-
torsion vibrations of blades in the cascades of turbomachim a gas flow. The system
of differential equations that describes small vibratiohsuch a cascade has the form
[5] .

thn + Jnan + Knaan = Mn

(n=1,2,..,N)

whereh,,, a,, are the generalized coordinates of blade deformation ovdrgending-
torsion vibrations,m,, J,, are the generalized masses and moments of inertia of the
blades,K ,;, K., are the coefficients of generalized bending and torsiofnes§, S,

are the coefficients of generalized coupling of bending ansidn vibrations,N is the
number of blades in the cascadg, are the elastic coupling forces of blades with each
other, andL,,, M,, are the generalized aerodynamic forces and moments adtitigeo

nth blade. In the theory of cascades in an unsteady flow [6]latiber quantities can be
presented as
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N h h a
b =03 (Bl 4

al / hr " }.LT / 2 dr
My, = qo § mr—n,h? + mr—n,h@ + My _p,alr + mr—n,aa

r=1
whereq is the free-stream dynamic pressuseandb are the surface area and chord of
the blade/,_,,, m,_, are the aerodynamic coefficients of the blade effect, whieh a
functions of the Strouhal numbér= wb/V,V is the free-stream velocityp = I'mA,
andA is the root of the corresponding characteristic equatiaihisfsystem.
We now introduce the notation

(,U2 o Knp (U2 o Ky, Y = Sn 92 . Jn
e na J, T mb T myb
2
_ W _ qo0 — hn,
V= 2 €n = 29 n — T3
ws mpbw b

and note that the estimatg < 1 is valid because the unsteady aerodynamic forces act-
ing on the blade are much smaller than the elastic forces@uodd of inertia. With this
notation, the system takes the form

. . - 1
hy, + Yty + wihhn = enw2Ln + —F,
n

Yol + Pn (dn +VW2,a,) = e,0?M, (n=1, 2. N)

where

N - - .
I = / hy " hy I " Qr
n — E : r—n,h? + r—n,hwb + r—n,a®r + r—n,aa

v al / }_7’7' " ET / " dT
Mn = Z mr—n,h? + mr—n,h& + mr—n,aaT’ + mr—n,aa
Note that the matrix corresponding to the left-hand sidédefdystem is a Hamiltonian,
and the matrix corresponding to the right-hand side can heidered as its perturbing
component. As the initial parameters required for solvimg $ystem, one can use the
values ofw.,;, vn, Pn,V, €n, k, and aerodynamic influence coefficients whose values are
summarized in Gorelov et al. [7] as functions of cascade gégnand flow parameters
(within the framework of the ideal fluid model).
Figures 2—6 show the 1D spectral portraits of matrices instesy that describes
vibrations of a cascade of thin blades:at O (cascade density= 1.5; ejection angl@
= 30 deg; deflection of the midline of the blade, related telitsrd, f = 0.025; Strouhal
numberk = 0.5; and number of blades in the perityd= 10) in a flow of an ideal incom-
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FIG. 2. Dichotomy criterionk (a) andX, (b) for the cascade of blades, having the
same inertial and elastic parameteys= —0.3,v =2,p = 1,¢ = 0.01.
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FIG. 3: Dichotomy parameters (&) and (b) X, for the blades cascade with the char-
acteristicsy = 0,v=1,p=1,¢ = 0.01.

pressible fluid. The symbal is the criterion of dichotomy of the spectrum of matrices
by concentric circles with the center at the origin of the ptar plane of eigenvalues,
depending on the circle radius, and the symkligldenotes the quality of dichotomy by
lines, parallel to the imaginary axis, from the coordinatef their intersection with the
real axis. The values oR anda, for which k and X, are almost infinite, determine
the absolute values and real parts of eigenvalues; moreiexhose intervals that are
considered as reliable on the basis of the computationspeed.

Figure 2 shows the dichotomy critesgFig. 2a) andX, (Fig. 2b) for the above-men-
tioned cascade with blades possessing identical inerithetastic parameters, equal to
vy=-03,v=2p=1¢=0.01

Note that for these parameters of the cascade, the Hanaittamdmponent of the
matrix has essentially different eigenvalues (Fig. 2adrdfore, the real values of the to-
tal matrix that describes cascade vibrations with allowdioc aerodynamic interaction
(Fig. 2b) can be fairly accurately determined by the pegtidn method.

Figure 3 shows the dichotomy parameterand X, for the cascade whose blades
have the following characteristic:=0,v=1, p=1, e=0.01. In this case, the absolute
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FIG. 4: The dichotomy quality for almost the same cascade as thagir8Fbut with
additional allowance for elastic coupling of blades witlcleather.
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FIG. 5: (a,b) The dichotomy quality of the cascade in Fig. 2 and (itsddhange while
passing from the larger order matrices to the lower-ordeson

values of matrix eigenvalues almost coincide with eachrdffig. 3a); hence, the pertur-

bation method cannot be used to determine the real parte @igenvalues. The curve
of the dichotomy qualityX,, characterizes the positions of these values with guardntee
accuracy (Fig. 3b). For this combination of blade paransetsveral eigenvalues of the

matrix are located in the right half-plane, i.e., the cqumesling matrix is unstable.
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FIG. 6: The influence of a small perturbation of the Hamiltonian comgnt of the
matrix by the example of Fig. 3.

Figure 4 shows the dichotomy quality for almost the sameamesas that in Fig. 3,
but with additional allowance for elastic coupling of bladeith each other. The di-
chotomy parametex for the corresponding matrix with= 0.2w? is plotted in Fig. 4a,
which shows that this matrix consists of Jordan cells of disien 2 and 4. According
to available knowledge, such a matrix should be more seadii perturbations, which
is evidenced by its dichotomy quality, (Fig. 4b).

One advantage of the spectral portraits of matrices is thsibpitity of reducing the
analysis of stability of high-order matrices in some caseth¢ analysis of stability of
their submatrices of lower order. The presence of clustefmesenting the numerous
eigenvalues, located close to each other, is the critedogxistence of this possibil-
ity. These clusters are well removed from each other in theptex plane at a good
dichotomy quality.

As an example, consider a matrix whose dichotomy paramatershown in Fig. 2.
It follows from the dichotomy quality of this matrix, with allowance for elastic cou-
pling F,, (Fig. 5a), that the criterion indicated above is satisfiethencase considered.
A comparison of the dichotomy quality, for the total matrix (Fig. 5b) with similar de-
pendencies for the corresponding submatrices (Figs. 5&@nslupports this statement.

The influence of a small perturbation of the Hamiltonian cormgnt of the matrix
on the stability of the latter is illustrated in Fig. 6. As axample, consider the matrix
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whose spectral portrait is shown in Fig. 3. Its perturbingnponent describes the action
of blade coupling forces of the forii, = (—1)"c(hpt1 + hn—1 — 2h,).

Figure 6a shows the spectrum dichotomy by radial circlegur€i 6b illustrates the
portrait of the same spectrum by dichotomy by straight lipssallel to the imaginary
axis; some part of the spectrum is seen to lie in the rightblaifie. After detuning, the
entire spectrum is located in the left half-plane, whichllisstrated in Fig. 6¢. As the
detuning parameter increases, the spectrum is shiftee tietih(Fig. 6d). This example
illustrates the known fact of the influence of small geonedtrhomogeneity of cascades
on the stability of their vibrations.

The methods of stability analysis described in this paperimplemented with the
use of simple iterative algorithms, proposed and desciibBdligakov [1] and Malyshev
[8]. The algorithms solve Lyapunov matrix equations andrtijeneralizations to the
case of spectrum dichotomy. These generalizations, as veeléarned, have appeared
in the book [9]. Unfortunately, its content was not undesstdy us. This slowed the
explanation, to which we paid less attention, than to thearigal schemes construction.
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Results of 3D aerodynamic calculations concerning the influence of the turbojet nozzle chevron de-
flection angle into the flow on engine thrust characteristics are presented. The optimum deflection
angle, at which the chevrons exert the minimum influence on the thrust losses, is chosen. The scheme
of the deflection angle control by the ring, made of the shape-memory material nitinol is proposed.
The investigation results of the aerogasdynamic and acoustic characteristics of the nozzle with the
chevrons are given.

KEY WORDS: 3D analysis, experiment, nozzle, chevron, jet, thrust losses, engine, chevron
deflection angle, optimization, noise, shape-memory materials

1. INTRODUCTION

Nowadays, in order to decrease the noise from the reacttaof e turbojet engine,
the chevrons, being fixed on the nozzle exit (Fig.1) and lpsirfficiently high acoustic
efficiency at relatively easy structure, are widely spréduk jet noise decrease by the
chevrons is known to be based on the intensification of thégiprocess of the external
flow and the nozzle jet. In addition, as experiments showtfid,transformation of the
jet noise spectrum occurs—the noise level decreases atrémudncies and increases
at high frequencies. The greater the deflection angtd the chevrons in the nozzle,
the stronger is the jet noise spectrum transformation, gpeat chevron deflection an-
gles, the negative effect of the noise increase at high é&necjes can exceed the positive
effect of the noise decrease at low frequencies, which tesulthe fact that the total
noise level of the nozzle with chevrons is higher than thairef of the nozzles without
chevrons. This implies that there is an optimum deflectiogieatw,), . at which the
noise decrease at a chosen mode is maximum for every chesndiguration.

1948-2590/09/$35.0®)2009 by Begell House, Inc. 657
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FIG. 1: Chevrons with nitinol drive.

The chevrons’ effect on the jet leads to a change in the ndlamlst characteristics.
In addition, depending on the nozzle and chevrons’ shapeg itk an optimum deflection
angle of the chevrongx,), at which the thrust losses of the nozzle with chevrons at
cruise mode are minimum. In the general case, the optimumsticaand thrust angles
are not equal, i.e(Xopt ), 7 (opt), , beCause even a small deflection of the chevrons’
setting angle fronf,,¢), during flight can lead to an essential loss of engine effigienc
Therefore, the investigations concerning the developroktite schemes of the chevron
deflection angle control during the flight are carried outrigine companies. This will
allow setting(aopt ), and(aopt ), during the flight for the maximum decrease of noise.
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Nowadays, the scheme, using shape-memory material, fon@gatitanium nicke-
lide TiNi (nitinol) is the simplest and the most perspecfivechevron control. The com-
panies Boeing, General Electric, Goodrich Aerospace, ah8Awithin the framework
of the program Quit Technologies Demonstrator 2 (QTD2)dalgicrease the noise level
at takeoff by 3—4 dB and improve the fuel rate under the camtof cruise flight by
1% by using shape-memory chevrons at the nozzle of the #iBoging 777-300ER
(see Fig. 1) [2-4].

Consequently, while designing the chevron control schehienecessary to know
both angles(apt),. and (xept),. The value of(op),. for the concrete engine with
chevrons can be defined by the results of full-scale or mocmlistic tests. As for the
angle(a,pt), , it can be defined both experimentally and by means of 3D catiouls of
the nozzle overflow [5].

Given in the present paper are the results of the calcukatdrflow over the tri-
angle chevrons, fixed on the engine nozzle with mixing (wiid annular mixer), with
various chevron deflection angles by means of which the anglex,), is specified.
The authors propose and investigate the scheme of chevamiolcby means of the
ring, made of the nitinol, which changes its diameter (“rembers” its shape) as the
temperature varies, and correspondingly changes theahéeflection angles.

The scheme of the nozzle with triangular chevrons was cersitl The chevron
bases were situated close to each other on the nozzle exit.

The computational area was chosen from the condition ofehegical arrangement
of the chevrons. Its beginning was displaced upstream,skmisn in Fig. 2, and the end
was situated at a distance-o¥ diameters from the nozzle exit, the radius weasnozzle

FIG. 2. Computational area.
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exit radii. The computational grid containedl million nodes. All the calculations were
fulfilled for the mode close to the cruise flight of an aircraft

The ideal gas, which is close to the air in its charactessiie., the gas constant is
R,=287.13 J/kg K and the adiabatic coefficientis= 1.4003, was taken to be the ope-
rating medium. In order to analyze various variants of thezies, we used the engine

thrust losse\ P (%)
_ P
AP=[1—— |1
( Pid) 00

whereP is the real (measured or calculated) engine thrust (thetlnmponent directed
along the engine axis)?q = (Pa.n — GaVaocos 0) is the ideal engine thrust specified by
the real gas flow through the nozalg, (here, Py, = G, Viq is the ideal nozzle thrust,
i.e., the thrust of an ideal nozzle where the gas extends apmiospheric pressugg,,
perfectly, without losses) at the same parameters at theeentry (p*, 7%, andG,,)

as in the investigated real nozzlé,; = acA\ig = \/2k:RgT*/(k + 1) Aiq is the ideal ve-
locity of the gas flow from the nozzlé,= 1.4003 is the specific heat ratiff, = 287.13

is the gas constanh,y is the ideal reduced velocity of the flow, which can be defined
from the equation

k—1 2 R/ (k=1) Doo
T (Ag) = (1 - k‘—+1)\id> =
whereG,, is the airflow at the engine entry/ is the flight velocity, and is the angle
between the free-stream directidfy, and the engine axis. The calculation results are
presented in Fig. 3.

Among all the investigated variants of the nozzles with cbes, the nozzle with
the deflection anglex = 0 (Fig. 4) has the minimum thrust losses, which are only%.06
greater than that ones of the initial nozzle without chesrorherefore, the optimum
thrust angle for the given nozz(e), = 0.

Taking into account the fact that from the viewpoint of nossgpression, the op-
timum chevron deflection angles are 6—12 deg [5], it follohat the calculated engine
thrust losses, while fixing the chevrons at the angle2 6 deg, are~10% greater than
the thrust losses in the case of the nozzle without chevisees Fig. 3).

In order to reduce the thrust losses during the flight, theastpropose the follow-
ing scheme of the chevron deflection angles’ control by meéatise ring, made of the
shape-memory material nitinol. The use of this ring to palevihe rigidity and connec-
tivity of the entire chevron structure was already propasedpatent [7] in 1995 (Fig. 5).
The ring is fixed to every chevron. The operating principléhef proposed scheme con-
sists of the following. The chevrons are fixed on the nozzkuch a way that in the free
state without the ring, their deflection angle is close t@Zar= 0). The initial length of
the nitinol ring is chosen in such a way that while puttingrittbe chevrons during take-
off, from the viewpoint of the noise suppression, the defdecangle becomes equal to
the optimum angle. At the cruise mode, the ring temperatecesdses to approximately
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FIG. 3: Engine thrust losses efficient versus the chevron defleeatigfe.

FIG. 4: The nozzle with chevronsy = 0.

Volume 40, Number 6, 2009



662 Aleksentsev et al.

FIG. 5: The use of the ring for the rigidity and connectivity of theselons’ structure
from the patent 2289921 [6].

0°C, in this case the nitinol elasticity coefficient is decexhg-3 times because of the
transition from the austenitic to martensite state [6]. €&mpuently, the ring allows the
chevrons to straighten up to= 0 owing to their own elasticity. This provides the min-
imum thrust losses at cruise mode. At landing mode, the grgeated, and the reverse
transition from the martensite to austenitic state to iaseethe nitinol elasticity coeffi-
cient occurs in it. As a result, the ring “remembers” its shapamely, its initial length
becomes shorter and deflects the chevrons inside the jet tine toptimum deflection
angle.

According to the calculations fulfilled in this work, the tist losses in the variant
with the ring increased only by 0.15% in comparison to théavdrof the nozzle without
chevrons, and by 0.09% in comparison to the nozzle withaogy, iie., the ring leads to
an increase of the thrust losses+§.1%.

The additional thrust losses associated with the ring fiesgentially depend on its
shape. For example, the thrust losses in the variant withiitlgewith the rectangular
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cross section (Fig. 6b) at the optimum deflection angle azatgr than in the variant of
the ring of the aerodynamic shape (Fig. 6a) witk 0 by 2.11%.

In order to estimate the loads necessary for the optimum afieieangle of the
chevrons, special calculations were completed. The chenapresented the bent sheet
(Fig. 7). The forward part of the chevron was rigidly fixeddamthe area of the chevron
contact with the ring, the load, equidistributed over thengl, was set. The shift of the
chevron tipS and the equivalent deflection angle were defined depending on the

FIG. 6: Flow pattern: (a) the flow over the ring with the cross sectibtine streamlined
shape (ring width 15 mm, maximum thickness 1.5 mm, exteundhse is made in form
of the circle arc); (b) the flow over the ring with the rectalaglcross section (18 2
mm).
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Area of contact with a ring -
the uniform load is set

Rigid fixing of the
forward part

FIG. 7: The chevron computational scheme.

applied load (Fig. 8). Shown in Fig. 9 is the pattern of thevebe deformations and
tensions obtained by the calculation.

In order to provide the deflection of the considered chevtdheaoptimum angle, it
is necessary to apply some force. The decrease of this farcée achieved by dimin-
ishing the chevron thickness. For this purpose and alschiodefinition of the nitinol

Load F

w‘fl;l!il{ L 7 A A W A A AT ST A A A A A A A P A G S S S AR A A S A A A |
-

FIG. 8: Specification of the chevron tip shift and of the equivalent deflection angle
. under the action of the loa#.

a)

b)
FIG. 9: Strength calculation of the chevron: (a) the chevron de&tion (m); (b) stress
spectrum in the chevron.
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ring geometric parameters, providing the required forcs, necessary to complete cal-
culations of the chevrons of various thickness with thenoltring.

In order to provide the optimum chevron deflection angle,sthi& S should be on
the orderLtg («.) , i.e., the nitinol ring should elongate by the valie[(R + S) — R] =
2mS, which equals~4% of the initial ring length for the case considered in thapgr.
Ordinary metals cannot bear such deformations. The nitaal reproduce its shape,
even at deformations on the order of 10% owing to its supstipity [6]. However, it is
necessary to carry out special cyclic tests to check thepedance of the drive during
the given period of time.

Finally, it is worth noting the advantages and the shortcgwmiof this chevron con-
trol scheme in comparison with the initial variant, in whitte chevron “control” was
realized by means of nitinol plates. In the initial variatfie nitinol drive was made in
the form of the plates, placed inside the chevron (see Fig.Hg main advantage of the
initial variant in comparison with the proposed scheme il ring is the absence of
the additional drag due to the drive.

The disagreement of the chevron deflection angles duringxpkitation (because
every drive is made and is working individually) and the atzgeof the possibility to
adjust the scheme can be referred to as the shortcominge dfitlal variant. In the
scheme with the ring, all the chevrons and the drive are wgrkn agreement with
each other. This fact excludes the possibility of the anglesagreement during the
exploitation. In addition, the ring gives an additionalidity to all the structure.

Both schemes can be considered to be approximately of the s&ss. In the pro-
posed scheme, the ring mass can be greater than the totabirthgsnitinol plates in
the initial variant, but owing to more rigid structure, orenanake the chevrons thinner
in the scheme with the ring. The complex of the experimemiadstigations concerning
the analysis of the deflected chevrons’ influence on the ri#seease, on the value of
the angle of the jet axis deflection, and on the value of theleafective thrust losses
was carried out along with the numerical investigation.

It is worth noting that the complex solution of the problemmentioned above, re-
sulted in the necessity to choose the optimum chevrons’ gggmheir amount and
arrangement on the nozzle exit, the optimum deflection amigtbe chevrons into the
reaction jet, and so on. In addition, the complex experialanvestigations of the noz-
Zles with chevrons involved the specification of the aerdgaamic and acoustic char-
acteristics on the special facilities in TSAGI.

The illustration of the experimental results is presente#ig. 10. The following re-
sults in Fig. 10 are the most important:

e The location of the chevrons along the nozzle exit contdonel for a decrease in
the noise level by approximately 1-1.5 dB, whereas the daftecof the chevrons
into the jet essentially increases its mixing with the ambagr and decreases the
noise by~7 dB.
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Cruise flight
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FIG. 10: Generalization of the results of the investigation of theat® with chevrons.

¢ In addition, the corresponding arrangement of the deflectedrons allows the
deflection of the engine jet axis (TVC) approximately at 1g,dehich allows an
increase the stability and controllability of the aircrdiiring takeoff and landing.

e The price of the chevron deflection to solve the problems,timeed above, is
equivalent to an increase in the nozzle effective thrustdedy~3% of the ideal
thrust (approximately 9—10% of the engine thrust losseshfthe viewpoint of
the aerogasdynamic efficiency, which is unacceptable irpthsence of the un-
controllable chevrons.

e The use of the chevron location control by means of the merslbaped materials
allows obtaining the maximum effect from the chevrons’ dwiten during the ta-
keoff/landing mode and to minimize the thrust losses at these flight mode of
the aircraft.
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ASSYMETRY AND NONUNIQUENESS OF THE
SOLUTION OF THE PROBLEM OF SEPARATED
FLOW OVER A SLENDER CONICAL
WING-BODY COMBINATION

A. V. Voevodin

Central Aerohydrodynamic Institute (TsAGI) 1, Zhukovsky str., Zhukovsky,
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Performed are the numerical investigations of the separated flow over a slender circular cone-delta
wing combination within a wide range of key parameters, with the combination being situated sym-
metrically relative to the free stream. Two approaches are used to solve the problem. Within the frame-
work of the slender body theory, nonunique symmetrical and asymmetrical solutions are obtained.
The area of existence of various solutions is specified. The 3D-RANS CFD calculations of the small
aspect ratio combination with the forebody in the form of a circular cone and with the delta wing,
taking into account the viscosity, are carried out. It is shown that in this case, the problem has unique
solutions, which are symmetrical at small angles of attack and asymmetrical at greater ones. At rela-
tive angles of attack, being less than 2, the lift coefficients, obtained by two approaches, are very close.
This fact estimates the application area of the slender body theory. The flow patterns in the section of
the combination conical part, illustrating the flow peculiarities, are given.

KEY WORDS: asymmetry, non-uniqueness, separated flow, cone-delta wing, low aspect
ratio, calculations with account of viscosity

1. INTRODUCTION

Many works are aimed at the investigation of inviscid staiy separated flow over a
slender wing-body conical combination. Provided that thgle of attack and the apex
angle of the delta wing are small, the initial 3D stationargigbem is usually reduced to
the 2D nonstationary problem and then one finds its selflaingblution. The various
models of the vortex sheet getting off the trailing edge Hzeen proposed and improved
in Refs. [1-4]. In the most complete among these models, hbetexterior was sim-
ulated by the finite number of intervals with distributed ti@ity, and the vortex spiral
interior was represented by the discrete vortex. The aevlwquation of the sheet was
used to specify its shape and intensity [5]. The use of théocoral transformation of
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the body contour in the cross section on the interval, ®tlialong the free stream, or
on the circle, was a significant aspect of most of the workss fettt allowed to meet au-

tomatically the no-leakage boundary condition. It showdnbted that also in Ref. [6],

where the aerodynamic singularities, whose intensity wasified by the no-leakage
condition, were distributed on the body contour. Such amagah allows to investigate
the conical layouts, where the contour of the cross secaonat be conformally trans-
formed to an interval or to a circle in a simple way. One useditiration method or

relaxation method to solve the obtained equations [7-9].

A lot of calculations were completed by the mentioned teghei For example, the
calculations of the combination of the delta wing with thanical fuselage, having a
half-circle in the cross section [10], and also the cal¢oitet of the wing, having the arc
of a circle in the cross section [11]. Cited in Ref. [12] are talculation results of the
flow over the yawed delta wing.

The nonuniqueness of the problem solution within a certainge of the angle of
attack and of the ratio of the fuselage diameter to the wirmnspas discovered while
investigating the symmetrical flow over the circular corgtalwing combination [13].
Shown in Ref. [14] is the fact that if the solution symmetryni® required previously
(i.e., to solve the problem for the complete body, rathentfua its half), then at the
symmetrical position of the combination relative to theefi@ream, the problem has
both symmetrical and asymmetrical solutions, including timstable ones. However,
the stability investigation was carried out for the simptasdel of vortex sheet (“vortex
cut”) because in this case, such investigation can be adfénalytically.

The first part of the present work is aimed at the investigatithin the framework
of the slender-body theory of the existence of the area ofthble symmetrical and
asymmetrical solutions of the problem concerning the sdpdrflow over the circular
cone—delta wing combination, situated symmetricallytiedato the free stream. Car-
ried out in the second part are the calculations of the fieibgth combination with the
forebody in the form of the cone and the delta wing by meanBe®BD-RANS method.

2. PROBLEM STATEMENT

The separated flow over the slender circular cone—delta wimgbination is investi-
gated. We will consider the fluid to be inviscid and incompiigle, the shear layers to
be represented by the velocity tangential discontinuitg #e separation lines to be at-
tached to the wing sharp edge. The half-angle at the wing &pexl the angle of attack
o are small:d ~ x =0 (1). The X-axis of the reference fram@XYZis directed along
the combination axis, thE-axis is directed upward, and tleaxis is in the wing plane.
According to the conventional procedure, the original 3Dlgbem (in variablesX, Y,
Z) is reduced to the 2D nonstationary problem concerning ¢parated flow over the
uniformly widening body, which represents the combinatonss section (in variables
t = X/Us,Y, Z, whereU, is the free-stream velocity). The self-similar variables
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andy are introduced further so that = yU..ttgd andZ = xU..ttgd, and the complex
variablez = x + iy.

In the z plane, the free-stream velocity (relative angle of attagk)= sin oc/tgd =
«/d, the wing edges are at the points —1 and 1, and the fuselagesraddenoted by
m < 1 (Fig. 1).

Then, according to Refs. [4, 5], the evolution equation &f Yortex sheet, result-
ing from the discontinuity absence conditions of the valocomponent, normal to the
sheet, and from of the pressure across the sheet, is writilaws:

dz dw

TAiae) T @ @

wherew (z) is the dimensionless complex potential of the flgw= Re (w) , andA¢@ =
I is the discontinuity of the real part of the complex potdraieross the sheet. At the
point (-1, 0),A¢@ = G4, and at the point (1, 0) A = G2, whereG; andGs are the
total circulations of the left and right vortex sheets.

In order to create the flow complex potential, we transformdhterior of the body
contour to the exterior of the circle of the unit radius in ghene of the complex variable
u = {4+ in. Such a transformation is given by

FIG. 1: The body contour and the vortex sheet in thalane.
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1+m?2 1 1+ m?2 1\1?
z= i m+— |+ L n+ — — m?
4 i 4 v

Taking into account that at infinityy/d> =2/(1+m?), and using the reflection method,
we write the complex potential as follows:

2 J—
w(p) =m?Inz — oy 2+1 <H—l> +%/ln b —u(Ae) dA@
i B [UMA@)}

PR p—p(Ap)
iy u—[l/m}

dA@ (2

Thus, the constructed potential satisfies the no-leakagdittan on the body and be-
haves at infinity as-ixz.

While taking into account Eq. (2) and introducing the newalsleA = 1—(A¢/G),
Eg. (1) is reduced to the form

d z m? m2+1 1\ du 1
(1-=N) d?\(l—?\) i <1+ ) + G

1
1 ) 1y
= [1/m (V)] )CD\JFGZO/ <”_ M2 (A) = [1/ho (W)CD\] dz o

Subscripts 1 and 2 in the integration elements denote tleaintegration is over the
contour of the left or right sheets.

The Chaplygin-Zhukovsky condition at the sharp wing edgéwre the derivative
du/dz becomes infinite, gives two additional real equations ferititensities; and
G2, which are to be determined, provided that the sheet gegnsdtnown,

1 1

2T o (m2+1)+ Gl/E ~ G () —ni (7\)] /[1 M- ()\)3 dA=0 (4)

[+ ) 1 )

3. NUMERICAL SOLUTION METHOD

For the numerical solution of the problem, every sheet wpsesented by the exterior
part, being divided into the finite number of intervad{s and N5, and the interior part,
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being replaced by the discrete vortex (the core). The erttedéist interval of the exterior
part was connected to the discrete vortex by the cut to av@chbnuniqueness of the
velocity potential (shown in Fig. 1 by the dashed line). Actingly, the integration in
Egs. (3)—(5) was fulfilled between the limits O ahg, and between the limits O and
AN, , respectively, and the integrals over the interior parthefdheets were replaced by
the corresponding effect of the discrete vortices. Thegiatis over the sheet intervals,
being adjacent directly to the edg@s< 1) , were calculated using the asymptotes near
the sharp edge of the slender wing, according to which in tbblpm considered is

u1(7\):—1—a17\1/2+ibl7\+---
o (A) = 14 aoAY/2 4+ ibph + - - -

The real constants;, ao, by, andb, were specified numerically.
In order to specify the coordinates of the cores, the wedlvkm condition of the
absence of the total force, effecting the vortex-sectistesy, was used. This condition

is written as follows:
dw

22C —ZN = ——
dz
c

(6)
wherez¢ are the coordinates of cores 1 or 2, andare the coordinates of the end of
the corresponding sheet exterior part. The complex cotgugglocity was calculated in
the corresponding point:.

Equations (3)—(6) were solved by the iteration method. im thse, Eq. (3) was ap-
plied at the middle points of the sheet intervals, and thegirattion was fulfilled by the
trapezoidal method, being of the second approximationrofidee model of the sheet,
the exterior part of which consisted only of the asymptdotézaa, adjoining to the edge,
was used as the initial approximation. The solution for théxlel converged rapidly; and
furthermore, the number of intervals of the exterior pad és length were successively
increased up to the formation of approximately one spinal.tAfter that, forces acting
on the combination were calculated. A more detailed finifierdnce interpretation of
the equations and of the calculation algorithm is given i [Rg].

4. CALCULATION RESULTS

As was mentioned above, the solution is nonunique at the ®trival problem state-
ment within the framework of the slender-body theory. Witli certain range of the
angles of attack and of the relative fuselage radii, theeetao stable solutions and
one unstable solution to the symmetrical disturbance. Shawile investigating the
solutions at a nonsymmetrical statement [14], is the faat tme of the symmetrical
solutions is unstable to nonsymmetrical disturbancesdftlitian, a set of stable and un-
stable nonsymmetrical solutions exists. Since these tigeg®ns were fulfilled within
the framework of the simplified model of the vortex sheet {@orcut), there is still a
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question about how the situation changes while using moedaleld model to answer.
Carried out in the present work are the calculations of the Within a wide range of the
problem parameters for the complete sheet model (sheétxait) at a nonsymmetrical
statement.

Let us consider the results of these investigations. Showv#igs. 2 and 3 are the lift
and lateral force coefficients versus the relative angldtatko for the various values
of the fuselage radius: (K = tgd) . The symbols corresponds to the symmetrical solu-
tion, and the symbalis corresponds to the nonsymmetrical one. The stable synualetri
solution exists for all the values andoy < g1 (m) . If oy exceedsxy; (m), the sym-
metrical solution will lose stability. In this case,rat< m* ~ 0.8, the solution becomes
unstable to nonsymmetrical disturbances, but in the alesehthese disturbances, the
solution can be extended to greater angles of attack. ¥ m* and oy > g1 (m), the
symmetrical solution is unstable both to nonsymmetrical @mnsymmetrical disturban-
ces.

Based on the performed calculations, one can plot the diagh@wing the existence
areas of the problem stable solutions (Fig. 4). The cugygm) in this diagram repeats
qualitatively a similar dependence, cited in Ref. [14]. Hoer, this dependence, as was
expected, proved to be shifted down by the angles of attalis. difference is caused
by the fact that the simplified vortex sheet model was useckin [R4]. In addition, the
curve xg2 (m) , corresponding to the rise of the asymmetry, and the curvesratng
the existence areas of various asymmetrical solutionglated in Fig. 4.

One can distinguish five areas with a various number of stadilgions in Fig. 4
(furthermore, we will consider two asymmetrical solutipbging the mirror reflection

c;_p/K2

200 !
——m=05 s
——m=05 us /
150 -—m=075 s
—m=0.75 us /
= m=095 s

100 1 | ——m=095 us|

50 Iy /ﬁ_‘

0 2 4 6 o

FIG. 2: Lift coefficient versus the relative angle of attack.
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FIG. 4: Existence areas of the problem stable solutidnsrise of the nonsymmetrical
solution; —, loss of stability of the symmetrical solutiafn), nonsymmetrical solution

1; A, nonsymmetrical solutioB.
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of each other relative to thg-axis, to be one solution), i.e., 1 represents one symmet-
rical solution, 2 represents one asymmetrical solutiore@asents two solutions (one
symmetrical and one asymmetrical solution), 4 represevitsasymmetrical solutions,
and 5 represents three solutions (one symmetrical and tyvorastrical solutions).

Shown in Fig. 5 is the shape of the vortex sheets for seveladsaf the parameters
o andm, corresponding to the areas 3, 4, and 5. The configuratioriteeogheets,
corresponding to the various solutions, are seen to be isunifiz different.

5. FLOW CALCULATION WITH ACCOUNT OF THE VISCOSITY

The problem nonunique solutions, mentioned above, talee @asufficiently great rel-
ative angles of attack. In this case, the assumption of gr&skr-body theory ~ 6 =

o (1) begins to be violated. In addition, the viscosity and theugrfice of the finite body
length can play a sufficient role in the realization of one wother solution. Thus, to
overcome the limitations of the slender-body theory an@ke into account the viscos-
ity the CFD calculations of the steady flow over two combimasi, having the forebody
in the form of a circular cone with the slender delta wing afozéhickness were carried
out.

Both combinations have the same fuselage, namely, thealqueact length is 1 m,

the cylindrical part length is 0.5 m, and the tail part représ a half-sphere. The wing
of the first combination (Fig. 6) has the apex half-angke 5 deg, with the ratio of the

|
H
=

-1/

e = —— —

FIG. 5: Vortex sheet configuration: (a) = 0.8,xy = 3.5; (b) m = 0.8,y = 5.4; (C)
m = 0.98,09 = 5.2 —— — symmetrical solutionA — solution1, [J — solution?2.
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FIG. 6: Geometry of the wing-fuselage combination.

fuselage diameter to the wing span being=0.9. The apex half-angle of the second
wing is 6 = 6 deg, which corresponds to the parameter=0.75. Since the essential
qualitative difference in the calculation results for théwo variants has not been found
out, further on, mainly the data fon =0.9 are given. The calculation area had the
following dimensions: from —1.5 to 5 m along thé-axis, from —1.3 to 1.7 m along the
Y -axis, and from —1.5 to 1.5 m along tleaxis, and contained about one million cells.
The fuselage nose was situated at the origin.

The Reynolds-averaged Navier-Stokes equations with the tBfbulence model
were solved. The free stream had the velocity 50 m/s, theitgfeh® kg/m?, and the
viscosity 1.83x 10> kg/m s. The calculations were performed for the angles athitt
up to 45 deg, which correspondeddg = 8.082.

Shown in Figs. 7 and 8 are the lift and lateral force coeffiiémthe sectiorX = 0.7
m versus the relative angle of attacknat= 0.9. For convenience of the comparison with

180 cy/}{z

—— CFD

---= CFD sym
—— sbt 1 7
120 — sht?2 7
—— sbht sym

60

Gy

0 2 4 6 8
FIG. 7: Lift coefficient versus the relative angle of attack (m = 0.9)

Volume 40, Number 6, 2009



678 \Voevodin

3 K2 |

180 ./ —CID /
——sbt 1
—sbt 2

120

60 //2 .
0 /A\\ I
yJ 4 @ o g
-60

FIG. 8: Lateral force coefficient versus the relative angle of &t{ac = 0.9).

the slender-body theory (sbt) results, their values argeivby K2. Plotted in Fig. 7
by the dashed line is the curve corresponding to the calonlaf the half-combination
(symmetrical problem statement). The lift coefficientshie two considered cases are
seen to be very close. The difference is observed only wittérrangex = 26—-37 deg,
which corresponds to the maximum in absolute magnitudesldfierce in the asymmet-
rical solution.

The unique solution is realized within the entire invedigiarange of the angle of
attack. In this case, up to the angle of attack 12 ¢leg= 2.38), it is symmetrical
and the lift coefficients, obtained by the slender-body themd by the CFD method,
are almost the same. At greater angles of attack, the solidses symmetry, and the
lateral force appears. Its behavior corresponds to theriepntal data [15, 16]. Any
intermittent vortex structures, which are observed at ihe @ver the slender rotational
bodies, have not been found out. Shown in Fig. 9 are the sliregsn getting off the
wing edges on the conical part of the combinatiorcat 30 deg,m = 0.9. The flow is
seen to be asymmetrical and close to the conical one in this aven at such a great
angle of attack. It is known that in the conical flows, theatnénes near the vortex core
are almost cylindrical. One can see in Fig. 9 a small defleaifahese streamlines from
the cylindrical surface (spreading), which can be caused gseat angle of attack, by
the integration method of the streamlines, and by theirtdesgth.

Presented in Fig. 10 are the patterns of the vorticity fietdgHe layout withm =
0.75 in the cross sectioN = 0.7 m for the angles of attack 10 and 15 deg. The vortex
sheets, calculated by the slender-body theory, are iretiday the dots. At small angles
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FIG. 9: Streamlines getting off the delta wing edges<30 deg, m = 0.9).

a=10° a= 115°

FIG. 10: Vorticity fields in the planeX = 0.7 m (m = 0.75).

of attack, both methods give very close flow structures (dkasdahe integral character-
istics). At = 15 deg in the CFD calculation, the main vorticity area is skiftgstream,
and the asymmetry and the secondary separation from thescofaee become visible.
At even greater angles of attack, the differences of the flatteps increase.

For the investigation of the flow patterns in the sect®n= constant, we form the
following modified velocity field:
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Y
U1:U—UOOCOSOC, W:V_UOOCOSCX’R2m
— 2 Z
Wl—W—UOOCOS(XR m

whereU, V, andW are the velocity components, attis the fuselage radius in a sec-
tion. Shown in Fig. 11 are the “streamlines” correspondmguch a velocity field for
m = 0.9, X =0.7 m and various angles of attack. Within the range 9-12 deg, the
second separation area exists on the upper fuselage sufaealirections of the gas
motion in this area and in the area of the main separatiorharsame.

FIG. 11: Flow fields in the planeX = 0.7 m (m = 0.9).
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As the angle of attack increases, the flow becomes asymiuietitie second sep-
aration disappears, and the secondary separation fronugledafie, which is situated
closer to the wing, arises. The curgg(«) in the vicinity of « = 12 deg essentially
changes the slope. At =~ 25 deg, the flow becomes more symmetrical and the lat-
eral force disappears. Further on, the lateral force regesgyn, and aix ~ 32 deg,
achieves the minimum. Another transition of the lateratéothrough zero takes place
atx = 38.5 deg.

The steady symmetrical and asymmetrical solutions of tbblpm of the separated
flow over the circular cone—delta wing combination at the s\atrical position relative
to the free stream are obtained within the wide range of tlyepleeameters. Shown is
the fact that the use of the vortex sheet full model insteathefsimplified “vortex-
cut” model specifies both the flow characteristics and thstemce areas of the various
solutions.

The calculations of the finite length combination by the 3DNRFBAmethod are ful-
filled. It is shown that the solution has an essentially déffe character at great angles
of attack while taking into account the viscosity. The siolutis unique, in addition,
at small angles of attack, it is symmetrical, the lift coeffit is the same as that one
obtained by the slender-body theory, and this theory agiplic area is limited by the
relative angles of attack about 2. &sncreases, the solution transforms to the asymmet-
rical one and it differs from the results obtained by the dérbody theory. In addition,
the qualitative coincidence of the lateral force behavipth® angle of attack with the
experimental data is observed.
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Completed in the present work are the calculations of supersonic viscous perfect gas flow over a set
of sharp elliptical cones by means of a numerical simulation method [1,2] applied to the experiment
conditions [3]. Carried out is the comparison of calculated and experimental local and integral char-
acteristics of cones. The calculated and experimental data prove to be in a good agreement. Discussed
is the influence of the angle of attack and of the cross-sectional shape on the behavior of local aerody-
namic characteristics of the cone.

KEY WORDS: elliptic cone, elliptic coefficient, angle of attack, numerical simulation, ver-
ification of the method

1. INTRODUCTION

Worked out in Refs. [1, 2] is the approach to the numericalsation of 3D supersonic
flows over sharp bodies based on the nonstationary 3D egsadioviscous gas dyna-
mics. Given in Ref. [1] is the method of numerical simulati®ing Navier-Stokes equa-
tions, and carried out is its verification by means of congmariof the results of calcu-
lations of flow over a sharp circular cone (Mach numbeg,M- 10.4, cone half-angle
0. =15 deg, angles of attadk< «c/6. < 1.2) with the experimental data [4]. Described
in Ref. [2] is the procedure of numerical simulation usingy®R&ds equations on the
assumption of Bussinesq about Reynolds stresses with ehefustwo-parameter dif-
ferential ¢ — w) turbulence model [5], and fulfilled is the comparison of rariwal and
experimental data (M =4, 0. =4 deg,0 < «/0. < 2) by the integral characteristics of
a sharp circular cone. In both papers, calculations aréedaout on the assumption of
flow symmetry, and a good agreement of computational andriemeetal data, both
in a qualitative and in a quantitative sense, is obtaineds Tincumstance enables the
use of the mentioned approach to investigate the supersmaigus gas flow over sharp
conic bodies. Particularly, supersonic (M= 4 and 5) flows over a sharp circular cone
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(6. =4 deg) with thermally insulated(07"/on),, = 0] and isotherma(T’,o = 0.5) sur-
faces are examined in detail in Refs. [6, 7] within some ramfggngle of attack and of
Reynolds number Re.

As was mentioned above, verification of the numerical sitiiamethod is given in
Refs. [1, 2] for supersonic flow over sharp circular conesrtpeross-sectional contours
of a constant curvature. Naturally, this brings up the qoesabout how this method
works when the curvature of the body cross-sectional corisotariable. To answer this
question is the goal of this work, in which the verificationtb& numerical method is
fulfilled with the example of supersonic flow over a set of ghalliptical cones with
thermally insulated surface applied to the experiment itmmd [1].

2. EXPERIMENTAL CONDITIONS

Cited in Ref. [1] are the results of experimental invesimatof aerodynamic charac-
teristics of a set of sharp elliptical cones at Ré&/,, L /v, = 8 x 10% and M., = 1.97
and 2.94 within the range of the angles of attack « < 16 deg. HereV, is the free-
stream velocityy, is the kinematic viscosity coefficient in the free streand ans the
typical linear size (the model length). The Reynolds nunéep great that the laminar-
turbulent flow regime is realized in the experiment.

The body cross section represents an ellipse with elltptigi= b/a, wherea, b
are major and minor semiaxes of the ellipse. The investigatt of elliptical cones
(1/6<5<1) has a fixed base arda/d, = 3.67, whered, = 2v/ab=2a+/5 is the equ-
ivalent base diameter. In other words, one considers thefsebnes to be of equal
volume. So, the cone half-angles in the planes of major ammbmgemiaxes turn out
to be variable values and are specified by the relatigs = a/L = 0.13624/+/5 and
tgb. = b/L = 0.13624+/5, accordingly, i.e., as the ellipticity decreases, the doalé
angle in the plane of the major semiaxis increases, and théahe plane of the minor
semiaxis decreases. Particularly, for the cones dviti, 2/3, 1/3, 1/6, we havg. = 7.7,
9.5, 13.3, 18.5deg arttl, = 7.7, 6.4, 4.5, 3.2 deg, accordingly.

3. CALCULATION CONDITIONS

Based on the numerical integration of Reynolds equationsrdog to the procedure
[2] on the assumption of Bussinesq about Reynolds stresse®fua two-parameter
differential ( — w) turbulence model [5], we simulated the supersonic flow evset of
sharp elliptical cones of length at an angle of attack, with the flow velocity vector
being located in the plane of the minor semiaxis (Fig. 1).his tase, the lengtlh is
taken as a typical linear size. The outflow boundary of themgational area falls on the
base sharp edge so that the flow in the near wake behind théscooiecalculated. Such
an approach to the problem corresponds to the considermattitbow over a half-infinite
cone.
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FIG. 1. Scheme of a sharp elliptical cone.

At the numerical simulation, the moving medium is consideti® be a perfect gas
with specific heat ratioy = 1.4, Prandtl number Pr = 0.7, and dynamic viscosity coeffi-
cient depending only on temperatute/ 1o, = (T/T)®, w =0.7]. Supposing the flow
to be symmetrical with respect to the vertical plane, weldate one half of the flow
field on the nonuniform grid 4% 101x 81 (in longitudinal, normal, and circular direc-
tions, accordingly). In this case, the surface of the corsigposed to be thermally in-
sulated.

We fulfilled two series of calculations for the consideretdfeelliptical cones with
thermally insulated surface applied to the experiment itimms [3] at Re= 8 x 106 in
setting the following values of the free stream turbulenaemetersy., = ¢’/ Voo =
0.003, andw., = w} L/V, = 1. In the first series of calculations, we studied the su-
personic flow (M, =1.97 and 2.94) over the elliptical cones at zero angle of attac#; a
in the second series, we considered the supersonic flow beeglliptical cones at an
angle of attack 06 < « < 16 deg and at Mach number M = 2.94.

4. AERODYNAMIC CHARACTERISTICS

The numerical analysis of the Reynolds equation resultatdrdefinition of the fields
of gas dynamic variables near the considered cone, by whichalculated its aerody-
namic characteristics, namely, pressure coeffigight (p — poo)/¢o0, and friction drag
coefficients in both the radial;, =T,.,/¢~ and circularc g =g,/ ¢~ directions. Here,
goo= 0.5p5 V2 is the free-stream dynamic pressure.

Calculated by the known distributions of the local chamsties over the cone sur-
face were its integral aerodynamic characteristics. Birstl, we specified the axial’
and the normalV components of the aerodynamic force vector

T=T,+Tr, N=N,+Ng
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Here,T,, N, andTr, N are the projections of normal and tangential stresseseappli
to the cone streamlined surface, to the cone axis, and toitsal in the flow symmetry
plane. We also calculated the moméifi of aerodynamic forces about theaxis, being
orthogonal to the symmetry plane and passing through the apax. By these forces,
we calculated the aerodynamic coefficients of axjadnd normak, forces and of the
momentm, as

" GooSm  GooSm " GooSmL
Here,S,, = mab is the cone base area (the midsection area). By means of itegho

out aerodynamic coefficients, we calculated the lift cogffitsc,, , the drag coefficients
¢z, , and the cone lift-drag rati&” by the relations

Cy =Cgp tC2r, Cy =Cyp + Cyr, M,

. c
=cgcosx+cysinx, K = o

Cy, = CyCOS L — CpSIN X, ¢ -
X

a
a

5. ZERO ANGLE OF ATTACK

According to the calculation results, the elliptical coaestreamlined without flow sep-
aration at zero angle of attack. In this case, the flow field tieacircular coneq = 1)
is axisymmetric, and the flow field near the elliptical cones(1) is essentially spatial,
the flow divergence line situated on the body surface in thpmsemiaxis plane, and
flow convergence line situated in the minor semiaxis planather words, in the first
case, the gas motion occurs in the longitudinal directiord i the second case, the
cross flow, being directed from the flow divergence line toftber convergence line,
takes place along with the longitudinal flow.

The local aerodynamic characteristics of cones afM1.97 and 2.94 qualitatively
are the same, so let us consider them only at M 1.97. The influence of the cross-
sectional shape of the considered assemblage of cones diisthibution of pressure
coefficient along the flow divergence and flow convergencesliis shown in Fig. 2.
(Here,z = z/L is the dimensionless coordinate along the cone axis.) Ome®a that
on the cone surface, the pressure coefficient in the lonigaldlirection is approxi-
mately constant. The decrease of the ellipticity leads ¢oitlcrease of pressure on the
flow divergence line and to the decrease of pressure on thecthomergence line, and
consequently enhances irregularity in the pressure cfticlistribution in the cone
cross section. The comparison of pressure coefficienilalition in the base section of
the cones witld = 1/3 and 1/6 with the experimental data [3] is presentedgnFiwhich
shows a good agreement between the calculation and thereeper(Herez = z/zpax
is the dimensionless coordinate, normalized by its maxinvaiae in the considered
cross section of the cone.)

The distributions of the longitudinal component of the tfido drag coefficient on
the flow divergence and flow convergence lines are presenté&dyi 4. According to
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FIG. 2: Distribution of pressure coefficien}, on the flow divergence lines (a) and on
the flow convergence lines (b) of elliptical cones at zerdangattack (M, = 1.97, Re
=8x 10°).
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FIG. 3. Comparison of calculated and experimental distributidiessure coefficient
¢, in the midsection of an elliptical cone (M= 1.97, Re = &10°) (a) 5 = 1/3; (b)6 =
1/6; —— — calculation;(> <> — experiment [3].
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FIG. 4: Distribution of the value”° = ¢/ Re on the flow divergence lines (a) and on
the flow convergence lines (b) of elliptical cones at zerdeaof attack (M, = 1.97,
Re = 8x 100).

the calculations, laminar-turbulent transition (LTT) dhthe cones is observed in some
vicinity of sharp body apex so that the established turhidlew regime in the boundary
layer takes place on the majority of the streamlined surface

One can estimate how reasonably the used model of turbupgadéts the location
of LTT in the boundary layer by the behavior of the integraloglgnamic characteris-
tics of the elliptical cones. Shown in Fig. 5 is the comparisb the experimental data
with the calculated pressure drag coefficients and the dvafficients for both Mach
numbers.

According to the mentioned results, frictional forces ptaprominent part in the
creation of drag for the considered set of elliptical condb@given conditions of flow.
The calculated results are in a good agreement with the iexpetal data for the pres-
sure drag coefficient. At the same time, the results of catmrs of cone drag coef-
ficients are in a qualitative agreement with the correspandixperimental data, but
exceed them quantitatively. In this case, the maximum rdiffee between them is ob-
served for the circular cone at M= 1.97 and comes to 15%. Note that the calculated
data for the circular cone, the flow over which being axisyrrioal, were obtained by
two different programs, namely, a 3D one and a 2D one. Thdtseslithese calcula-
tions differ somewhat by the local characteristics (theaighe 3D program leads to the
slight disturbance of the flow axial symmetry) and coincidenpletely by the integral
characteristics. Consequently, the observed differest@den the calculations and the

TsAGI Science Journal



Supersonic Flow over Sharp Elliptical Cones 689

0.12 — Ca 0.09 — G

_ b
0.08 —
01 —*#

G m— L - - -——-=-=-= 0.07 —

0.08 — .

:M 0.06 _j\‘\°\o

0.06 —
0.05 —

T 1 T 1 1 1 T T T 1 T T T

(@) (b)

FIG. 5: Pressure drag coefficients, and drag coefficients,, of sharp elliptical cones
at zero angle of attack and at Mach numberg M1.97 (a) and 2.94 (b) (Re =>810°):
—— — calculation; - - - - - — experiment [3].

experiment is associated with the calculation of the frittilrag force, which is defined
by the location of LTT in the boundary layer. The followingatimstance argues for this.

At M , = 1.97, according to the calculations, the area of the transient dio the
windward side of the cone (see Fig. 4a) is situated withinith#s 0.05 < Az, < 0.1
and varies slightly depending on the ellipticity and thelarg attack. In Ref. [3], the
location of the transition point was specified experiméytay means of the sublimator
coating method. Mentioned as an instance are the picturdeahodel aix = 15 deg
and My, = 1.97 for the cones with ellipticitie$ = 1, 2/3, 1/3; according to these pic-
tures, the transition points on the surface of mentione@&same situated in the sections
Z =~ 0.31, 0.1, 0.23, accordingly. If it is granted that this patterapgproximately the
same for zero angle of attack, it becomes apparent that thiemam difference between
the calculations and the experimentl(5%) takes place in the case of circular cone, and
the minimum difference~4%) takes place in the case of elliptical cone with 2/3.

6. NONZERO ANGLE OF ATTACK

In the presence of the angle of attack, the flow over all thiptelal cones § < 1) is
essentially spatial. In addition, at the angles of attack «g, a cone is streamlined
without separation and at > «g, one observes a transverse separation of flow on the
leeward side of a cone. Hergg is the angle of attack at which a transverse separation
of flow arises for the first time on the leeward side of a bodyyilue depends on the
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key parameters of the problem. For examplg, ~ 8 deg for the circular cone at the
considered flow conditions, and its value diminishes as lifpieity decreases. At flow
over a cone without separation, the flow convergence linguated on its leeward side
in the flow symmetry plane. In the presence of transversaatga on the leeward side,
the flow convergence line is replaced by the flow divergenoe. [The different local
characteristics respond to this change of the flow pattextifiarent ways, as will be
shown later.

The influence of the angle of attack on the behavior,pfs the same for all the
cones—the increase of the angle of attack leads to the momagancrease of the pres-
sure coefficient on the windward side and to its monotonousedse on the leeward
side. Shown in Fig. 6 is the distribution of the pressure ficieht in the flow symmetry
plane for the elliptical cone with = 1/6. In this case, in the fixed meridian section of the
cone, the value of, atz > 0.1 is approximately constant in the longitudinal direstio
both on the windward and on the leeward sides of the cone.

Analysis of the calculated results showed that at all thdesngf attack, the LTT
was observed in the vicinity of the sharp apex for the comsleones, and at > 0.2,
the established turbulent regime of flow was realized in théndary layer. This can be
inferred from Fig. 7, where the behavior of the longitudifradtion drag coefficient in
the symmetry plane on the surface of the elliptical cone with1/6 is shown.

As was mentioned above, the flow convergence lines are aituatthe considered
symmetry plane on the elliptical cone surface at zero anfgidtack. Starting with the
same conditions, the longitudinal friction drag coeffi¢iearies differently on the wind-
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FIG. 6: Influence of the angle of attack on the behavior of pressure coefficieptin
the symmetry plane on the windward (a) and leeward (b) sifiéiseoelliptical cone
(6 =1/6, M o, =2.94, Re=8x 105) —— — calculation;a A O ¢ — experiment [3].
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FIG. 7. Influence of the angle of attack on the behavior of the valu€® = ¢, v Re
in the symmetry plane on the windward (a) and leeward (b)ssadahe elliptical cone
(6 =1/6, (M o =2.94, Re = 8 10°) —— — calculation;AA O & — experiment [3].

ward and leeward sides of a cone, depending on the angleaukatAs the angle of

attack increases, it increases monotonously on the wirdlside and varies slightly on
most of the leeward side, the corresponding curves beirajdddn a quite narrow strip.

This fact is associated with the variation of the flow pattevhich leads to the replace-
ment of the flow convergence line by the flow divergence limg, af the pressure on the
cone surface. Both factors act in the same direction on thdward side and in opposite
directions on the leeward side.

The calculated results of the integral characteristichefdliptical cones at M, =
2.94 are compared with the corresponding experimental datain[&eln Figs. 8-11,
one can see that on the whole the calculation and the expsranein a good agreement
by all the considered characteristics. Note that at a fixefleaof attack, the elliptical
cone provides higher values of aerodynamic charactesittin the circular one.

7. CONCLUSION

Fulfilled was the theoretical investigation of the supeirsqrerfect gas flow over the
set of sharp elliptical cones at small and moderate anglestatk and Re= 8 x 10°,

where the laminar-turbulent regime of flow takes place. Toramarison of calculated
and experimental data for the integral aerodynamic coeffisi of cones depending on
the angle of attack showed good agreement on the whole. TFhigwstance points out
the fact that the method of numerical simulation based omBég equations with the
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FIG. 8: Influence of the angle of attack on the lift coefficientc,, of sharp elliptical
cones (M = 2.94, Re = 810°):—— — calculation;AA O { — experiment [3].

FIG. 9: Influence of the angle of attackon the drag coefficient,, of sharp elliptical
cones (M, = 2.94, Re = & 10f): —— — calculation;a A O) { — experiment [3].

use of the differential two-parametey € w) turbulence model allows one to obtain
reliable information about the local and integral aerodagitacharacteristics of a body.
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FIG. 10: Influence of the angle of attack on the lift-drag ratioK of sharp elliptical
cones (M, = 2.94, Re = & 10f):—— — calculation;a A () { — experiment [3].

FIG. 11: linfluence of the angle of attaakon the pitch moment coefficient, of sharp
elliptical cones (M, = 2.94, Re = & 10°):—— — calculation;a A O ) — experiment
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PECULIARITIES OF DGM APPLICATION FOR
SOLUTION OF 3D EULER AND
NAVIER-STOKES EQUATIONS ON
UNSTRUCTURED HEXAHEDRAL GRIDS

A. V. Wolkowv

Central Aerohydrodynamic Institute (TsAGI) 1, Zhukovsky str., Zhukovsky,
140180, Moscow region, Russia; Email: andrey.wolkov@mail.ru

A discontinuous Galerkin method (DGM) reported earlier in Refs. [1-3] has been developed for 3D
Euler and Navier-Stokes equations on unstructured hexahedral grids. The algorithm enables cal-
culations up to the fourth order and consideration of the curvature of the boundary. An ambitious
approach combining the p-multigrid method and the conventional agglomeration h-multigrid method
is applied as the convergence acceleration method. A variety of test cases is applied to validate the or-
der of accuracy and to evaluate memory and central processing unit (CPU) requirements. Test cases
shown in this paper cover the inviscid flow around a cylinder, the laminar flat plate, 3D flow in
a bend duct, 3D turbulent flow over an isolated wing, as well as an aero-acoustic test case for the
linearized Euler equations for propagation of a 3D acoustic wave. Results of calculations and CPU
requirements are compared with the results obtained through the finite volume method.

KEY WORDS: discontinuous Galerkin method, finite volume method, high-order scheme

1. INTRODUCTION

An increase of the accuracy of calculation of flow over bodigh complex geome-
try requires very small computational grids. A convincingnbnstration of this fact is
presented in proceedings of a well-known forum dedicateacturate calculations of
the drag of aircraft cruiser configurations (drag predictieorkshops—DPWs [4]). It
is noticed there that even the grids with cells numberingartban 20 million nodes
turn out to be insufficient for the description of such refaly simple geometries as
“wing+fuselage”. Not only do the type and density of compiotaal grids critically im-
pact the results, but also the turbulence model used. Tarerghe influence of different
grid parameters and turbulent model parameters on theamcof calculations is usu-
ally investigated. Meanwhile, order of accuracy of scheme®t considered, since all
the industrial computational codes are based on secorat-bnite volume methods.
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The applicability of high-order schemes to the solution wieo aerodynamics prob-
lems is discussed in Ref. [5]. The possibility of creatingléable, highly accurate algo-
rithm of the Reynolds equations solutions of flow over boeigh complex geometry is
investigated there. As an example, calculation of the Bp&i7-200 is considered on
the basis of block-structured grids.

One of the most prospective approaches to high-precisipnogpnation both on
structured and on unstructured grids is a discontinuousri@almethod (DGM) [6, 7]. In
recent years this method has aroused high interest amoastig&tors due to its gen-
erality, flexibility, and reliable theoretical validity. ierefore, it is not surprising that
this method has been investigated intensively for the moluf three-dimensional (3D)
flows. For example, the DGM is used on structured grids in H8fsl0] and on tetra-
hedral unstructured grids in Ref. [11]. Certainly, othegHibrder methods can be used
as alternatives to the finite volume method of second ordimerGn Ref. [12] is an
overview of different approaches to a high-precision apjpnation.

The hexahedral unstructured grids are shown to be advantagkiring the com-
putation of 3D flows as compared to tetrahedral ones (Ref).[IBat is why DGM is
adapted to the solution of Euler and Navier—Stokes equatiespecially on hexahedral
unstructured grids.

The present paper shows the results of further developnfeinvestigations de-
scribed in Refs. [1-3]. The DGM was applied for the first timethie solution of 3D
Navier—Stokes equations using hexahedral unstructuresl. gihe computational scheme
algorithm enables calculations to be fulfilled up to the thwrder. In order to achieve
a higher order of precision, consideration of the curvatfrthe airfoil is added to the
computational scheme. The original multigrid method ofvewgence acceleration (p-
multigrid convergence acceleration method together withraventional agglomeration
h-multigrid approach) is implemented. The results of testhe algorithm precision or-
der and the evaluation of central processing unit (CPU)irements are shown in the
paper in the examples of different test problems. Solutidiise problems of nonviscous
flow over the cylinder, laminar flow over the plane, 3D viscfiow in a bend duct, and
3D turbulent flow over an isolated wing are considered. Ryapan of a 3D acoustic
wave described by the linearized Euler equations is shown to

Computational results and CPU requirements are compariddtie results of the
industrial computational code FINE/Hexa (NUMECA Int., Belgium) based on the
second-order finite volume method that is widely used at thegnt time.

2. DGM AND CURRENT EQUATIONS

Let us consider the system of Navier—Stokes equations imseceative form:

aU (t, X)

5 +V(F-F,) =S (1)
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HereU is a vector of conservative variables= (p, pu, pv, pw, pE), F(U) is a non-
viscous flow,F, (U, VU) is a viscous flow, and is a source term arising while us-
ing the turbulence model. The equation system (1) is solwdpetitationally on the
basis of the DGM, and the solution in each cell is stored inghmitive variables
Q = (p,u,v,w,p). Meanwhile the pressure valygs related to the total energy value
F by the state equation.

Navier—Stokes equations can be overwritten in primitivealdes as follows:

I‘a—Q—I—V-(F(U)—FU(U,VU))—S:O, )

ot
ou
'={(—-—= 3
(%) ©
is a Jacobian matrix of transformation from the consereatiriables to the primitive

ones.
Local polynomial basic functions are determined in eachafeghe grid:

where

Ky
Q(t,X):ZUj (t) (i (X)v (4)
j=1

whereu; (t) are expansion coefficients determined in the solution mscendi; is a
number of basic functions in a cell. T, value is related to the maximum order of the
basic polynomialK as follows:
K+1)(K+2) (K
Ky~ EFDE+2 (K +3) )
6

The polynomial order possesses the valués= 0, 1, 2, 3 in the present paper, and
thereby the number of basis functions takes on the valies- 1, 4, 10, 20. ForkK = 3
the following set of basis functions is used:

J 0O |1 (2 |3 4 5 6 7 8 9
e; |1 | X |y |2 22 | P 2 \xy |x |yz
j 10| 11|12|13 |14 |15 |16 |17 |18 |19

;| 23| Y3 | 2| 2%y | 2?2 | vPx | vPz | 2P | 2Py | xyz

Basis functions are normalized in the following way:

(= x0) B (x — x0) (2 — 20)
(pl - hx ) M (pg - hxhz )
(y —yo) (2 — 20) (x —20) (¥ — yo) (2 — 20)
= = . 6
P9 o , . Q19 halighs (6)
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Herezq, 39, 2o are the coordinates of the central point of the considere@Heron,
and the value$,, h,, h. determine the cell dimensions along the corresponding. axes
It is shown that it is this normalization that ensures sweaccuracy and convergence,
especially in the case of viscous problems with much exi e cells.

The system of grid equations for the coefficieni$t) of Eq. (4) is obtained using
the standard Galerkin finite element procedure when thegaimality of misclosure of
solved equations is required [left part of system (2)] tohebasis function being used
in the solution reconstruction. This requirement of oribragjity is formulated through
the zero equality of the integral of the product of equatigsteam on each of the basis
functionsg; (i = 1,..., Ky). After partial integration we have

a4 (pil"QdQ:—/ (pi(F—Fv)dZ—i-/V(Pi (F—Fv)dQJr/ ©;8dQ. (7)
b Q Q

dt Jo
HeredY is an area element oriented in the direction of the nommal (., n,, n.), and
dS) is the element of cell volume.

Equation (7) consists of volume integrals and of surfacegiretls over the cell bound-
ary. The values of all dependent variables have discomgiratithe boundaries of ele-
ments; therefore, the rules of calculation of variables ainows on these boundaries
play a crucial role. Like in the finite volume method (FVM)gtlralue of nonviscous
flow through the boundary between two cells is determined @MVDfrom the solution
of the Riemann problem for the decay of arbitrary discorityinuAn approximate, lin-
earized technique of Riemann problem solution, proposeRldwy, is used in the present
paper:

1 1
Fbound = 5 (FL + FR) - 5 |A| (UL — UR) . (8)

Here the superscripts and R designate that the corresponding values are calculated
from the left and the right sides of the interface, respetfjyand A is a Jacobian matrix

of nonviscous flow:
OF

A= 30 9
The viscous flows are determined through the gradients ofitive variables~, = F,
(Qn, VQy,) , whereVQ,;, = (0Q,,/0z,0Q;,/0y,0Q,,/0z) . The gradients of primitive
variables can be obtained from the direct derivation of Epfdr the solution reconstruc-
tion in a cell. However, as it is shown in Ref. [7], such a metbbgradient calculations
is a reason for the absence of approximation. Therefore iMI& gradients of prim-
itive variables are also presented as a linear combinafidiasis functions in order to
calculate viscous flows:

Ky
2 10 = D0 (1) 95 (0 (10)
KA ]:1
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Herei =1, 2, 3 corresponds tg y, andz coordinates. After multiplication of Eg. (10) on

test functions (for the Galerkin method the test functiamstie basis ones) and after the
partial integration, we obtain the following system of Bmeequations for the expansion

coefficientsg; ;-

Ky
)
/Zgi,j(pj(pkd9+/(9anid2— a‘i’deQ:O; k=1, .. K;. (11)
o J=1 > ) '

The solution of this system determines the gradients of ipuenvariables (10) and
allows calculating viscous flows in a cell.

Both gradients of primitive variables and values of flowsenhdiscontinuities at cell
boundaries in DGM. However, these values are required foulzdion of contour inte-
grals and they cannot be found through averaging. The ajppabion rules [7] require
alternating choice of left and right cell for the solutiorcoastruction at the boundary.
Thus, if the values of primitive variables and their gradeare selected from the left
cell while calculating viscous flows (7)

Fv’b = FU (QL7 VQL) ) (12)

then in Eq. (11) the values of primitive variables while cddd¢ing the contour integral
should be chosen from the right cell

Ql, = Q™. (13)

Finally, the system of nonlinear equations for the coeffitse; (¢) of Eq. (4) is obtained
from Eq. (7) under the assumption of a small variation of Bao matrixI" (3) inside
the cell:

dui _ poipg-t {—/ @i (F —F,)dx +/chi (F —F,)dQ +/ (piSdQ]. (14)
dt > Q Q
HereM is a matrix of masses,= 1, ..., Kj.

3. CALCULATION OF INTEGRALS AND ACCOUNTING OF CURVATURE

The high order of approximation of DGM assumes the accuraiutation of volume
and of surface integrals in the system of equations (14)rdieroto calculate the inte-
grals, quadrature Gauss formulas are applied. Calculafitre volume integral inside a
hexahedron of arbitrary form is executed in a parametrigats in which every hexahe-
dral element has the form of a unit cube. This triquadratpasametric transformation
is built on the basis of 20 nodes, 8 of which are cube cornars12 nodes at the centers
of all cube edges. The presence of central nodes on edgeeeiad curvature of the
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streamlined boundary to be taken into account. With this@gh the surface and the
volume integrals contain nonlinear Jacobian transfomwnatiwhich demands higher re-
quirements to quadrature formulas of integration and regunore Gauss points. Thus,
calculation of the volume integrals requires applicatibguadratures that are accurate
for the polynomials of 3 K order.

The amount of calculations can be reduced when using theuagingture approach
proposed in Ref. [14]. This approach was used only for roayels of the multigrid
solver.

It is commonly known that obtaining a high order of accuramyuires consideration
of the streamlined boundary curvature. The application 20-point transformation for
boundary integrals can be avoided while calculating thedlofwnonviscous fluid. Mean-
while the original approach proposed in Ref. [15] can be ubedonviscous flow, the
boundary condition on the streamlined body is formulatetthasequirement of equality
to zero velocity component normal to the body. Shown in REF] |s the fact that for
account of the correct curvature in nonviscous flow it woutdshifficient to use only
the “proper” direction of normals, oriented strictly norigdo the true curved boundary
at every Gauss point. Meanwhile the integration itself iplemented on a hexahedron,
disregarding its curvature near the boundary.

The right direction of normals to the streamlined bounday be obtained either
during the construction of biquadratic transformation afumved surface quadrangle
into a plane square, or from calculation of the normals ofdtiginal surface set in a
system of automated design.

Shown in Fig. 1 is the approximation of the leading edge ofdinf®il LANN [21],
where a polygonal presentation of contour, biquadraterpulation of surface, and real

¥

0.0] = . N .
0 Biquadratic interpolation

——e—— Polygonal boundary

——a——u Real surface

| e, 1
0 0.01 0.02 b4

FIG. 1. The leading edge of the airfoil LANN [21]. Comparison of thelygonal
boundary of the grid with biquadratic interpolation of theface and with the real sur-
face.
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geometry are compared. Presented in Fig. 2 is the value of irthe calculation of
the normal to the cylinder surface in the case of polygonas@ntation of the boundary

and of biquadratic interpolation. Here the value of ervéfzi:LM (1 —nmiNy)?) /M
depends on the number of cylinder surface partitidNs.designates the normal at
point, n; is a precise normal, antl/ is the total number of checkpoints on the cylinder
surface. It is seen that the biquadratic interpolation exssa more precise description of
the surface.

4. SOLUTION OF A SYSTEM OF GRID EQUATIONS AND A MULTIGRID
SOLUTION ACCELERATION METHOD

The solution of a system of grid equations (14) is executednieyans of an explicit
method of time integration. The search for a stationarytemitenables use of the local
time step depending on cell dimension; this fact accelerdte convergence process
appreciably, i.e., the misclosure tendency [right part of &)] to computer zero. A
five-step Runge—Kutta method is used. This method ensurgsrmma stability of the
procedure, or, in other words, rapid diminishing of misalesduring the time iteration
process.

The implementation of an explicit Runge—Kutta method otisoh search requires
virtually no additional memory resources. However, inemf the local time step and
the presence of a multistep scheme, the number of iterateansgred for attainment of

Error

o \

10"

Be—Be——8\ Polygonal boundary
(3—6—=©) Biquadratic interpolation

10°
107
10" =

10" -

14 1 J
10
10' 10° 10*
Number of cylinder faces

FIG. 2: Error in the determination of a normal to the cylinder suefas a function of
the number of boundary points.
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the stationary solution is too high. Significant acceleratof solution is achieved by
implementation of a multigrid method.

The multigrid method is an effective approach for solutionederation of mathemat-
ical physics problems. The main idea of this method consistle quick transmission
of information between different parts of the computatlayréd. For this purpose in the
classical multigrid method (a so-called h-multigrid meththe solution of determina-
tive equations is fulfilled on a set of successively finer griél coarse grid solution is
used for determination of a fine grid solution and vice vessal the fine grid solution
is used as an initial approximation for the coarse grid smutMeanwhile, the determi-
native equations on a coarse grid are modified in order toita@eaccount the approxi-
mation inaccuracy on coarse cells. On each grid level thegBuutta method (or other
solution method) ensures effective suppression of hightfency errors. However, high-
frequency errors on a coarse grid are low-frequency onediar grid. Therefore, a few
variables on a coarse grid enable quick determination dbalfrequency peculiarities
of flow. The conversion of the coarse grid solution to the firid golution allows accel-
eration of information transmission and correction of the-frequency component of
the basis solution.

In the finite element method the solution in each elementiiseat combination of
basis functions. This combination forms a polynomial restarction of maximum order
K. The coefficients before basis functions are the requirgdeds of freedom. The hi-
erarchical basis functions are used in the present papisrmidans that the coefficients
before basis functions in the solution expansion have ctesthematical meaning, no-
tably, they express the value of averaged solution in atbellyalue of solution gradient
in three directions, the second derivative of solution, &tterefore, given these ba-
sis functions, the solution is presented in terms of Taylgaasion in a cell. In other
words, the coefficients in the solution reconstruction espithe contribution of different
harmonics in the solution.

The ideas of the p-multigrid method (Refs. [16—18]) for thnté element approach
are similar to the ideas of the classical multigrid methoscdbed above. The decrease
or increase of maximum ordek() of the polynomials of basis functions or, in other
words, the variation of a set of basis functions in the eldngesimilar to the coarsening
or to the refinement of cells inside the grid. The applicatidrbasis functions of low
order (K = 0) enables quick determination of the low-frequency sofutomponent
and correction of the total solution at a maximum set of blsistions.

In the present paper, the greatest gain in convergencesaatieh resulted from com-
bining the conventional multigrid method with the p-mutiiymethod. The agglomer-
ation multigrid method [19] realized in the solver of induet code [22] is used as the
basis of the conventional multigrid method. This methodssduin solving using the
simplest approximation schem& (= 0, one piecewise constant function). Then the suc-
cessive increase of the number of basis functions is exgcutehe finest grid, i.e., the
p-multigrid method is realized.
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5. TEST CALCULATIONS

The peculiarities of the DGM scheme up to the fourth ord€r< 3) are investigated
in the process of solving of a series of test problems thagcd8> nonviscous, viscous,
and turbulent flows. The results are compared with datamédahrough the FVM (finite
volume method) [22].

The agglomeration three-level multigrid method is usedHersolution acceleration
in the second-order FVM. The four-level method is impleredrnith DGM (K = 1). The
first three levels represent the conventional multigridhndtwhere piecewise constant
functions are usedi = 0). On the fourth level the approximation of equation syste
is fulfilled on a fine grid but on the basis of piecewise lineamndtions ¢ = 1). The
solution for DGM (K = 2) is found using the fifth level, the sixth level implemenfer
DGM (K = 3). In all cases the five-step Runge—Kutta method is usedsascathing
procedure for the high-frequency component of error.

5.1. Nonviscous Flow Over a Cylinder at Mach Number M = 0.15

Nonviscous potential flow over a circular cylinder is a knowst case enabling the de-
termination of numerical scheme precision order. The cdatfmn is made at low Mach
numbers of incident flow (M =0.15) when the compressibilitfluence is negligible.
All numerical tests are fulfilled on a set of four analyticaldg with dimensions varying
from 16x4 to 128x32 by doubling the number of points in each direction (Fig./8)
concentric circles contain/ uniformly distributed nodes in the X-Y plane. The radius
of each circle is determined by the following relationship:

M

2w i
ri =70 (1 + = ock> , j=0,.., N. (15)
k=0

The cylinder radius is equal to 0.5. Theparameter from Eq. (15) is determined from
the condition that the radius of the maximum circle constraj the computational area
is equal to 20. On the external boundary, the distant fieldlitiom based on Riemann

invariants is imposed.

Presented in Fig. 4 is a computational pressure distribuwtaefficient in compari-
son with an analytical incompressible solution (dotte@)irShown in Fig. 4a are the
pressure fields along the cylinder surface obtained on thet coarse grid (184) using
DGM of the second order{ = 1), of the third order & = 2), and of the fourth order
(K = 3). Presented in the same figure are the results of compusatising FVM [22].
Shown in Fig. 4b is the comparison of pressure fields caledlan different grids un-
der the condition of using approximately the same quanfiturd&known variables or,
in other words, equal number of degrees of freeddjrdetermined by the product of
a quantity of cells and a number of variables in a cell. Theltegpresented demon-

Volume 40, Number 6, 2009



704 Wolkov

FIG. 3: Error in the determination of a normal to the cylinder suefas a function of
the number of boundary points.

Cp Cp

s s esee s Exact solution

wiessasinnnns |16x4: FYM !
L i & ———— 16x4; DGMK=1 or - - -
A (T 16x4;DGMK=2 Y | e 64x16: FVM  : NDOF=1024
16x4: DGMK=3 32x8; DGMEK=1; NDOF=1024
4 A 16x4; DGMEK=3; NDOF=1280
1 1 1 ‘ 1 1 1 1
0.5 0.25 0 0.25 0.5 0.3 0.25 1] 0.25 0.5
X X
() (b)

FIG. 4: Pressure distribution at the cylinder surface: (a) nunaégolution for DGM
K =1, 2,3 andfor FVYM on a coarse grid 48; (b) numerical solution for the schemes
with an equal number of degrees of freedom.

strate that DGM provides better accuracy, even in the caagppication of equivaler
number.
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The precision order of computational scheme is evaluatedtabpy error value:

Y
o — p/p -
Poo/ P

Since the flow under consideration is isoentropic, the gytraust be equal to zero at
exact solution. Shown in Table 1 are the dimension of the, gniel total number of ele-
ments in it,L- - the norm of entropy error, calculated over each elemeregtid, the
value of cylinder drag, and the obtained precision orderoofiputational scheme. This
precision order turns out to be close to the theoreticale/éALQhK“). Precision order
is calculated by the value of error diminishing at successignsition from the coarse
grid (¢ — 1) to the finer one) using the following relationship:

' o2
Order= Qgi.
e 5]
Calculation of viscous laminar flow is executed on a sequehcgids described in the
previous section at Re = 40. Precision order is evaluatecherbasis of the value of
cylinder total drag. Analysis of the asymptotic behaviotatél drag value is fulfilled as
a function of the averaged dimension of the grid cell catedahrough the equation

1.

h=1/VR.
TABLE 1: Precision order of schemes for FVM and DGM (K =1, 2, 3).
Grid Number FVM DGM K =1
of Co Lo, Order | ¢, Lo, Order
elements entropy entropy
error error
16x4 | 64 1.18¢! | 1.03e?2 7.47e2 | 1.00e?
32x8 256 2.73e¢2 | 3.11e3 1.73 | 7.34e3 | 2.73¢e3 1.88

64x16 | 1024 1.4e3 | 6.85e* 2.18 | 2.75¢3 | 6.05¢* 2.17
128x32 | 4096 9.05e¢* | 1.36e* 2.33 | 1.56e3 | 1.18¢* 2.36

Grid Number DGM K =2 DGM K =3
of Co Lo, Order | ¢, Lo, Order
elements entropy entropy
error error
16x4 64 8.94e3 | 5.55¢* 2.66e3 | 1.13¢*
32x8 256 7.01e? | 7.79¢° 3.25 | 5.83¢° | 5.26e 4.42

64x16 | 1024 2.37¢* | 75066 | 295 | 6.92¢6 | 3.66e7 | 3.85
128x32 | 4096 3.74e® | 8.93¢7 | 3.07 | 1.95¢° | 2.12¢8 4.11

Viscous flow near the cylinder at M = 0.15, Re = 40.
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Note that at such determination, the averaged grid stepdep®t only on its dimension
but on the approximation method too. For FVM, in which onleomriable in a cell is
used, the averaged cell dimension in a uniform rectanguldrigjidentical to the actual
step of grid.

An asymptotically limiting value of drag, = 1.5685 results from the extrapolation
of values from the two finest grids to the grid with infiniteginstep. Assuming’~! =
e+ + O (K_}) andcl, = ¢z« + O (R) , we have

lg |: Cx—CL* ]
1—1
Order=2—+% ~Cr*d

The results of calculations, shown in Table 2, demonstrateekpected precision order
of all considered computational schemes.

The computational area shown in Fig. 5a has the followingedisions:—0.24 <
x<0.4; 0<y<0.05;0 < 2<0.00625. The plate is installed in the ran@e< x < 0.4.
Computational investigations are implemented on four ggad grids, shown in Fig. 5.
These 2D grids have only one cell in thalirection. Some of the grid parameters pre-
sented in Table 3 show a number of cells in a grid, a distarara the wall surface to
the first cell layer, a coefficient of distance increase betwsuccessive ranges of grid
points, and a total number of nodesgirdirection. The number of elements in grid 1 is
approximately four times greater than in grid 2, while grgland 4 have the number
of grid cells correspondingly 10 and 20 times less. Such ggldction enables compar-
ison of different computational schemes in the case of qymately similar degrees of

TABLE 2: Drag coefficient and evaluation of scheme precision ordethfe problem
on viscous flow over cylinder Re = 40 for FVYM and for DGM K =1, 2, 3

. Number of FVM DGM K =1
Grid elements Co Order Co Order
16x4 64 0.403598 0.298054
32x8 256 0.271965 | 1.10 0.191675 | 2.02
64x16 1024 0.180503 | 2.30 0.166170 | 1.90
128x 32 4096 0.161464 | 2.46 0.159011 | 2.11

. Number of DGM K =2 DGM K =3
Grid elements Co Order Co Order
16x4 64 0.190749 0.163027
32x8 256 0.161390 | 2.90 0.156464 | 3.99
64x16 1024 0.157401 | 2.05 0.156829 | 4.00
128x 32 4096 0.156790 | 3.11

Laminar flow over flat plate at M = 0.35, Re = 76,000.
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(@)

(b)
FIG. 5. Computational area and fragments of grids: (a) grid 1 andid} 2, 3, 4.

TABLE 3: Grid parameters for calculation of laminar flow over the @lat

Grid | Number of Distance up to| Coefficient | Number of
cells the first layer | of layer grid lines in

y+ expansion | y-direction

1 6739 1x107° 1.02 25

2 1707 64 | 1x107° 1.20 13

3 680 64 | 2x107° 2.00 8

4 281 32| 4x10°° 2.50 5

freedom.

Some computational results are shown in Figs. 6 and 7 in tefmslocity profiles
compared with a Blasius analytical solution for uncomptgsslow. All dependences
are presented as a combination of lines and markers. Eactsldrawn through a set of
points and is in precise correspondence with the equatiogsdlation reconstruction in
a cell. On each line, the markers are located approximatettye middle of cells. Thus,
the number of markers on a line reproduces the density ofride g

The U-component of velocity is shown in Fig. 6 for all the approatmn schemes
under investigation. All the schemes demonstrate goodhimggavith analytical solu-
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FIG. 6: Comparison of numerical schemes on different grids at tiheition of similar
number of degrees of freedom: (E)}component of velocity and (b)y-component of
velocity.

tion. TheV-component of velocity, shown in Fig. 6b, is more sensitivéhe quality of
a grid. The results, obtained through DGI= 2 on grid 3 andK = 3 on grid 4, are
in better agreement with the analytical solution than ttselte obtained through con-
ventional FVM on the finest grid 1, in spite of the equivalenanqtity of the degrees of
freedom set in motion.

Shown in Fig. 7 is the influence of scheme precision order erf#ftomponent of
the solution. The computation on the coarsest grid 4 is égddoy means of DGMY
=2 andK = 3. Observed here is an appreciable improvement of matchingpite of
the extremely small number of computational grid nodesatied crosswise from the
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FIG. 7. Effect of increase of precision order of computational sechdrom K = 2 up
to K = 3 for V-component of velocity.

boundary layer.

The comparison of the distribution of local friction coeiffiat obtained on the coars-
est grid 4 with a Blasius analytical solution is shown in Bglt is seen that in spite of
the extremely coarse grid, good matching of the calculatiwith the exact solution is

10° -

Blausius solution
e e e DGMK=3

| 1 x J

1 |
0 0.1 02 03 0.4

FIG. 8: Comparison of the analytical solution with DGK= 3 solution, obtained on a
coarse grid 4, for the local friction coefficient.
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obtained.

5.2. 3D Laminar Flow in a Bend Duct

This 3D test case for laminar flow inside a°90end duct with a constant section is
investigated experimentally [20] by laser-Doppler vetoetry with water as a working
fluid. The investigations are executed at three differentni@kels numbers, including
the laminar case at Re = 500. This case is considered in tisergreaper. The flow
established in a duct, determined by the balance of viscndsnanviscous forces, is
characterized by the presence of a couple of vortices swiiti opposite directions to
each other, formed downstream after passing the duct bdmate re velocity profiles
measured experimentally in five sections along the ductti@et is at 0.58 diameter
upstream from the bend, Section 2 is at albng the bend, Section 3 is at6@long the
bend, Section 4 is at 7@long the bend, and Section 5 is at 1 diameter downstream from
the bend.

Five unstructured hexahedral grids are generated usingritiegenerator HEX-
PRESSM [13]. The number of cells in these grids varies from the firgesd to the
coarsest one within the range 140,86@500. Some grid fragments are shown in Fig. 9.
A dashed line indicates the duct surface for grid 5. The iifiee between the grid
boundary and the real one is easily seen here. Considegftibe airfoil curvature en-
ables this difference to be considered.

The calculations are fulfilled for all the grids using di#fet approximation schemes.
Velocity profiles at different duct sections are shown in. Bigy Here, the results obtained
on the coarsest grid with schemes DG4 2 and 3 are compared with the experimental
data. The results through the scheme DG 3) are seen to have good matching

Grid Number of
cells

Nel 139902

Ne5 2502

i

FIG. 9: Set of grids for the computation of laminar flow in a bend duct.
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FIG. 10: Velocity profile in four sections of the duct. Comparison lo¢ texperiment
with the computational results obtained through DGM 2 and 3 on a coarse grid 5.

with the experimental velocity profiles. This figure also aerstrates the effect from the
increase of scheme order.

The advantages of the fourth-order scheme are also predarkg. 11. The velocity
profiles calculated through the scheme DGWl= 3 on the grid with 2500 cells are
compared with results from the FVM scheme [22] obtained oerssd grid containing
140,000 elements. The calculations implemented througlhdhventional FVM scheme
on the grid with 62,000 elements are far from the experinmiefdta. Thus, the FVM
results are obtained with satisfactory precision only anghd with 140,000 nodes.

A comparison of computational consumption is shown in Tdblk is seen that the
time spent on the four-order DGM scheme is three times lotigar the FVM scheme,
provided that the equivalent number of degrees of freedouseésl (the 62,000 grid).
Taking into account the more precise results of DGM, it igdreb compare total time
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FIG. 11. Comparison of the experiment with the computational resalitained through
DGM K = 3 coarse grid 5 and through FVM on grid 1.

of computational schemes required for obtaining resultk @gual precision. It is seen
from the table that approximately the same calculation tsmequired for a new scheme
with 2500 cells and for a FVM scheme with 140,000 cells, whiakts some doubt on
the benefit of applying a scheme with high precision ordehis computational experi-
ment.

The current DGM scheme realization is far from optimal aretehare still potential
opportunities for reducing the computational time. Onéhefikey moments is the usage
of optimized quadrature rules for the calculation of voluamel surface integrals. Itis a
subject for further investigation related to the optimizatof new approximation scheme
applications.

The calculation of 3D turbulent transonic flow over the LANNhgy (Ref. [21]) is
fulfilled using a second-order scheme DG¥I= 1. The results are compared with the
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TABLE 4: Evaluation of CPU time for different schemes.

Method Number| Number of| Time for | CPU time | Time ratio
of cells | degrees off 50 MG fora
freedom®t | iterations, degree of
sec freedom

DGM K = 36-level | 2502 50,040 1185 4.74<10°* | 3.00
DGM K = 25-level | 6393 63,930 826 2.58x10~% | 1.63
DGM K = 14-level | 14,265 | 57,060 439 1.54x10~* | 0.99
FVM 3-level 62,689 | 62,689 496 1.58<10~* | 1.00
FVM 3-level 139,902| 139,902 1115 1.59x 104

Calculation of 3D turbulent flow over LANN wing (M = 0.8Re = 7.3 x 106,
o =0.6).

experiment and with the calculation fulfilled on a densed gnrough the conventional
FVM scheme (Ref. [22]).

All the calculations are executed on unstructured hexahgdids generated by code
HEXPRESS of the NUMECA Int. Company. For the DGM scheme tligbwith 190,213
cells is used. The results through FVM are obtained on a dgniskcontaining 625,076
cells, enabling application of an equivalent number ofalaldgs. In both cases the first
layer of nodes is located at a distance ~1 from the body. Figure 12 demonstrates the
fragments of a coarse grid used for the analysis of a new seh&lirthe calculations are
executed at M = 0.8Z = 0.6°, andRe = 7.3 x 10%, which corresponds to experimental
conditions. The S-A (Spalart, Allmaras) turbulence modelpplied.

The comparison of pressure distribution in the airfoid 0.475 for two discretization

FIG. 12: Fragments of unstructured hexahedral grid around the LANMjw
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FIG. 13: Pressure distribution in the section of LANN wing at tranisdarbulent flow:
(=——) FVM on a grid with 625,076 cells and (——) DGM on a grid wi90,213 cells.

schemes is shown in Fig. 13. It is seen that in spite of the tisalenser computational
grid, the results obtained through the DGM scheme providettatshock-wave position.

5.3. The Propagation of a Spherical Acoustic Wave

The solution of aeroacoustic problems requires the agpmicaf high-order computa-
tional schemes possessing minimal dispersive and diffpsmgkrties. The investigated
scheme possesses such properties and is considered forttier fndustrial realization.
Particularly, the scheme properties are investigatedewgbiving the classic problem on
the acoustic momentum propagation, having comparativabllsnitial perturbation.

The numerical problem is considered within the cube contjoutal ared0 < x < 1];
[0 <y < 1];[0 < z < 1]. The following initial conditions exist at= 0:

u(a:, Y, %, O) =0, v(a:, Y, 2, O) =0, w(‘ra Y, 2, O) =0,
P=Pso |14+€2 |, p=pPso 1+C—22 |, rop=20.02, e=0.001,

whereR? = (2 — 0.5)% + (y — 0.5)> + (z — 0.5)2.
In this case, the solution of a linearized problem is describy the following equa-
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1 _ ('rfct)2 _ (r+ct)2 t _ (rfct)z _ (7‘+ct)2
3 <2 w4+ 92 7 - 5_ 2 % +2 % ,
r

wherec is a sound velocity. The solution of grid equations is oladity the Runge—
Kutta method of fifth order with an overall time step. Presdnesults correspond to the
time 0.4/c, i.e., to the moment when the leading Mach front does not yeieae the
boundary of computational area.

tion:

Pexact = poo(l + €

Shown in Fig. 14a is the comparison of the results for DEM 1, 2, 3 schemes
and for the conventional FVM scheme [22]. The exact solutibthis problem is also
presented here. Shown in Fig. 14a is the case when the ma&estischemes are used
on individual grids chosen to equalize the number of degoéf®edom. It is seen that
the schemes with higher precision order provide better Imragowith the exact solution.
However, these schemes consume more CPU. Therefore theadeop of required
CPU is fulfilled for the case when equal accuracy of calcotetiis ensured. Shown in
Fig. 14b are the results for DG = 2 and 3, obtained on individual grids. It is seen that
the accuracy of both results is the same. The comparison dff@Rhis case is shown in
Table 5. The fourth-order scheme provides good resultarhgstquicker and consumes
1.4 times less memory. It is impossible to obtain such acyuréresults using the DGM
K =1 scheme and even more so using the conventional FVM scheai® @éxcessively

@ o o Exactsolution

s—e—s  FVM; NDOF=86x86x86=036,056

—s—e DGM K=1; NDOF=54x54x54x4=629 856

=——= DGM K=2; NDOF=40x40x40x10=640,000 ————  DGM K=2; NDOF=60x60x60x 10=2,160,000

——e DGM K=3; NDOF=32x32x32x20=655,360 —e—a DGM K=3; NDOF=32x32x32x20=655,360
101301.5 — 101301.5 ~

P = P

101301.0 101301.0

1013005 1013005

101300.0 101300.0 4
1012995

101299.5

101299.0 101299.0

o¥ or
1 1 1 1 J 101298.5 1 1 L 1 )
0n.as 0.1 0.5 02 025 0 .05 0.1 0.15 02 0.25

(a) (b)
FIG. 14: Comparison of the exact solution with the numerical one far acoustic
momentum: (a) equivalent number of degrees of freedom greh(lovalent accuracy of
solutions.

101298.5
0
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TABLE 5: Comparison of CPU in the case of equal accuracy of resultseotalcula-
tions for DGM (K = 2 and 3) schemes.

Scheme Grid Number of | Operated Memory| Time of | Time
degrees of| memory, ratio CPU ratio
freedom Kb

DGM K =2 | 60x60x60 | 2,160,000 | 743 14 13h 5.6

48 min
DGM K =3 | 32x32x32 | 655,360 528 1.0 2h 1.0
28 min

high CPU requirements

6. CONCLUSIONS

The discontinuous Galerkin method (DGM) was applied to thlet®n of Euler and
Navier—Stokes equations on the basis of unstructured kexahgrids. Considered test
cases demonstrated good matching with theoretical or empetal results while using
the fourth-order scheme, even on extremely coarse grids.

Comparisons were made of CPU required for a new scheme amadsfireme using
the finite volume method (FVM) of second order of precisianthle case of application
of an equivalent number of degrees of freedom in a discretblgm, the higher order
scheme required more CPU.

The investigations showed that given equal accuracy ofteeghie calculation times
of DGM and FVM schemes could be similar for some problemsréfoee, the conclu-
sion about the necessity of applying higher order schemesstithunclear. The advan-
tages of higher order schemes were obvious only in the acqustblem on spherical
wave propagation.

However, practical realization of the investigated schéa& many possibilities for
significant reduction of calculation time. It is the solutiof these problems regarding
optimal realization of the DGM that offers the challenge iftsrwidespread application.
Questions regarding optimal realization of the scheme @nbustness are subjects for
further investigation.
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INVESTIGATION OF THE APPLICATION OF
ELECTRICAL DISCHARGES FOR WAVE DRAG
REDUCTION

V. V. Skvortsov

Central Aerohydrodynamic Institute (TsAGI) 1, Zhukovsky str., Zhukovsky,
140180, Moscow region, Russia; E-mail: vlaskvortsov@rambler.ru

The problem of the main mechanism of electrical discharge influence on the wave drag of bodies at
initial values of drag coefficient c. and static pressures that are of interest for aviation applications is
investigated based on the experiments in classical wind tunnels with well-known and stable parame-
ters of flows. It is shown that such a main mechanism is heat one for the types of discharges proposed
for practical application. It is also shown that electrical discharges being generated in front of models
can lead to unsteady supersonic flow. In turn, this stipulates essentially nonsteady flow over a body
that can seem as a shock wave disappearance at insufficient time resolution of an optical method of
registration.

KEY WORDS: wave drag, electrical discharge, heat mechanism of drag reduction, ion-
overheat instability, non-stationarity of flow over bodies, optical method of registration,
time resolution

1. INTRODUCTION

The problem of the application of electrical dischargesware drag reduction of air-
craft was extensively investigated and discussed at theoktite last century and at
the beginning of this century by some scientific centers isdRy the United States,
and Great Britain [1-6]. Physical investigations impleteenon the models with high
initial values of drag coefficient, testified to the possibility for considerable energy-
profitable wave drag reduction while using this method. Tifeces of the disappearing
of shock waves at the generation of discharges in front ofeisodt supersonic flows
were demonstrated. These effects were referred to as theumewown properties of
plasma.

The principal position of specialists adhering to the ¢tadgoint of view toward
the role of discharges is if the weak volume forces createdlbgtric fields acting in
plasma outside the boundary layer in the absence of an akt@agnetic field are not
considered, the main mechanism of discharge influence oe diiag will be heat one,

1948-2590/09/$35.0®)2009 by Begell House, Inc. 719
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with the ensuing consequences about energy consumptias .nigchanism manifests
itself in the fact that the pressure redistribution occuarshie area between the shock
wave and the body, while supplying heat energy in this arsaa fesult, the shock wave
deforms and stands off the body; meanwhile, the slope oarmstines to the axis of
the body decreases, the value of the pressure componamy srigthways on the body
diminishing.

To solve the problem set by physical experiments, researchis direction was
made at TSAGI. The necessary condition for implementatias thre requirement for the
test accomplishment in classical wind tunnels with welbwn and stable parameters of
flows. The drag coefficients of models and the static presauas of interest for aviation
applications. The problem of the disappearing of shock wawes also studied.

Among different concepts of electrical discharge influenceaerodynamic char-
acteristics of bodies, the concept of heat influence predather definitely that at the
generation of discharges in front of the bodies, the valdiesave drag reduction will
diminish, and energy consumption will increase at the imeneent of the aerodynamic
shape of the body. Therefore, in the frame of this problens itnportant to compare
the energy efficiency of the present method for models witloua aerodynamic shapes
and to compare the values of drag coefficient that can berwutat the generation of
discharges near these models with the values of drag ceefscof models of optimal
aerodynamic shape for corresponding Mach numbers withiecharges near them.

The investigations of interest are accomplished in two sygieexperiments. In the
first one, the discharges are created directly on modelg ygasma generators devel-
oped and manufactured by ideologists of the present methedwe drag reduction [1,
2]. The independent analysis of the results obtained wasmadsAGI. The conclu-
sions made do not coincide in a number of counts with the csiarhs of the present
drag reduction method associates, particularly in effyeAs a rule, there are no ref-
erences to conclusions obtained at TSAGI in publicatioggeeially in foreign ones.

In the second type of experiments, the models are instafldie wake of a lon-
gitudinal discharge with a low level of pulsations of cutrand of power supplied to
this discharge. The results obtained by the author duriegdéicond type of experiments
concerning the influence of power supplied to the dischargéhe value of the varia-
tion of drag forces and on the efficiency of energy have nohlpedlished for a wide
readership before.

The experiments of the first type were fulfilled in the TsAGhditunnel T-113 at
Mach numbers equal to 4 and 2. The power supplied to the digefare within the
range from a few hundred watts up 4é6.5 kW. This wind tunnel is known to have
the dimensions of the test section equal to 600 mm; the length of test section is
equal to 1.9 m. These dimensions are much larger than thaatbastic dimensions of
models used in the experiments. This fact ensures the abséiaverse effects of the
energy supply near the models on the characteristics ofréers inside the primary area
of the flow. The balance of the electromechanical type, isitiga to electromagnetic
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disturbances of the discharge, was used for the measurenidmat level of pulsations in
a supersonic flow inside the test section of this wind tunras «v 1%.

The total number of runs fulfilled in wind tunnel T-113 equajsproximately 110.
The same regularity was revealed during all these runs, lyaeeonsiderable decrease
of energy efficiency was observed while passing from the sagli¢h high initial values
of ¢, to ones with low values, in accordance with the predictiothefheat concept of
discharge influence on wave drag.

The variants of models involved in tests at M=4 are shown g Ei Models Al
and A2 have a semispherical blunting of the nose part [7],et30B1 and B2 have a
cone blunting of the nose part and differ by structural feeguModels A1 and B1 are
made of caprolon (polyamide 6.6), and models A2 and B2 areero&dadio ceramics.
The cylindrical part of the models has a diameter equal to #@ im addition, shown
in Fig. 1, is the profile of model B3. Its nose part is close te dptimum shape for
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FIG. 1. Variants of models in experiments at M = 4.
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M = 4 described by the equation [8, ® = 7%/, where R and z are relative coordi-
nates of the nose part. Models B1 and B2 (with cone bluntind)raodel B3 (with the
optimum nose shape) had been proposed by TsAGI as having \@kes ofc,. The
models with the semispherical and cone blunting are eqdipgth plasma generators
[10]. There is no plasma generator on the model with the aptimose shape.

Plasma generators consist of eight electrodes of the salagtponounted a flush
on the lateral dielectric surface of the model, and of onetedde of another polarity
representing a sharp metal cone, located in the model notePt@sma generators of
the A models are energized both from the source of a quasitaohcurrent (capacitor
bank) and from the source of an alternating current. Thehdiges for the B models
are realized only by an alternating-current source. Thetrtepotential between the
electrodes turns out to be insufficient for the breakdowmefdischarge gap while using
the source of quasi-constant current. The circuit layouhefplasma generators under
alternating current was established in such a way that the etectrode has the same
potential as the wind tunnel. One of the interesting rexfitests led by Klimov [10]
is that the discharges of the alternating current can buflovetr potentials than the
discharges of the direct current. This is the reason for dlaet energy consumption
while using discharges under alternating current.

The velocityIW of the incident flow at M=4 is equal to 570 m/sec, and the static
temperaturdy; and the static pressure are equal to 69 K and 29 Torr, regplctihe
unit Reynolds number is equal 3ol x 107 1/m.

The main results of the test analysis are shown in Figs. 2 amti3n Table 1. Par-
ticularly, shown in Fig. 2, is the dependence of the enerfjgieficy parameter on the

WAXIN [ , @
M=4 Semispherical

L thing
AC,JC,=0.05-0.08
Alternating current .

08 Efficiency loss

041 o
Cone blunting

R4 B T B

012 0.14 0.16 0.18 0.2 0.22 &y

FIG. 2. Parameter of energy efficiency versyscoefficient in experiments at M = 4.
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FIG. 3. Parameter of energy efficiency versyscoefficient in experiments at M = 4.

TABLE 1: Test analysis.

Nose part type Discharge type Czinit | Drag Ratio of the
reduction| decrease of drag
value work in unit
Acy /e, | time to power
(%) consumed

to generate
the discharge

WAXIN
Semispherical blunting Direct current 0.22 | 18 1.49
Semispherical blunting Direct current 0.192| 36 1.2
Semispherical blunting Direct current 0.196| 13.3 0.38
Semispherical blunting Alternating current| 0.22 | 6.8 1.56
Semispherical blunting Alternating current| 0.194| 11.3 1.86
Cone blunting Alternating current| 0.15 | 2.6 0.1
Cone blunting Alternating current| 0.155| 3.2 0.1
Cone blunting Alternating current| 0.122| 6.1 0.48
Cone blunting Alternating current| 0.128| 7.8 0.4
Optimal shape of the | — 0.095| — —
nose part without
discharge
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initial values of the coefficient,, of the models for the case when plasma generators are
energized from the source of alternating current. The efiicy parameter is determined
as the ratio of drag work decrease in unit tild& W at the discharge generation to the
power N supplied to the discharge. For the correct comparison, dkeewlere presented
for a short range of ratid¢,. /¢, = 0.05 —0.08, which is similar for different models and
close to the maximum values obtained for the models with dsempart cone blunting.

It is seen from these data that a sharp decrease of the efficgErameter occurs
while passing from the models with semispherical bluntiagihg sufficiently high ini-
tial values of coefficient, to the models with cone blunting possessing lower values
of ¢,, iIn compliance with the heat concept of discharge influenceave drag. Mean-
while, the model with the optimum nose part shape withowtpkgenerator has a lower
value of coefficient, than the models equipped with operating plasma generdibis.
fact is seen from the data shown in Table 1 and in Fig. 3, whHerevélue of the drag
coefficient at the discharge generation is plotted as aifumcf the drag coefficient for
the same models without discharge.

Similar results were obtained in the experiments at Machbmimequal to 1.78 —
2 (Ty =~ 160K, W = 500 m/sec). The comparison of the results for models having the
values of coefficient, within the range 0.14-0.2 with the experimental data for the
shortened model of the F-15 airctraft nose part havipg= 0.35—0.37 (Fig. 4) was
made. The former models are equipped with the combinationuifielectrode plasma
generator of current and erosion generator of plasma [1#dirTnitial values ofc, are
different due to either the design features of the insiatlabf generators in a model
or the progressive surface failure subjected by dischamyesise due to specially made
ledges. The second model is equipped with plasma gene@tarslifferent type [11].
Shown in Fig. 4b as an example is a variant of models with timeiggor similar to the

\2 _bs 4 = Fﬂj;/ l - i
e - I Sk
106 \\\
260 253
(@) (b)

FIG. 4. Variants of models in experiments at®P: (a) scheme of models with appli-
cation of the combination of erosive generator and direatecti generator (1, erosive
generator; 2, metal surface; 3, anodes of direct currerdgrgéor; 4, dielectric surface);
(b) shortened model of the aircraft F-15 nose part.
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another one applied in the tests at Mach number M = 4 (theheoighe knot of central
electrode equals 98 mm).

The experiments were implemented at static pressuresnwtitiei range from 100
Torr up to 300 Torr (from.33-10* Pa up tot- 10* Pa). The dependence of the efficiency
parameter on the drag coefficient for the range ofAc, /c, values from 0.045 up to
0.06 (these values correspond to their limiting valuesinbthfor the models presented
in Fig. 4a) is shown in Fig. 5. The importance of the choice sififficiently narrow range
of values of this ratio, similar for different models, beasmotably evident in this case,
since the high values of the efficiency parameter can be raadaior the model with
a bad aerodynamic shape [12]. The maximum value of ratip/c, for the last model
equals~0.05. As seen from Fig. 5, the efficiency parameter decresagesicantly while
passing from the model with a high initial value of the dragfticient to the models
with lower values; the same results from the heat influence&at. Meanwhile, in the
majority of cases, the TsAGI model with an optimal aerodyitaghape of the nose
part, whose contour is described by the relationghip z2/3, has the minimal value of
¢, Without additional energy consumption as compared toratiazlels, equipped with
operating plasma generators (Fig. 6).

Similar results were obtained at the installation of modkels wake of longitudinal
discharge with a low level of pulsations of current and of poaupplied to the discharge
generated in supersonic airflow [13]. The discharge geioeracheme is shown in a
Toepler picture (Fig. 7), where the dashed line designaiesantour of the electrodes.
The discharge is generated between a brass anode 1 instafieafiled support 2 with
the tip directed along the flow and duraluminum profiled supdcathode) with two

WAXIN [ AC,/C,=0.045 - 0.06 +

Efficiency loss

05 \\.'

M=178 ®

L & % 1y
0.1 0.15 0.2 0.25 0.3 Cy

FIG. 5. Energy efficiency parameter versyscoefficient in experiments at & 2.
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FIG. 6: Value ofc, coefficient at the generation of discharges versuwithout dis-
charge in experiments at M2: 1, model having a shape close to the optimal one; 2,
experiment data; 3, line of equal values of drag coefficieritls discharge and without

it.

FIG. 7: Toepler photography illustrating the scheme of dischamgygecation with low
level of pulsations of current and of power supplied to trszlarge.

ledges. The ledge that is closer to the upper electrode istfieaa reliable breakdown
of the discharge gap. After firing, the discharge is brougivtristream along the plate,
undergoes contraction at a certain length of the dischaage and closes up primarily
on the ledge located far from the anode. The discharge dug@gual to 1 A; the dis-
charge burning voltage is equal to 1 kV. Such a discharge masch smaller value of
current pulsations as compared to the discharges in whictiitharge channel crosses
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a supersonic stream at the current closing up from one etitio another one and in
which the current pulsations can amount to 40-50% from teeage value.

The tests were implemented in the supersonic wind tunn@M-dith flow size eq-
ual to 120<120x400 mm, developed by rectangular nozzle and walls of thditiaad-
joint with it. The level of velocity pulsations equal t00.6%. The low static pressure
was generated by means of a supersonic ejector. Unit Reynaldber Re varyied from
~0.9x107 up to~2.1x 107 1/m. The electrodes did not have galvanic contact with the
facility walls.

The tests have shown that the conditions of the most stabhénguof discharge with
a low level of pulsations of current3%) and of power«{5%) are achieved when the
distance across the flow between the points of dischargeection to the electrodes
does not exceed 1.5-2 mm, which seems to be the characteagius of the discharge
channel, and the discharge closes on the leading edge oattkddxlge of the cathode.
At discharge shift outside the cathode, the pulsations weat increase up to 5%, and
the pulsations of power increase up to 7.5%.

The qualitative investigations of the reduction tempertistribution in a wake
behind the discharge in the area without discharge whermtidels are installed have
shown that the area heated by the discharge in the planenoicpkar to the flow is of
elliptical shape, the major axis of ellipse being perpenldicto the cathode plane, which
is related to the character of the flow over the cathode letig@a.result of investigations
of total pressure distribution in a wake behind the disobaitgvas determined that the
flow was supersonic, with the value of Mach number in the cewitdistribution equal
to ~1.3-1.6.

The investigations implemented have demonstrated an tanidieature of electrical
discharge in gas flow, namely, the discharge is able to aynjblé density pulsations of
neutral flow, which appear inevitably; for example theresptibns can arise due to
the flow separation or due to the development of the flow vostexcture—even with
profiled electrodes. Taking into account that the flow is &a) this means there are
zones with a different gas temperature in the discharge area

Some results of investigations of the influence of supecsfioiv heating by longi-
tudinal discharge on the drag of models of different geoynétit of similar midsection,
that are installed in a wake of discharge, as well as the atialu of the energy effi-
ciency, are shown in Fig. 8. The results obtained conform teehe prediction of the
heat concept of discharge influence on aerodynamic effiictsably, the effect of the
influence of the energy supply decreases whjleof models is diminishing from the
values about 1 (semispherical blunting, cone with apeagie equal t@x = 80 deg)
up to the value of0.3 (cone with aperture angiex = 40 deg). The efficiency of the
energy supply decreases even more sharply. For the modélsiigh value ot the
valueAXW/N increases as the ratio/d., magnifies, wheré is the model diameter,
dan 1S the channel diameter. It is similar to the calculation, [15] fulfilled on the basis
of the gas dynamics equations with energy supply, i.e., da¢ toncept.
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FIG. 8. The variation of drag force (a) and energy efficiency (b) atitistallation of

models in a wake behind the longitudinal discharge versagptwer supplied to the
discharge: 1, semisphere; 2, cone; 3, semisphere; 4, cone=ab8 Torr; 5, cone at
pst = 85 Torr.

At the same time, a series of effects of the discharge infri@nche wave drag can
be noted that are likely to refer to the nonthermal effectamily, in the case of the
discharge creation on the models these effects are the diepem of the drag reduction
effect on the polarity of the electrodes, and the decreasmeigy consumption at the
feed of discharges by alternating current and at their po#sidic feed. Several authors
relate the features that take place at the simultaneougcapph of electrical discharge
and electron beam to the nonthermal effects [16,17]. Thesatnue for the possibility
of initiating a strong electric field at shock waves that aatuence the gas dynamics of
the flow [18, 19].

In the tests fulfilled of the first and second types, there waspecial investigation
of Mach number influence on the amount of wave drag reductiotheE models of sim-
ilar geometry with the same energy supply to the dischafgasexample, the geometry
of models for the tests in wind tunnel T-113 at different Mamimbers was selected
to be close to the geometry of models with an optimum shapeosé part and to be
acceptable with technological possibilities of plasmaegators arrangement. These ge-
ometries differ substantially for different values of Maalimber. The experimental data
on Mach number influence on energy efficiency of the methot apiplication of gen-
erators with plasma jet blowing toward the airflow are corgdiin Ref. [11]. As follows
from Ref. [11], at M> 1.5, there is a substantial decrease of the indicated value.

Investigated in the experiments with longitudinal disgeaapplication was the time-
resolution pattern of supersonic flow over models. This flo@xposed to the mentioned
discharge. The flow pattern was registered by the |IAB-45ttinsent of a Toepler type
with its time sweep done by a high-speed photochronograghatipg at a time mag-
nifier mode. In addition, the flow pattern photographing waglfed as a starting point
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for our investigations by the same devices at an exposum @ir-0.01 s. The tests of
this type, but otherwise stated, were fulfilled at TSAGI joegly by Kalachev and by
Alferov.

The discharge was generated in the way shown in Fig. 7. Tletredles and the
power supplied to the discharge were installed so that tmenmim of pulsations was
realized. The distance between the anode tip and the leadigg of the cathode ledge
situated far from anode was equal+@0 mm. The Mach number of the cold flow was
2.5. The static pressure of the facility test section ®&s< 10® pascal (58 Torr). Used
as the models were semispheres of 15 mm diameter and a cang hasemiapex angle
equal to 20 deg and a base diameter equal to 6 mm. In all the tbst models were
installed on the axis of the facility test section at a diseaequal to 20 mm from the
cathode rear face.

During the implementation of the time-sweep tests, thetdiglof the Toepler de-
vice worked in a pulse regime and was activated from the dégikechigh-speed pho-
tochronograph camera simultaneously with the start of tiege sweep on the photo-
graphic film. The high-speed photochronograph camera tgzkvath a two-row insert;
only one row of the lens was used.

Toepler photos of the cold flow over the model obtained by ra@dithe high-speed
photochronograph reveal classical shock waves at all expdanes. On the photos of
the flow over the same models with a heat supply inside the floméans of longitudi-
nal discharge (the discharge current equals 1 A, the digehanltage equals 1 kilovolt)
and with longer exposure timé\t~0.01 s), the flow pattern in the central zone (where
the flow is heated) turns out to be blurred, like in some otherke. But the unsteady
flow pattern was registered clearly (Fig. 9) while decregghe exposure time up to
~1.5 microsec at a time interval between the starts of thecadjdframes equal te'3
microsec. The period of pulsations of this pattern was ctogbe period of pulsations
of the flow density gradient, measured during the tests us@gombination of Toepler
device and photoelectric multiplier with a rather widegarfrequency characteristic.
Besides this, for the flow heated, the shock wave in the dep#id moved forward,
which corresponds to a decrease of the Mach number. Thisvioehat the flow was
observed only in the central (i.e., heated) flow part, whiels warying with time under
the influence of the discharge. Given the constant presthiseindicates a heterogene-
ity of temperature, density, sound speed, and Mach numbagahe flow. This gives
arise of spatial zones with high temperature, which altermath zones of lower tem-
perature, and to the corresponding moving alternatingigegesadients. This leads to
an unsteady flow pattern. When such flow inflows on the model,atlea in front of
the body looks like a zone of the shock wave “disappeararfadéieimethod of optical
imaging has a large averaging time. The gas-dynamic asatyshe periodic inflow of
zones with different values of temperature and of densityhenshock wave, accom-
plished by Kuznetsov (TsAGI), conforms satisfactorily e texperimentally observed
picture of the phenomenon. A possible cause of the unsteadhidlthe mechanism of
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FIG. 9: High-speed sweep of flow pattern over model installed in aevedkongitudinal
discharge, illustrating unsteady behavior of flow.

heterogeneous heating of the flow, typical for dischargls.idnization-overheating in-
stability can be such a mechanism [20]. Therefore, the tEsis and their analysis have
shown that the cause of this effect consists not in the desgpmce of shock waves in
front of the body under the influence of electrical dischasgancident flow, but in the
appearance of substantially unsteady flow over the body.

2. CONCLUSIONS

The tests fulfilled proved the heat concept of electricatitisge influence on the wave
drag of bodies to be essential and basic one at the valueagtdefficients:, and static
pressures that were of interest for aviation applicati@sing the tests with TsAGI
models that had the optimum shape of the nose part and thatmeérequipped with
plasma generators, the lowest values of the wave drag deaffizere obtained in most
cases as compared to the models that were equipped withtioggpasma generators.
It was shown that the cause of the disappearance of shoclswdlieenced by electrical
discharges on supersonic flow demonstrated in a seriesestigations could be the ap-
pearance of substantially unsteady flow over models caus#ttldevelopment of alte-
rnating zones with different densities and temperaturggsefin the incident flow.
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It should also be noted that the conversion of the energyegtactrical field that
maintains the discharge in the airflows into the heat eneapggs through a series of
stages. Therefore, it significantly decreases the effigiefithe process. At the values
of the ratio of electric field intensity to the concentratiohneutral molecules that are
typical for discharges in air, up to 50-80% of this energysgiest of all into the exci-
tation of the vibrational degrees of freedom of the nitrogaslecules [20]. Then, this
energy relaxes gradually into translational degrees @fdoen. The rest of the energy
goes into the excitation of the vibrational degrees of foeeaf the oxygen molecules,
the lowest proportion of the energy going into the excitatid the rotational and trans-
lational degrees of freedom (i.e., directly of thermal gn@$ie speed of the relaxation
processes depends on the gas temperature in the dischatgesan be low at the initial
stage of heating (especially for nitrogen) [21]. Shown expentally in Ref. [22] is the
fact that the ratio of the energy going into the heating tath& discharge energy in the
nitrogen can be on a level of 10%. This ratio is taken to be lelgu20% in many nu-
merical calculations as the result of the averaging of difiie experimental data. These
values show that the essential energy release occurs deamstbut not in front, of the
body.
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INVESTIGATION OF THE SONIC BOOM OF
THE OBLIQUE WING AIRCRAFT

Kyuchul Cho
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The characteristics of the lift-drag ratios and sonic boom intensity of the aircraft, consisting of the
oblique wing, fuselage, and vertical fin, were investigated at M o, ~ 1.2—1.98. The investigation
results were compared to the results, obtained for the Tu-144 aircraft, having the same fuselage and
fin. The Tu-144 aircraft has the same wing area as the aircraft with the oblique wing.

KEY WORDS: oblique wing, aerodynamic characteristics, sonic boom

1. INTRODUCTION

It is known that at transonic and small supersonic flow vé&§pthe aerodynamic char-
acteristics of aircraft with the oblique wing have spec@dantages in comparison with
aircraft with the symmetrical wing. Given in Ref. [1] is théng drag equation, taking
into account friction, induced, and wave drag separately,

Y2 MZ —1Y?2 128¢V?

X =cqS —
quw+7rql+ 2mq a2 T x5

(1)

wherec; is the friction coefficientg is the dynamic pressuré,, is the wetted wing area,
Y is the lift, [ is the wingspan, M, is the free-stream Mach numbéf, is the volume,
andz; andzx, are specified by the equations
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where0 is the inclination of the cutting Mach plane an@®) is the length of an equiva-
lent axially symmetrical body.

The first term in Eq. (1) specifies the friction drag, the secterm corresponds to
the induced drag, the third term corresponds to the wave dinago the lift, and the
fourth term corresponds to the wave drag due to the wing vefurt small supersonic
Mach numbersz; andxs are approximately equal to the length, for a symmetrical
wing with a great sweep angle and to two lengths for an oblique wing. It follows
from Eg. (1) that the oblique wing wave drag due to the liftasiftimes less than the
wave drag due to the lift of the symmetrical wing, and the epldi wing wave drag due
to the volume is 16 times less than that one of the symmetsitaj under the condition
of equal area and span. Shown in Fig. 1a is the dependence bftitirag ratio on the
Mach numberM, ~0.6—1.4) for the oblique and symmetrical wing [2]. One can see
that the oblique wing with the ratio of the ellipse sides: =10:1 and with variable
sweep has better characteristics than the symmetrical withgn the whole range of
Mach numbers.

The method, based on the solution of Navier-Stokes equati@s used for the cal-
culation of sonic boom intensity of aircraft with symme#ii@nd oblique wing [3]. This
method requires the creation of a special computational mgiar the aircraft surface
to take into account properly the viscosity effects and @i file velocity profile in the
boundary layer. For this purpose, the value ofgtigoarameter, specified by the distance
between the surface and the first grid node, is tecl#00, and at least 10 layers should

atz=10)

i i
0,6 0.8 1.0 1.2 14 M

(a) (b)

FIG. 1. Comparison of the lift-drag ratio of the elliptic obliguecasymmetrical wing
depending on Mach number: (a) lift-drag ratio as a functibach number [1]; (b)
geometry of the symmetrical and oblique wing.
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be across the boundary layer. In this paper, we used the mbddurbulent flow SST
with the initial fractional intensity equal to 5% and eddgaeosity ratio equal to 10 in
all cases while calculating the flow over an aircraft under filil-scale conditions for
Reynolds numbers Re 3 x 10% [4].

2. COMPARISON OF AERODYNAMIC CHARACTERISTICS OF THE
SYMMETRICAL AND OBLIQUE WINGS

The flow problem is solved for two oblique wings and one symmicatwing. The wing
surfaces are constructed by NACA64412 airfoil (Fig. 2aje@€in Table 1 are the geo-
metric parameters of the wings and of the computational gitié area of all the wings
equals 501 iy the maximum thickness ratio of the airfoils being equal 2861 The

0:” Airfoil
=0.05 5~ NACA 64412
Zj —Y
G0
=
g
7|
36
(a)
&, ¢ -
0.045 %=1 i 14 i
i \§ | 21—
3 AN B0 10 +—Froe)l - - ] .
008 —4—r L o /‘x
0023 [}—,_’__\ k“nh" | | if’p § -lr.._\_\_
0.02 7 i 6 J ﬂ-‘ =
0.015 +—f—— g q T .
0.01 4 f ¥ =|50= . 3 T — i % =70 J'/"‘.\l: .":=60
T I/
0‘ T D T
12 1.4 1.6 1.8 1.98 )‘{.—, 12 14 16 1.8 1.5 }“{.—.»
(b) (¢)

FIG. 2. Comparison of the lift-drag ratio of the oblique and symicatrwing: (a) the
schemes of the symmetrical and oblique wing; (b) the wingdig) the lift-drag ratio.
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TABLE 1: Wing types and parameters.

Wing type/- parameters Symmetrical wing Oblique wing
x = 60 deg x = 60deg| x = 70deg
Airfoil type NACA 64412 (maximum thickness ratio 12%)
AreasS,,, m? 501
LengthL,,, m 40.67 62.35 67.66
Spanl, m 36 36 24.63
Aspect ratioA 2.59 2.59 1.21
10.35 (aty = 0)
Mass, t 150
Moo = | 1.2 14 1.6 1.8 1.98
% Cy = 0.287| 0.211| 0.162| 0.128| 0.106
Form Tetrahedral grid
Grid | Number of nodes 571,348 (symmetry) | 1,152,486 | 1,156,159
Number of elements 1,718,338 (symmetry) 3,461,882 | 3,498,721

obligue wing aspect ratio is equal to 10.35@t 0 (y is a sweep angle), the symmetrical
wing aspect ratio being equal to 2.59 and coinciding withahlique wing aspect ratio
aty = 60 deg. The lift coefficient is specified at various Mach nerstfrom the condi-
tion of flight at an altitude of 16100 m and the aircraft masks8 t. Cited in the bottom
lines of Table 1 are the tetrahedral grid parameters. Theatational area, aimed at the
calculation of the flow over the symmetrical wing, has the syatry plane and therefore
one calculates the flow over a half wing. The oblique wing issidered completely.
Shown in Figs. 2b and 2c is the dependence of drag and li§-d#o on the Mach
number. Aty > 60 deg, the Mach number, being normal to the leading edge, 1s
within the range of the free-stream Mach numberg M 1.2—1.98, but aty = 60 deg
and M,, > 1.8, the Mach cone is tangent to the oblique wing leading edgeM At=
1.2 and 1.98, the symmetrical wing surface is streamlined witflow separation. The
separation arises at M=1.4, 1.6, and 1.8 after a shock wave in the narrow zone on the
surface. The separated flow appears on the surface of thlguebhNing with the sweep
angley = 60 deg at M>1.4 from under an intense shock wave; and as the Mach number
increases, the separated flow area expands slightly. Im targeovide lift aty = 70 deg
and at the free-stream Mach numbers equal to 1.2 and 1.4egagles of attack—
«=9,6.42 deg, accordingly—are needed. For this reason, the sepamatises on the
wing leading edge, and the wall streamlines, arising froeml#ading edge in front of
the separation area, pass through the arc trajectory osewitig surface to the leading
edge behind the separation area and cause a new separatcio appear. Because of
this fact, the drag of the obliqgue wing with= 70 deg increases abruptly atM=1.2.
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The separated flow is not observed ai,M 1.6 on the surface of the wing with = 70
deg and only at M, = 1.98 does the flow on the wing rear accelerate and separate after
the shock wave in a narrow zone. At.M~ 1.2 —1.98, the Mach cone is not tangent
to the leading edge of the oblique wing with= 70 deg, and Mach number normally
to the edge is M < 0.7. Thus, the drag of the obliqgue wing with= 70 deg decreases
abruptly as the free-stream Mach number increases. AtML.2, the lift-drag ratio of
the oblique wing withy = 60 deg is better than the lift-drag ratio of the other typks o
wing, and as the free-stream Mach number increases, thgueblving withy = 70 deg
has the lowest drag.

The oblique wing has a peculiarity, consisting in the faat the lift is created mainly
on the wing rear. This peculiarity results in the creatiom obll moment with respect to
thexz-axis.

3. COMPARISON OF THE SONIC BOOM INTENSITY OF AN AIRCRAFT
WITH THE OBLIQUE WING AND OF THE TU-144 AIRCRAFT

For the analysis, we chose the conception of the entireftingt wing, varying its sweep
from x = 0 deg for subsonic flight up tg => 60 deg for transonic and supersonic flight.
For the investigation of the sonic boom intensity, we chbgseoblique wings with sweep
anglesy = 60 deg for M, = 1.2 andy = 70 deg for M, = 1.6, 1.98, installed on the
fuselage of the Tu-144 aircraft by means of a pylon (Fig. 8fed in Table 2 are the
parameters of the Tu-144 aircraft [5] and of the aircraftsisting of the oblique wing,
fuselage, and vertical fins.

The oblique wing axis of rotation is situated at a distanc84i from the fuselage
nose. The length of the aircraft with the oblique wing insesas the sweep angle
increases, and foy > 60 deg, it is greater than the length of the Tu-144 aircrdfie T
wing aspect ratio of the Tu-144 aircraft is less than the vasgect ratio of the aircraft
with the obliqgue wing withy =60 deg and greater than the aircraft with the oblique
wing with x =70 deg. Shown in the bottom lines of Table 2 is the tetrahejiid size.

In order to calculate the flow over the Tu-144 aircraft, onesuthe unstructured grid,
taking into account the model symmetry. The aircraft wigndblique wing is considered
completely.

4. COMPARISON OF AERODYNAMIC CHARACTERISTICS

The flow over the aircraft with the oblique wing with=60 deg is calculated for the free-
stream Mach number M=1.2, and the flow over the aircraft with the oblique wing with
x=70 deg is calculated for M =1.6 and 1.98. The calculation results are compared to
the data obtained for the Tu-144 aircraft. ALM=1.98, a narrow separated flow arises
at the obliquey =70 deg wing tip after an intense shock wave. Shown in Figs3he
pressure distribution on the oblique wing surface at M1.2. Pressure drops are more
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FIG. 3: Comparison of the drag of the aircraft with the oblique wimgl af the Tu-
144 aircraft: (a) the schemes of the aircraft with the oldigquing and of the Tu-144
aircraft; (b) pressure distribution on the surface of threraft with the oblique wing at

M = 1.2; (c) drag as a function of the Mach number; (d) lift-drag rat®a function
of the Mach number.

intense on the wing part situated downstream. Therefoediftion this part of the wing
is greater, which leads to the rise of the roll moment. Thelage slightly influences the
distribution of pressure drop on the aircraft with the obéigving. Shown in Fig. 3cis the
dependence of the drag of the aircraft with the oblique wing) af the Tu-144 aircraft
on Mach number. One can see that at M 1.2, the drag of the aircraft with the oblique
wing is less than the drag of the Tu-144 aircraft. The consparf the lift-drag ratio is
presented in Fig. 3d. At M =1.2, the lift-drag ratio of the aircraft with the oblique wing
(¢y/cz=10.76) is greater than that of the Tu-144 aircréd}, /c, =8.21) by 2.55. As the
Mach number increases, the lift-drag ratio of the Tu-144raft becomes greater than
the lift-drag ratio of the aircraft with the oblique wing. M., =1.6, ¢, /c, =9.02 for the
aircraft with the oblique wing, and, /c, =9.09 for the Tu-144 aircraft. At M, =1.98,
the difference in the lift-drag ratio is equal to 0.95.
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TABLE 2: Aircraft parameters.

Parameters Tu-144 aircraft Oblique wing aircraft
x = 60 deg x = 70 deg
Aircraft lengthL, m | 64.45 66.1 68.44
Wing areaS,,, m* | 505.868 501
Airfoil type Special NACA 64412
Spani, m 27.8 36 24.63
, . 2.59 1.21
Wing aspect ratio) | 1.53
10.35 (aty = 0)

Mass, t 150
Flight altitude, m 16,100
Mew=|12 |16|198 | M,=1]12 |16 1.98

Cy

cy = | 0.285 0.16| 0.10§ ¢, = 0.287 0.162| 0.106
Form Tetrahedral
Grid | Number of | 1,217,696 (symmetry) 1,724,604 1,846,352
nodes
Number of | 4,193,568 (symmetry) 5,141,104 5,466,192
elements

5. COMPARISON OF THE SONIC BOOM INTENSITY

The intensity of the local sonic boom from the aircraft wilie toblique wing is calcu-
lated during the flight at the altitude 16,100 m, at Mach nensbl.2, 1.6, 1.98, and
aircraft mass 150 t. The calculation results are comparétttdata obtained for the Tu-
144 aircraft. Shown in Fig. 4a is the pressure distributiartte horizontal plane under
the Tu-144 aircraft at M, = 1.2, and shown in Fig. 4b is the pressure distribution under the
aircraft with the obliqgue wing also at M=1.2. It is evident that the maximum distur-
bance distribution for these aircraft markedly differschse of the Tu-144 aircraft, the
maximum disturbance area is situated under the wing. In @& oblique wing, this
area is situated upstream, where the shock waves arisimgtfre fuselage nose and the
wing forepart join. The pressure distribution integratadang the wingspan allows one
to specify the equivalent axially symmetrical body areawdive S’ (Fig. 4c). Shown

in Fig. 4d is the curve of thé’-function, and shown in Fig. 4e is the sonic boom inte-
nsity of the Tu-144 aircraft and of the aircraft with the gjoie wing. The maximum
overpressuré\p.x in a shock wave is equal to 121 Pa for the Tu-144 aircraft and 81
Pa for the aircraft with the oblique wing, with the minimumeopressure\pi, being
equal to —107 Pa for the Tu-144 aircraft and —56 for the dirgvah the oblique wing.
The difference iM\p,..x between these two aircraft is equal to 40 Pa, and the differen
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FIG. 4: Sonic boom intensity of the aircraft with the oblique wingdaof the Tu-144
aircraft at My, = 1.2: (a) pressure field of the Tu-144 aircraft; (b) pressure fulthe
aircraft with the oblique wing; (c) distribution of the egalent axially symmetrical body
area derivativg.S'oq) ; (d) distribution of theF-function; (e) overpressure curve in the
N-shaped wave.

in Apmin is equal to 51 Pa. This great difference results from thefit distributions
of the cross-sectional area and of the lift along thaxis. If the entire wing is situated
inside the Mach cone, the disturbances, caused by the eblidng lift, will spread in
a vast area along the-axis. The variations of the area derivatige, of the F-function
and of the overpressure of the sonic boom are shown in Figosslf, = 1.6, and in
Fig. 5b for M, = 1.98. In addition, the disturbance distribution pattern on theneo
putational plane and the form of the curve of the equivaleddlly symmetrical body
derivativeS’., do not differ from the calculated ones at the flight mode witl M1.2.
Shown in Table 3 are the maximum and minimum sonic boom iittea®f the aircraft
with the oblique wing and of the Tu-144 aircraft atM=1.6 and 1.98. At M, = 1.6,
the difference in the maximum intensityp,,.. is 37 Pa, and the difference in the min-
imum intensityApnin is =53 Pa. At M, = 1.98, the differenceAp.,.x = 38 Pa, and at
Apmin:kr)o-
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Sonic Boom of the Oblique Wing Aircraft

FIG. 5. Sonic boom intensity of the aircraft with the oblique wingdaof the Tu-144
aircraft at M, =1.6 and 1.98: (a) sonic boom intensity atM=1.6; (b) sonic boom in-

tensity at M,, = 1.98.

TABLE 3: Maximum and minimum sonic boom intensities.

Moo Aircraft Apmax, Pa Apmin, Pa
16 Tu-144 114 -99
' with oblique wing 77 —46
Tu-144 115 —101
1.98 with oblique wing 77 —51

6. CONCLUSION

Investigated in the present work was the supersonic ainertif entirely rotating oblique
wing, the wing area, the fuselage, and the vertical fins ottvlvere equivalent to the
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Tu-144 aircraft. The aircraft with the entirely rotatingngi has a remarkable advan-
tage in the sonic boom intensity in comparison with the catieeal Tu-144 aircraft
at all Mach numbers, and an advantage in the lift-drag rdtisnaall Mach numbers
(M =1.2). However, the aircraft with the entirely rotating wing stilhs some prob-
lems to solve concerning the engineering solution of thatiant gear and the roll and
longitudinal trim.
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The kinetic equation describing translational and rotational Brownian motion of nonspherical convex
solid particles in moving highly rarefied thermally inhomogeneous monatomic gas is derived. The
regime of flow around the particles is free molecular, i.e., the characteristic dimensions of particles are
much smaller than the average free path of the gas molecules. The interaction between the particles
and their effect on the gas phase be neglected. The specular-diffuse law of interaction between the
molecules and the particle surface is supposed. The temperatures of particles are equal and differ
from the local gas temperature. Such a thermal nonequilibrium leads to the violation of well-known
relations between the diffusion coefficients in the spaces of translational and angular velocities and
the coefficients of forces and momentums acting on a particle. The coefficients in the Fokker-Planck
collision operator entering into the kinetic equation are calculated for the particles in the form of
the bodies of revolution. In the case of particles without longitudinal symmetry (circle cone of finite
length, hemisphere etc.), the Fokker-Planck collision operator contains the second mixed derivative
with respect to the translational and angular velocities.

KEY WORDS: kinetic Fokker-Planck equation, nonspherical thermally nonequilibrium
Brownian particles, fine-dispersed gas suspension

1. INTRODUCTION

During the derivation of the Fokker-Planck operator forBnéan particles, the assump-
tion of particles being in thermodynamic equilibrium witietgas was formerly used
[1, 2]. This fact did not allow to take into account the effe€thermal nonequilibrium,
i.e., the difference between temperatifeof particles and local gas temperatdreln
addition, sufficiently symmetric particles were considerso the force and the torque
did not depend on the components of angular and of trangédtieelocity, respectively.
Therefore, the Fokker-Planck operator did not contain #eoied mixed derivative of
the distribution function with respect to translationatlaangular velocities.

1948-2590/09/$35.0®)2009 by Begell House, Inc. 743
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Steady increase of interest in the investigations of gapesison flows (i.e., the
flows of mixtures of gas with solid or fluid particles) is caddsy corresponding de-
mands from aerospace engineering, applied chemistryufziop engineering, etc. Refs.
[3-5]. In many cases, it is important to consider the nordmitim due to the heating
(or cooling) of particles, from chemical processes on thanfaces, etc. The theory of
gas suspension mechanics is phenomenological, and soesgtist empirical. The ar-
eas based on kinetic theory [6, 7] are developing in orddr tmtlerive the equations of
motion of gas suspensions as a continuum and to calculatarteec coefficients and
the relaxation terms as it is done in the kinetic ideal gasrthéMoreover, in some cases,
the investigations of gas suspension flows are to be basedl@cutar-kinetic concepts.
Recently, these areas have been stimulated for the devetdpoy the investigations
of nanoparticles [7]. However, there are a lot of assumptionthe kinetic theory of
gas suspensions that is known to be explained by the complaixihe processes under
consideration.

The most important method of the theory accuracy analydiseisonsideration of
the simplest cases when it is possible to create convinciathematical models. The
striking example is described in Ref. [8], where the smalameter expansions of the
Boltzmann integral of collisions between heavy particled bght ones is implemented
on the assumption that all the molecules are elastic sph&sasresult, the kinetic Fok-
ker-Planck equation is derived from the kinetic Boltzmanuagion for Brownian free
molecular spherical particles whose surfaces the gas mekmteract with according
to the specular reflection law. However, it was used to camdide kinetic Boltzmann
equation to be inapplicable for the description of Brownmation of particles, being
due to the collective (and not binary) action of medium moles; therefore, the result
of Ref. [8]) enlarged the representations about the rangeifcability of this equation.
This result can be generalized for taking into account teenlophoretic force acting on
a specular reflecting sphere in free molecular conditioms, &t a Knudsen number of
the Brownian particle K> 1, by applying the equations from Ref. [9] obtained for the
special case of molecules considered as elastic spheres.

After that [10], the natural question arises of whether tlo&ker-Planck kinetic
equation can be obtained in a similar way for other laws adranttions of molecules
of surrounding gas with the solid particle surface (instehthe specular law), espe-
cially for the important diffusion law from the Boltzmanype equation. By definition,
in the Boltzmann-type equation, the convective part edgiesollision operator, char-
acterizing the difference between the number of particiesring and outgoing from
the phase space element. It is required to construct thisitmpeheory on the basis of
the free molecule flow theory with further application of #mall-parameter expansions
by analogy with Ref. [8] assuming that the collisions of gadeuules with the particle
surface are instant (i.e., the collision time is assumedetmdgligibly small in com-
parison with characteristic times of translational anetional motions of particles), so
that the operator is calculated at a fixed particle oriematThe heating (cooling) of
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the particle does not crucially transform the charactetefihteraction processes be-
tween the gas and the particle; therefore, the temperatdribe particles are assumed
to be identical and to differ from the gas temperature. Tac €nables to investigate
the thermal nonequilibrium influence on the operator cadefiits and to use the results
of the investigations for experiments on the problem of igpility of Boltzmann-type
equations.

Such a program is realized in Ref. [10-12] and in the presentwn each of them,
the major result for this mathematical model is underlineginely, in the absence of
thermal nonequilibrium, i.e., at the equality of the tengberes of particles and of gas,
the equations obtained turn into the well-known kinetic atguns for Brownian free
molecular particles determined by means of principallfedént techniques. This shows
that Boltzmann-type equations are applicable for the déawm of kinetic equations for
Brownian free molecular paricles.

The kinetic theory of the Fokker-Planck operator for fredenolar thermal nonequi-
librium particles has been developed recently. At firsts thieory was developed for a
spherical particle in stationary homogeneous gas at tiesdiflaw of the reflection of
gas molecules from the wall [10], and then a generalizat@slieen carried out for the
case of a moving gas with a temperature inhomogeneity apdgwutar-diffuse reflection
law [11]. After that, the same statement of the problem has lextended to nonspher-
ical particles [12], where the coefficients in the soughtraf are calculated for the
particles taken as the rotational bodies with longitudsyahmetry. [According to the
terminology of Ref. [13], such bodies possess a symmetryeptaat is perpendicular to
the axis of symmetry; for example, spheroids [12]. In thise;ahe collision operator
does not contain term with the second mixed derivative. Miaénonequilibrium leads
to significant variations of known expressions for the diffun coefficients in the spaces
of translational and rotational velocities of particleserms of the coefficients of forces
and moments acting on moving particle. Generally speakimggcdegree of this variation
depends on the accommodation coefficient and on the shapeaofiele [11, 12].

Stated below in more details than in Ref. [12] is the derbraf the kinetic equa-
tion describing translational and rotational Brownian imotof free molecular particles
in a nonhomogeneous gas with the parameter of thermal niibeigun being not equal
to unity T = 7,,/T # 1 and at an arbitrary law of interaction between gas molecules
and a particle surface. Next, the specular-diffuse law taraction is used, with only a
slight nonhomogeneity of the gas temperature being coreidd he integration in mul-
tidimensional quadratures contained in the collision afmeris carried out with respect
to the relative velocities of molecules before and after ¢dblision with the particle
surface element. Final explicit expressions are obtained hemisphere and for a cir-
cular cone when the second mixed derivative of the disinbufunction appears in the
Fokker-Planck operator.

As before [10-12], the density of the particulate phaseefabdy of particles) is
assumed to be so small that the collisions of particles agiditifluence on the flow pa-
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rameters of the carrier phase (the gas) are inessentiain@kEnum particle dimension
d., is much smaller than the mean-free-path length of molecblesmuch larger than
the diameter of a molecule, so the particle may be assumed ¢orbacroscopic body
interacting with the gas by the laws of free molecular floves Hrevity, the particles at
such conditions are called the free molecules [11,12]).

The particles are assumed to be convex, solid, and mass mperature homoge-
nious. The velocity of the gas I3 in a fixed frame of reference, and its mass density
p and temperaturé’ are constant at a length abalyt. The differences of characteristic
phase velocities are much less than the characteristiméierelocity of the molecules.
The gradientVT is set away from the particle, with the thermophoretic fairegulting
from it.

Some errors made previously in Refs. [10-12] are correcteeldfter in this work.
Basic misprints [10, 11] are indicated in Refs. [11, 12]pexdively. In the first equation
(2.5) of Ref. [12],¢ — —A¢/(5nkT'), the minus sign must be omitted. The errors in
equations are most numerous in the English version of R2J. [1

2. KINETIC EQUATION

The assumptions [10-12] applicable to the derivation otBoann-type equation are
used. The time of interaction (collision) of the moleculéhna particle surface is much
shorter than the characteristic time of variation of thetiplr distribution functionz,.
The variation of particle orientation during the collisiaunessential, so the operator
of collisions is derived at constant values of Eulerian aagMeanwhile, it is possible
to involve the known results from the kinetic theory of gasgisting of nonspherical
molecules that are considered within classical mechatigks [

The variation of the distribution functiof, = F, (r,t, &,, w,, &) in a phase space
element is described by the following expression:

DEFdrdtdé,dwpda = (Ay — A_) drdtda = Jdrdtd€,dw,da (2.2)
The convective operatd F), is determined by the following equation [14]:

_OF, 0
@Fp—ﬁJra
s
ot

The valug(A; — A_) is equal to the difference between the number of particlesnn
ing and outgoing from the phase space element during theuiteat constant values
of Eulerian angles. This value determines the operator isioms .J using the second
equality of Eqg. (2.1).

O (i, Fy) + 2 - (&F)

0
- (&pFp) + 5 - (PF) + Bw, o

o,

2.2)
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There are the following notations in Egs. (2.1) and (2£2)is a center-of-mass ve-
locity of a particle relative to the fixed frame of reference, is its angular velocityr
is a radius vector of the center of masss a time;« is a vector whose components are
equal to Eulerian angle is an external force related to the particle mass

Initiating calculation of the differenceA — A_), let us introduce the velocities of
particles and of molecules relative to the local gas veyddif11] in order to take into
account the motion of gas,

W,=§-UW=£(£-UU=U(r t)

The equations connecting the velocities of molecules anghdicles before collision
with the same variables after collision are as follows:

W’:W—%, W’p:Wp—i—mgp, w;:wp+1_1-[x><G] (2.3)
Here,m, m, are the masses of a gas molecule and of a particle, respgctive stroke
designates the values after collisidV,’, W are the relative velocities of molecules after
collision and before itG is a momentum transmitted during collisionis a tensor of
inertia of a particle relative to the moving frame of refererstarting in its center of
mass;x = Re is a radius vector of an arbitrary point at a particle suriadéis frame of
reference;R is a length of radius vector (variable over the particle acefin contrast to
the sphere [10,11]); ansis a corresponding unit vector. By definitidh] ! =E, where
E is a unit tensor, and symbd'~! introduces a tensor inverse to tenJorThe point
signifies the scalar product of vectors as well as the simphe() product of a second
rank tensor by vector or by a second rank tensor; two poigtsfgithe double product
of second rank tensors, for example,n, T - u, T - T/, T : T’ respectively, where, n
are vectors, and” is a tensor. The sigix signifies the vector product that is put in
square brackets when it is a factor in an equation, for exaniplx n]. Applied for
dyads are common notationsl, nn, etc. Other factors are put in brackets if necessary;
the expressiofl : (T’ - uu) is a double product of tensdr by a tensor equal to the or-
dinary product of tensol’ by a dyaduu. The following symbols are also applicable
later (¢ is Boltzmann constant):

g=W-v, g=W-v, v=W,—-xxw, Ag=g —g, 04
S =m, It [xxAg], e=m(m,+m)', w=em, h=2kTm! 4

The exclusion of momentur@ from Eq. (2.3) is fulfilled earlier [12]. As a result, the
following relationships are found:

(W)= (3w smm(12) 025

W), = W, + I {xxQem, — [x x ¥] E},
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Q=—ex(-lexAg]), T=ex (M -e), M= (E+pl 'R},

E= {1 —x (T [IT-x])u}  {x-T°1 (I [x x Ag])}. (2.5)

The number of collisions of molecules having the velocifresn the element/W with
the particles having the velocities from eleméiW ,dw,, is equal to

In -g| f(r,t, W)dWdSF, (r, t, W,, w,, &) dW,dw,dxdrdt

Here,n is an external normal unit vector to the particle surfaceneletdS and f is a
distribution function of molecules. Furthermore, for kitgvthe arguments, ¢ in the
distribution functions will be omitted.

When the molecule impacts with a particle, the velocity efltiter does not change;
therefore, the argumeiat in the function of the distribution of particle, is also omit-
ted.

The probability of the fact that the molecules after reftfrom the elementS get
relative velocities from the elemedg’ is P (g, g') dg’, whereP is related to the flow
of incoming molecules, i.e., the total probability of malée emission [the integral of
P (g, g') over the regiom - g’ >0] is equal to unity. As a result, the following equation
is obtained:

= / / /\n gl f(W)P (g,g') F,(W,, wp) deg'dedwpdS (2.6)
n-g<On-g/'>0S5

The number of collisions that convert the velocitls, W’,,, w;, into W, W,,, w,, is
calculated in the same way. Therefore, we have

A= / / / In-g'| f(W)P(g,g) F,(W'p, w),)dW'dgdW' ,dw’,dS (2.7)
ng'<0n-g>05
Using Eq. (2.5), it is possible to demonstrate that Jacotdeerminants of transforma-
tions of variable$W, g', W, w, W', g, W'y, w;, —g,g’, W, w,, are of block form
and equal to unity. As a result, using Eqgs. (2.1), (2.4),)(&a6d (2.7), we find the kinetic
equation of the Boltzmann type
DF,=J (2.8)

The left part of Eq. (2.8) is determined from Eq. (2.2). Thikofwing equation can be
found in the collision operator right-hand side:

/ ( (-n-g) H o)l g] (6 V) P (£18) o (W)
g)H( g)In-g|f(g+v)P(g8g) Fp(Wy,w,)} dgdg'dS (2.9)
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Here, the integration is implemented over the completecitgispaces; the function
H(y) is equal to 1 fory >0 and to 0 fory <0, the vectow is determined by the third
equation of Eq. (2.4). The variablé®”’, W', w, in the first term of the expression
under the integral sign of Eq. (2.9) are the substituted glgtshand sides of the first
three equations (2.5), then the variabd¢sindg are renamed tg andg’. For example,

FE+V)=f(W)=Ff(W+Ag—Ay)=f(vig —Ay) = f(vig+ay)
=f(m+Ay)

After that, Eq. (2.9) for operatof takes on the form

J:/[f (M + Ay) Fp(Wp + Ag, wy + Ay)— f(M) F,(Wp, w))]dO E/[%] e,

d®=H(-n-g)H(n-g')|n-g|P(g, g)dgdg'dS, n=g+v,

(3 a0)- e s on(70)

Ay =-T"1{xxQem,—[x x T|E} (2.10)

Used in the two latest equations are the symbols from Eq). sthermore, analogous
to Ref. [10], we apply the infinitesimality < 1 on the assumption that the translational
and the rotational velocities of particles are on the order @ compared to the mean
thermal velocity of the gas molecules. We linearize expo@ss, put in square brackets
of the first formula of Eq. (2.10), bA,, Ag, A, which are small in comparison with
n, Wy, w,, relatively. Therefore, we find the following:

o) OF, OF, 1., o
%:Fp<%-An>+f< p-A5+—p-Aw>+F / (ALA,)

oW, dw, 2 Pomom
1f _OF, '(AA)+782F” L(AA )+782F” (ApAy)
27 oW, oW, \TETE T aw ow, T ETY T dw,ow, T
0*F,
Ow,0W,, (AwAE)}

Indicated here for brevity arg, = F, (W,, w,), f = f(n).
Now, we expand Eqg. (2.10) infor A, A, A, taking into account Eq. (2.5) and
a known relationship,

(E+e¢T) '~E—¢T, E!=E,
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Here,E andT are the unit and arbitrary tensors of second rank, resgti@mitting
the highere-order terms, we obtain the following equations:

A;~eAg, Aj~eAg—e[xxX], AyreX

Here, the value: is determined by the fifth formula of Eq. (2.4). Taking intccaant
these expressions and the equaticag+W, —xx w,,, we have

of  of *f >’f of of
:—7 = , Aw:——[XXE],
oW, on’° O0W,0W, 0dnon’ OJw, on
0*f 0% f
0 f o

W, 0w, (¥de) = omom (bex>] Ag)

The result obtained enables us to write the considered Wahsfollows:

OF, OF, g2 d*F,
o p . b . e p .
S =e {8Wp Ag + B, E}f t5 {78Wp8Wp : (AgAg)
d*F,

_Oh, C(ED) 4 s (AgX) o f
W, 0w, oW, 0w, - °

Now, we use once again the assumption about the infiniteijnatlthe velocities of
particles,

f<n>:f<g+v>zf<g>+v.0g<gg>, Vﬁg?

o) 1 0? 2
~— (88)imgTa T~
oW, ¢ owpow, ¢

g .

etc. (here/, is a maximum dimension of a particle).

Holding the dominant terms of expansions, we obtain theailg relationships for
the collisions operator:

R <—£Fp>+ 0 (MR

- OW,, ‘ my ow,
[ oE or, or,
" 2m, | OW,0W,, <AgAgf>+8wp8wp . <22f>+2awpaw,, H(AgXf) (2.11)

~F = (Agf>+<Agg—g>-Wp+<Ag {xx g—£]>-wp (2.12)
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—M*mp:<2f>+<2[x X g_g>.wp+ <Zg£> W,, T=m,I ! .[x x Ag] (2.13)

f=f(g), F,=F, (W, w,)), m/ / /Ad@

n-g<0 n-g’>0

It should be emphasized that= f (g) in Egs. (2.11)—(2.13) and later. The differential
d® is determined by the second formula of Eq. (2.10). Let us rebez that the point
introduces the scalar product of vectors and the simple)mproduct of tensor by vector
or by tensor, and two points signify the double product obtes. In the present case,
these tensors are dyads that can be written as follows:

AgAg, Ag [x X g]
og|’

0*F,
OW ,0W,,’

59f
8g

3. OPERATOR OF COLLISIONS

The expression for the operatbrs general. To specify it, let us take the specular-dif-
fusion law of reflection to be reasonable, when

12
)=t e 01+l
P

2T,

n-g >0 h,= -

= [0, 1] = const

wherex is a diffusion factor (it is also called an accommodationfitcient of tangential
momentum; atx = 1, there is a diffuse reflection), ardds a delta function.

It is assumed [11, 12] that the distribution function of noolkesf is defined from
the first approximation of the Chapman-Enskog method, willy the term caused by
the gas temperature nonhomogeneity being taken into atcblerefore, the following
representation takes place in a fixed frame of reference:

2
1&) = fole) (L+97). o () =2 () exp(- ). W7 = () VT

Itis the first term of functiomd (92) expansion in Sonin polynominals that is considered.
The accuracy analysis of such an approximation was impleedesarlier in Ref. [11].
The first terms of Egs. (2.12) and (2.13) take the form

(Agf)=(Agfo(1+¥T)), (Bf)=(=fo (1+v7))

The functionf is substituted byf in all other terms of Egs. (2.11)—(2.13). As a result,
the following expression for the Fokker-Planck operatmlitained:
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9 [ F OF, 0 [, e o1 OF,

J_aap { mprJng aap}+8wp {( M-I F, + Dy awp}
0%F,

+ Dgy 9% D, (3.1)

The forceF and the torqué/ acting on a particle are caused by its translational motion,
by the gas temperature gradient, and by rotation of thegar#hccording to this,

F=F:+Fr+F,, M:Mg—l-MT-l-Mw (3.2)
There are the following terms in the first Eq. (3.2):

Fe = A(((U-g&)))+B(1) ((n [(U-g&) n]))

rr= {5t + |-p0+ 28 (3w meany} 6

Fo=A((xxwy])) = B(1) {((n (W, [x xn])))
The terms of the second equation of (3.2) are determineddetationships
Mg = A((xx (U=§)))+B(1) ((xxn] [(U=§)n]))

Mr= {2 exan+ -5+ 28 (3)] (ool e ann | @9

My, = A ((x x [x x wp)) = B(1) {([x x 0] (wp, - [x x n])))

The angular bracketq)) signify the integration over the surface of particle,
(2)) E/st; Z=(U-%)n((U-§) n), . (3.5)

that is, for example((U—£,,)) = (U—§,) S, whereS is a surface area of a particle. The
following symbols are used\(is a coefficient of heat conductivity of gas):

1/2 1/2 _
T 4 T 8 6

2T T
ar = —AVT, p=2pr, h=2""0 ooz o (3.6)
m m m

After a series of similar but more complicated computatiohe following equations for

the diffusion coefficients in the spaces of translational angular velocities are obta-
ined:
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D; = ﬁ ({aoE + bynn)) (3.7)

£

Do, = w{bo (I peocn]) (17 B <))

+a0<<(x - X) 23: (I ep) (I ep) — (I x) (I x)>> } (3.8)

k=1

and for mixed diffusion coefficient,

D;y, =¢ <Z aop <<ek (I_1 - [x % ek])>> + by <<n (I_1 - [x % n])>>> (3.9)

k=1
The following symbols are used:

h3/2 - N h3/2
4ﬁp7 0 — aO ﬁ

e, (k = 1,2, 3) are unit vectors generating the right-hand system.
Let us consider the equilibrium case whHen= 0, VT = 0, T = 1, and the distribu-
tion function of particles over velocities is to be deteratdrby the equation

ap = o (1 +7) [%‘m/? r2(1- oc)] 0 (3.10)

1
Ey (&, wp) = F¥ ~ exp [_%—T (mpEp - &p + Wy - T “’p)} (3.11)

Therefore, its derivatives are as follows:

8Fp _ (0 my 8FZSO) _ (0 I-w
og, v (-778) ow, "% )

(92 FIEO) (0) myp
e T @12

where the symmetry of tensor of inertiais taken into account.
Let us bring under the integral all these derivatives anthalcoefficients that do not
depend on the coordinates of particle surface and let us wpierator (3.1) in the form

J = ((Je + Jo + Jew)) (3.13)

where Eq. (3.5) is used. Let us prove that the expressiorr umegral sign in Eq. (3.13),
i.e., the sumJ; +J, + Jiw, €quals zero; therefore, the distribution (3.11) is valid.
With all of the above considered, operatfyris defined through the formula
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0 F 2 2kT
Jp = —— - _5+_(D£.gp) FIEO)7 hy = —

3.14
g, |my, hy my (3.14)

where vectolF'; is determined by the first equation of (3.3), and ted3giis determined
by Eq. (3.7). The Egs. (3.6), (3.10) are bound by the relatign

(4, B(1) = 1 (a0, o)

and the following equation is valid for the product of a vedig a dyad:
& nn=n(g, n)

we obtain that the expression inside the square brackets.i(BEL4) equals zero since

(A&, -E + B(1)E, - nn) 1 [AE, + B(1)n(g, -n)]=——,

2 1

~(D: - ——

hy ( - E.p) myp My My
whereE is a unit tensor. Taking into account the third formula of B&34) and Eq. (3.8)
for J,, we have

0

1
_ -1 0
Jo =3 - My I+ Dy (I @) 7 Y (3.15)

Obtained by analogy is
Dy - (I-w,) =kT[B(1) ({(I""[x xn]) (w, - [x xn])))
—A{I %) (x-wp) — (x-x) (T wy)))] = — (Mg - I &T

Therefore, the expression inside the square bracketssguilq. (3.15) zero. Finally,
applying the third equation of (3.3), the first one of (3.4)d&q. (3.9), we find the
equation forJ;, as

£
KT

{Fw : E»p + (Mg . I_l) . (I . (Up) + thiw : [(I . (Up) E,p]} (316)

Jew
The relation(a-T~!)-(T-b)=a-b is valid for every two vectors, b and for symmetric
tensorT. Besides this, tensdD;, is a dyad, and the relatiocab : cd = (a-d)(b-c) is
valid for the double product of dyads. Therefore, we find thatsum of two first terms
inside the square brackets in Eq. (3.16) is equal to the @medwith a minus sign,

Fo &+ (Mg I71) (I wy) =2 (Fu - &) = _,%Diw (T wp) ]

TsAGI Science Journal



Brownian Motion of Heated Nonspherical Particles in Ratb@as 755

Therefore, Jg, = 0.
Thus, the expression under the integral sign in (3.13) dmeefore, operatay are
equal to zero, i.e.,
Jg+Jo+Jgw =0 = J=0

and equilibrium distribution (3.11) is valid, which was te proved.

4. PARTICLES AS BODIES OF REVOLUTION

Let consider the particles as bodies of revolution, withdkis of symmetry set by unit
vectoru. It is possible in this case to write the coefficients of opmré3.1) through the
expressions determined only by the shape of particle. Quha integration with respect
to g andg’, the technique described in Refs. [12,15,16] is applied.

The Fokker-Planck operator (3.1) now takes the followingrfo

0 F,, OF,\ . 0
J—aap’{|:]’g‘(£p U)+9-VT mp:|Fp+Dg'a£p}+awp
OF, 0?F,
. . _ 11 . P . P
{ [Yw wy, (Mg + MT) I ] Fp + Dy, 8(1);,} + Dgw : 8£p8wp 4.1

Tensors of second rank;, 8, D¢, D, are provided by the following experessions:

Ye=Bjuu+BL (E—uu), 0=¢juu+ ey (E—uu) (4.2)
B _ 2F: [od 1 P [(h 1/2
(B)=el(Bn ) 3n ()] e (B) - @
x=1+(mvi—6)<

Used in Egs. (2.10) and (4.3) and later are the equationsedbtim of columns. Mean-
while, for example | = ¢ [x (F1—F2)+(1/2)oc F1]. The expressions fap, ¢ . are
defined from Eq. (4.3) foB |, 3 L, respectively, by the following substitutiong:— (A¢/

The following equations are valid for other tensors:

yw:I_l-(ﬁHuu—kﬁl(E—uu)), D;=<[E+ ¢ (NE+ (1 —-3N)uu)] F1,

2H, o [ G1—Go
X<H1—H2>+§<%(G1+G2)>]’ (4.4)

1
g:§£oc(1+’r)h(p
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Dy = %m?){ (I -I7Y) [ (Hy — Ha) + G1 + G

+ (I u)(I " u)[p(3Hy— H)+ Gy —3G2]}, b= 1+:1T[wﬁ+§(1—oc)] (4.5)

The expressions for factorg, y, <, ¢ are set in Egs. (4.3)—(4.5);"is a tensor inverse
to the tensor of inertia in the moving frame of referer€as a unit tensor, andu is a
dyad. The coefficients that are determined only through hlape of a particle are given
by the following equations [using bracket operators (3.5)]

m=, B= (). N=3(1-R) 6= (6,

Go = ((c-u?)), Hy= ((xn)), Ho= ({(x xn]-w?))

The integral of dyads over the surface appearing during #heulation of considered
tensors are expressed in terms of them (agais.a unit vector of the external normal):

nn 1 Fl 3 F2 1
XX =—| G |(E-uu)+-| G2 uu— -E
<< [x X n] [x X n] >> 2(H1 2 H, < 3 >

The calculation of these integrals is described in moreilddta Ref. [12], where the
particles with longitudinal symmetry (i.e., having a syntrg@lane perpendicular to the
axis of symmetry) are considered.

Other terms of Eq. (4.1) appear in the case of bodies wittomgitudinal symmetry.
The following relations for the force resulted from the tata, acting on a particle, are
valid:

(4.6)

Fo=Qlw,xu], Q=Apw+B(1)v (4.7)

The following expressions for the torques resulted fromglational motion and from
temperature gradient are valid:

Mo = Aps [ux (U-2,)] + B v (i [(U-&) i) 1 [(U-£,) 1]} @8)

My = —%{ém[u X VT +v [—B (1) + gB<g>}[j(VT ) — (VT -j)]} (4.9)

The appearance of last term from Eq. (4.1) with the mixedvdévie is importance. The
following value is called the mixed diffusion coefficient:

3
Dgw:s{maoz ep(I™[ux ep])+bou[i(IT7 " [uxi])+j(I " [ux J])]} (4.10)
k=1
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The formal cause of the appearance of new terms in the cuollgperator is the fact that
the integrals over the surface of particle

X = <<X>>a X2 = <<1’11’1X>>; nnx = (nﬂlnux?\); v, W, A= 17 27 37

containing the third component &fvector, i.e., its symmetry axis component n?xs,
n%xg,ngwg,nlngwg, nongxs are not equal to zero in contrast to the case described in
Ref. [12]. It may be shown that integradg , a» have the following form:

1 e as 1 ce el e e e
o = poul, O = puuu g (M2 — 1) (i+jj)u+ M3 (ufii + jj] + iui + juj),

p={(x-w) (- w?)), we=((x-u), us=((xxul[nxu](n-w) @11)

The unit vector in the line of symmetry axis of a particle farthe mutually perpendic-
ular triple with vectors andj, the unit vectolE being equal t& = ii + jj + uu. Using
Eg. (4.11) and a known expression for the mixed product, vk fin

((n (wp - [x xm])) =v{i (i [w,>xu]) +j (- [w, xu])} =vw,xu],

(e m) bexnl)) = v [ E 1) <1 (&0, v=j (ke =~ ) (412)

Expressions (4.11) and (4.12) are used for the calculafi&@ys. (4.7)—(4.10).

5. SPECIAL CASES

In order to obtain simple qualitative assessments, thaapeegenerated” cases of the
motion of Brownian particles are considered [2]. It is asedrhereafter that vectar,
related to the symmetry axis of a particle, is directed akhweg-axis of a fixed frame of
reference (the fixation of this axis is realized, for example external forces [2]), and
the velocity of the ga®J = 0. In both cases, the integrél, =0 [see Eq. (4.6)].

The first case is considered earlier [12]. The particlesgxssa longitudinal symme-
try, i.e., have the symmetry plane perpendicular to the sgtryraxis that is parallel to
the vectors,, =& u, w,=w,u, VI'=(dT/dz) u. The Fokker-Planck operator takes a
much simpler form,

0 T OF, ) OF,
=5 { [Ya Ep+ eg] F,+ Dga—ap} + e {ywprp + Dwa—wp} (5.1)

Coefficientsy;,vw, 0, Ds, Dy, are scalars, and the expressions for them result from
Egs. (4.2)-(4.5) as

1
Ye=B|, Yo=g O, =9 Dg=c[I+F, (5.2)
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S

Dy = ——
©T,

mlz, (G1 — G9)
wherel',,,, is a moment of inertia with respect to the axis of a particleeSe coefficients
are written using the integral values (4.6). The explicipressions for the last ones
are obtained in Ref. [12] for circular cylinders of finite @gth, spherocylinders, and
spheroids. Using these expressions, the analysis of thendé of particle nonsymmetry
on the relations between the diffusion coefficients in vijogpaces and the coefficients
of forces and of momentums acting on a particle in thermakqaitibrium is fulfilled.
Let us demonstrate these explicit expressions. For thalaircylinder with radius
Ry and lengthh, Ry, there are

™ & B
o1+ —o/T 5 @ 24+ =1
6 ® Acl "\ Do 2l 2¢ |7 \oo P
5p R} b2t

1+ hs
1+7

Dngg(l—l—h*){2—|—h*—|— [wﬁ+§(l—o¢)]}, Y =27 R?

At h, =0, we obtain the expressions for a circular disk. For a splytirater consisting
of a circular cylinder of radiu®?, of lengthh. Ry, and of two hemispheres at the ends,
we find

o —|—7Toc\/'_t
3 = 4 xXQ
(Yg) :Y(p A 6 , ( w) = %WR?](——F}L*) 2¢ R Y :27TR(2),
op r
4—|-och*
_ 2 3 1 8 03\ __ 3 2
10 44 3hy

Coefficientsp, ¢ are determined by the last equations of (4.3) and (4.4). dhespond-
ing relations for a sphere result from thesé.at= 0

8 s _ 16 s 4 _
YgzngS\/ﬂ'h<1+O(§\/¥)mpl, G:%\/;Rg?\, 'szngé\/ﬂ'hO(F 1,
kT kT
Dg:ﬁp}/g(lﬁ-ég), DwZTYw(l-i-f’w%
T -1 T—1 2 T
6£:oc6w(1+ocg\/?) C Se=gm T=Zmy R =L

Here,A is the heat-conductivity coefficient of a gas.
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The equations for the oblate spheroid with semiaxaadb (axisa < b, the rotation
is around the small axis [17]) are the following:

o
Xd1+z
Yg
A 3 04 mymdy [ XP
0 =dnp (a®* +b%0)| g, (1= 2 = ,<‘”>: P s |,
D (p( ) op ! 4OC +4 Dy 41 2mpf
. S
2—(1+¢d1)
214+ k*)o—-1 1.1 2
dlzl—y [(2+2K) }, o=—In +K, yz:l—K27 F:—mpaz,
k% (y20+ 1) 2k 11—« 5
4 2 2 2 1 4 2\3 2 b?
do=a"¢3—k"—y O'(K —5)—2[1—K —(1—|<) G} , K=1-—
a

The similar expressions for the prolate spheroid with sgasa andb (axisa > b, the
rotation is around the big axis) are obtained from the redwmpuations for the oblate
spheroid by the following substitutions. In the equatioos the column of elements
Y&, 0, De. One needs to complete the substitutions

y—(1-2c* o

2 | 72 _
a“+b°c—ala+bo), d d3=1-—
ol ) s K% (y + o)

and in the formulas for the column of elememts, D, the substitutions are

1
dy — dy Eb4y{y(3—2|<2) +0(5—4k?) — = [y (2x* — 1) +o]}
Made in Ref. [12] for this case is an error: in the equationdgrthe coefficient § — «2)
is to be substituted by3(— 2k?). As in Ref. [12], there are the following values in all the
equation for the prolate spheroid:

1 2 2
o= —arcsin kK, y=+1-«k2, = 1—2—2, = gmpa2
K
Let us consider the second special case. The particles dmossess longitudinal sym-
metry. Vectrors,, = &,i, VT = (dT'/dz) i, w,=w),j are perpendicular to the symmetry
axis of a particle. Symbdl,., signifies the moment of inertia of a particle along the axis
perpendicular tal. Therefore, Egs. (4.7)—(4.9) take the form

Fw = Q wpi> ME = _Q Evp.] (53)

A dT A 6 5
Mpr=—V—j = — —B(1 —-B| = 5.4
T demJ, 4 5u2+[ ()+5 <6>}v (5.4)
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0*F, 0’F, €
= Diw =2, Dpy= —
aapawp " 0E,0w, T T Ty

Instead of Eq. (5.1), using Egs. (5.3)—(5.5), we obtain #iwing equation for the
operator of collisions:

9 dir Q. OF,
J—a—g‘p{[‘}/éapﬁ-ed— my (Up:|F +D£8£p}

0 A dT an 82Fp
+8—wp{ |:wap ch <Q£p + — Vd >:|Fp + Dy, a—wp} + Daw_aapawp (5.6)

Dt (w2ao +vb))  (55)

Let us remember that the radius veckor Re of an arbitrary point of the particle sur-
face in a moving frame of reference presented earlier is unedsrom the center of
inertia. In the first case, it coincides with the symmetryteenwhich is absent here.
This fact complicates the problem of the calculation of thefficients in Eq. (5.6). The-
se coefficients are expressed through the integral valuésgnid (4.11).

The following equations for these values are obtained fercitcular cone of radius
Ry, heighth.. Ry, and inertia center located at a distaifitg4)h. Ry from the base:

1 1 hi
Fi = Bl = tR2(1+ 1), N:§< _z_>’ leg[u 8;r8] I = /11 12,

1
— 2 _ _ 4
Gi= < h2> Ga, Go = _6h*(1 + 1), n= K<—1 + i), c=mRy, (5.7)

s 8 K hemR3 3 1
H2:K<_1+_>7 H3 = 57 K= - Topr = mpRo <1+th>

3 31 4 20
This is similar for the semisphere of radifi% and inertia center located at a distance
(3/8) R, from the base,

) 2 11 139
F) = 37TR(2), Fy = —7TR(2)’ N=- H; =—c G = —,
3 9 16 64 (5.8)
65 1 1 83 '
G2 - @Ca c= WR%, U1 = Ho = _ZPL?) - —§7TR37 Fl’x = 320mpR(%

As in the case of a cone, the contribution of the base is takenaiccount (the integra-
tion is fulfilled over the whole surface of particle). Equeis (5.2) are valid for factors
Y&, 0, Dg, and we have the following relations for factorg, Dy,

¢ S
szr—mmp{XHl+ (G1+Gz)} Dw=§<

mp

2
T > (b Hi+G1+Gs)

Taking into account the relationships of the last sectiath Bgs. (5.7) and (5.8) for the
coefficients in Egs. (5.3)—(5.5), we find
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Q=Qo |:0C30 + <1 + #00 81] , V= éQo |:0C30 + <1 — Zoc) 31]

he

D:. =
TOT,,
where for the cone

h\ 2 1 /1, . 3
Q0—9K<;> . 30—§<§—1>> Sl—g—g

And for the hemisphere

08

4

Qo{oc(1+T)so+[ (1+T)+%7T\/?+2(1—Oc)} 31}

1
Qoz—g(ﬂ'h)l/zRg, 3025’ 81:1

Thus, for longitudinally unsymmetrical bodies of revotutj the mixed diffusion coeffi-

cientD;, differs from zero, and the Fokker-Planck operator contthessecond deriva-

tive asz/aapawp. The gas temperature gradient results not only in thermeogai

force, but also in torqud/Iy [the first equation of (5.4)].

6. CONCLUSIONS

Presented above is not only a more general and comprehdmsate equation deriva-
tion than the previous one [10-12], but also the summaryegttplicit expressions for
the coefficients of the collision operator obtained here iangrevious papers [10-12]
and the results from Ref. [12] are transformed into a more@aient form. Using these
expressions, one can analyze the influence on the coef@éttie thermal nonequilib-
rium parameter, of the accommodation parameterand of the particle shape similar
to Refs. [11, 12]. Certainly, it is necessary to investigagimportance of the technique
and of the present results as well as of previous ones [8et Brbwnian motion theory,
for molecular-kinetic theory, and for gas suspensions oyos.

Thereby, let us underline the following. At the acceptedhiegue of derivation of
the kinetic equation of the Boltzmann type, and then, of tbkkEr-Planck operator, a
considerable number of assumptions are made. Howevemthariant necessary condi-
tions of its validity hold true, namely, the operator vamiston the equilibrium distribu-
tion function at the equilibrium conditions, at=1 the known expressions [10, 11] result
from it. Consideration of the thermal nonequilibriumtgt 1 demonstrates the capabili-
ties of this theory and provides additional opportunitiesexperimental and theoretical
analysis of this technique applicability and of kinetic ations of the Boltzmann type
in general.
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EXPERIMENTAL STUDY OF THE JET FLOW
CONTROL IN A VEHICLE AFTBODY
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Presented are the results of experimental investigation of the jet flow gas dynamic effect in order
to control the thrust vector and to reduce the drag of the vehicle. The vehicle has a flat nozzle with
an external expansion wall, being the part of the fuselage. The gas dynamic control method, based
on the injection of additional air through the perforation in the expansion wall, is considered. The
conclusions about the efficiency of gas dynamic control by means of various methods of additional air
injection are drawn according to the weight tests and measured pressure distributions.

KEY WORDS: discontinuous Galerkin method, finite volume method, high-order scheme

1. INTRODUCTION

The fuselage aftbody surface of the vehicle, in which thegygulant is integrated with
the fuselage, is used as the wall of the nozzle with exterrpamsion of the jet [1].
Depending on the flight mode, the various flow patterns arkzeghin the nozzle with
the external expansion wall. At the cruise mode, such arodgtiallows to obtain the
additional thrust. The thrust vector is directed straigittviard and passes through the
aircraft center of mass. However, at the initial flight stgihne expansion wall is the
source of drag. At a nozzle pressure ratio correspondintgetetflight conditions, the jet
has the cell structure, attaches to the expansion wall, esghpgates along it (Fig. 1a).
The jet overexpansion results in the appearance of areasgaftime pressure on the
wall. The negative excess pressure on the wall gives rideetappearance of the down-
directed force. The effective thrust vector turns out ndbveadirected along the aircraft
axis, but to be deflected down, which leads to the rise of aipitcmoment. Due to
the large area of the surface streamlined by the jet, this embis so significant that
it is difficult to counteract it by ordinary control elemenihe necessity to find a gas
dynamic control methods arises.

In this work, the gas dynamic method of control by means ofitfection of ad-
ditional air through the perforation in the expansion waltonsidered. The concept of

1948-2590/09/$35.0@2009 by Begell House, Inc. 763
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FIG. 1. (a) Flow pattern behind the nozzle at the off-design modgth® expansion
wall of the model nozzle with two perforations.

this method is to increase the wall pressure by the injeaifadditional air in the areas
of negative pressure, or to convert the flow from the schentle tlve jet attachment to
the scheme with the separation of the jet from the wall andotinect the separation
area with the ambient. The aim of this work is to estimate fifieiency of this flow

control method from the viewpoint of the opportunity to reradhe undesirable forces

and of the required value of the additional airflow. This wigkthe extension of the
investigations mentioned in Ref. [2].

2. THE MODEL—THE EXPERIMENTAL EQUIPMENT

The model consists of a flat nozzle with rectangular exitiseceind of a flat plate ad-
joining to the long side of the nozzle exit section. The ratidhe sides in the nozzle
exit section is 1:6 and the value Mn the nozzle exit equals 1.9. The half-angle of the
supersonic part of the nozzle is 10 deg. The plate of theh2@sgth (the height of the
nozzle exit section i& = 10 mm) simulates the lower surface of the vehicle aftbodhe T
slope angle of the plate relative to the symmetry horizoplahe is 15 deg. Cutbacks
of height 2 are installed on each side of the plate along all the lengtlo. FfEplaceable
plates differing by the form of the perforation for the injea of the additional air are
used in the experiment (Fig. 1b). The first plate has the pairém of 78 circular holes

of the same diameter (h3The holes are situated in 13 lines, by six holes in a line. The
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distance between the lines is &,5and the distance between the holes in a linehis 1
The total hole area is 0.92 of the nozzle exit area. The gatifor on the second plate
consists of five rectangular slots parallel to the long sidih® nozzle exit section. The
distance from the nozzle exit to the nearest slot i$ 1the distance between the neigh-
boring slots is 4.8, and the slot width is 0/2 The total perforation slots’ area on the
first plate is the same as on the second plate. The modelwstuatows to overlap par-
tially the various perforation areas, and thus to changeptaee of the additional air
injection. The air through the perforations was input ndrimahe plate surface from the
input settling chamber, placed on top of the plate. The mddsign was presented in
Ref. [2].

The experiments were carried out without external flow ondifferential rig, equ-
ipped by two independent channels of the air input in ordecréate the main flow
through the nozzle and the supplementary one in order toaldhe flow (Fig. 2a). The
differential rig represents the vertical tube, fixed on tlrais gauge balance, with the
settling chamber as a T-shaped branching at the end. Thevaipthsses through the
strain gauge balance, made in the form of a hollow cylinded, farther along the tube
to the settling chamber, from which it goes into two oppdgitiirected nozzles—the
test one and the balance compensated one. The balance dexeleps the thrust that
compensates the thrust of the model nozzle in the absenbe ekpansion wall. While
using this measurement method, even a small change of tbfuke tested nozzle,
being due to the influence of the expansion wall, can be meddora high accuracy.
Used as the balance nozzle is the axisymmetric nozzle Mith 1.9 on the section. The
equality of the thrusts of the test nozzle and of the balameein the absence of the
plate was verified experimentally at all the considered modiee model was attached
to the settling chamber of the differential rig in such a whgttthe long side of the
nozzle section and the plate, simulating the aftbody saréd¢he vehicle, were situated
vertically. In addition, both measured thrust componeditgcted along and normal to
the nozzle, are situated in the horizontal plane. The peditirection of the longitudinal
component (forward along the vehicle) means an increaseithtust of the test nozzle,
and the positive value of the transverse component comelspto the positive lift acting
on the aftbody. Presented in Fig. 2b is the photo of the tedietmstalled on the settling
chamber of the differential rig.

While using this technology of the experimental invesimat the loads from the
supply channels are not transmitted to the strain gaugadmlddowever, in the system
tube bellows, the “bursting” force arises in the channelha&f &dditional air input. In
spite of the fact that this force is directed normal to thenplaf the measured forces, it
creates the moment in the vertical plane owing to the shifi@fube of the additional air
input. This moment influences the balance indications insueag the longitudinal and
transverse forces. The arms, which are affected by thistimg” force, are by one order
less than the arms of the measured longitudinal and traseverces, but it is necessary
to introduce the corrections for its influence. While takintp account the fact that the
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FIG. 2: (a) Scheme of differential rig and (b) photo of the modelalistl on the rig
settling chamber.

influence of the bursting force uniquely depends on the press the channel of the

additional air input, the allowances were specified basethealance measurements,
performing during the air input through the perforationtslim the plate without the air

injection through the test and balance nozzles. The alloemwere specified for all the
test modes.
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The measurements of the pressure distribution along tlie gias were performed
on the model along with the balance measurements. The peesas measured by small
indicators, installed directly on the plate.

The experiments with the test model were carried out sus@ig$or a range of con-
stant values of the airflow through the main nozzle. At a gaieitow through the nozzle,
the pressure of the injection was changed discretely fromadlsr value to a higher one
and the data registration was made at every mode by the nregsatculating system
based on a personal computer.

3. RESULTS OF EXPERIMENTAL INVESTIGATIONS

While presenting the results of the experimental invetibga, the following nomencla-
ture was accepted in this work, is the axial component of the total thrust in the layout
with the expansion wallP, is the force acting on the aircraft layout in the verticabdi
tion, andp = arctg(P,/P,) is the angle of the thrust vector deflection. All the forces
were related to the thrust of the free nozzle without a platewhich was obtained by
calculation by the 1D theory, and the flow of the air, inpubtigh the perforation, was
related to the flow through the nozalg,,,/G,,. The experiments were carried out at var-
ious nozzle pressure ratips/p,, wherep, is the total pressure in the settling chamber
of the nozzle, ang,, is the ambient pressure. The results of the plate pressuasune
rements are presented as the distribution of the relatesspre(p — p,)/p, along the
length of the platd./h. The distancd. is counted off from the leading edge of the plate,
adjoining to the nozzle section. The valud®, = P,—P,,, described the plate influence,
which are cited in this paper, are measured directly by theesponding component of
the strain gauge balance. Cited further are the resultsyialy us to estimate the oper-
ating efficiency of the nozzle with the expansion wall at @as methods of additional
gas input to the expansion wall.

3.1. Gas Injection to the Expansion Wall with the Perforatio n of the Circular
Holes

The experiments, carried out on this model without the iigpacof an additional air to
the expansion wall, showed that the losses in the axial tlwarmponentP, could be
~5% of the computational thrust of the isolated nozzle, th#icad component of the
effective thrustP, was negative and in magnitude could+24% of the computational
thrust, and the angle of the thrust vector deflecfiocame up to~ (—14 deg) [2]. Such
behavior of the thrust components is associated with theaappce of a number of ar-
eas on the expansion wall, the pressure in which is less tigarhbient pressure. The
last fact can be explained by the overexpansion of the jeinpaa cell structure at the
considered modes. The longest area of negative presstiteated directly behind the
nozzle exit. The length of the ardadepends on the nozzle pressure ratio and varies in
the considered range @f /p, asL/h ~ (po/p.)®" (Fig. 3a). The attempt to boost the
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FIG. 3: Characteristics of the flow near the expansion wall withbetihjection of an
additional air and with a local injection: (a) length of thee@ of negative pressure on
the wall; (b) pressure distribution along the wall.

pressure in this area was made by local air injection thrabgHour perforation lines,
which are the nearest to the nozzle. The area of the injettaas in this case was
F/Fx,=0.3, whereFy is the area of the entire perforation. The local injectideed the

pressure in the area of negative pressure; however, it negiddwer than the ambient
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pressure, and the length of the area itself increased die tajection. The light points

in Fig. 3a illustrate the change in the sizes of the area ddithegpressure at local injec-
tion of the additional air through the four lines of the hol€ke change in the pressure
profile along the plate at various injection charactersstian be followed up by the plot

in Fig.3b. The shadowed strips in the field of the plot indedhie length of the injection
boundary along the axi. The notations, accepted in Fig. 3b, correspond to the modes
pointed out in Table 1.

The most acceptable pressure profile from all the investibaariants of the injec-
tion is realized at the injection through the entire periora The fact that the injection
through the entire perforation is the most effective is aomdéid also by the data of the
balance measurements. The valleB,, P, 3, obtained based on the balance measure-
ments, at various modes of the perforation opening are slwiy. 4a. (Notations of
the points in Fig.4a correspond to the first three columnsablél'l.) Shown in Fig.4b
are the same values, recorded at the full-open perfordbiohat various nozzle pres-
sure ratios. In spite of the positive effect from the air atign to the expansion wall
through the circular perforation, the evident shortcomirighis method of the thrust
vector control is the necessity of the engagement of a lasid@ianal airflow.

3.2. Gas Injection Though the Circular Perforation to the Ex pansion Wall
with the Flap

For the purpose of the possible decrease of the additiorfedvai an attempt was made
to separate the jet from the expansion wall by installingt@miadditional element—the
flap. The flap is installed directly behind the nozzle exittimec (In Fig. 5 the flap is
highlighted by the dark filling.) The flap surface, adjoinitigg flow, is parallel to the
symmetry plane of the main nozzle flow. Used in the experinaeathe flaps of length
[/h =2.5 and 5. The transverse size of the flap is equal to the widthe nozzle exit
section.

The experiments show that entire separation of the jet flomfthe expansion wall
did not take place. The thrust losses in the absence of additairflow through the
perforations can increase because of the base drag. Howes@njection of additional

TABLE 1. Experimental data.

Mode Injection | Relative perfora{ Relative airflow of Nozzle pressure
notation | length L/h | tion areaF'/ Fx; the injectionGin;/G,, | ratio po/pa

0 — — — 7

1 6 0.3 0.21 7.2

2 12 0.6 0.2 7.6

3 19.54 1 0.21 6.5

4 9-12 0.23 0.39 7
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FIG. 4. Characteristics of the nozzle with the expansion wall: {ap&ous localization
of the injection; (b) at full-open perforation.

air through the perforations, remaining not overlappedhegyftap, improves the char-

acteristics of the nozzle with the expansion wall. Preskmid=ig. 5 are the data of the

characteristics of the nozzle with the expansion wall, onictvthe flaps of lengtti/h

= 2.5 and 5 are installed. It is seen from the comparison cfeltata with the data in

Fig. 4 that the characteristics of the nozzle with the flagragroved considerably at the
equality of the injected airflows. The opportunity to deseaubstantially undesirable
deviation of the thrust vector at the real flows of the injdcér arises. The presence of
the flap removes the area of the pressure, being substamdiakr than the atmospheric

one, on the expansion wall and replaces it by the surfaceghnddes not increase the
componentP,, but contributes to the increase Bf, which is associated with the flow
turn toward the horizontal symmetry plane of the nozzle.

4. USE OF THE SLOT PERFORATION IN ORDER TO INJECT THE
ADDITIONAL GAS TO THE EXPANSION WALL

Along with the circular perforations, the injection of atidinal air to the expansion
wall through the slot perforations was considered. On thelgytthe injection through
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FIG. 5: Influence of the injection of an additional air to the expanswall of the nozzle
with a flap.

the slot perforations is more effective than the injectibrotigh the circular ones. As
the absolute value of the angbedecreases by the same value, the relative flow of the
injected air through the slots turns out to be lower than tbhe through the circular
holes. However, one does not observe the total neutralizati the negative influence
of the expansion wall in this case. The data, obtained atrijeetion of additional air
through the slots, are presented in Fig. 6. The results ob#@nce measurements are
almost the same for the various nozzle pressure ratiosmiitiei range ofy /p, = 4-+7.

All the results for the circular and slot perforations meng&d above were obtained
at subsonic nozzle pressure ratio drops on the perforatimite going to the supersonic
nozzle pressure ratio, one can obtain more effective cbfitie abrupt increase of the
injection effect was obtained, while inputting all the adhal flow through one slot,
being the closest to the nozzle exit section, at the supersmzzle pressure ratio on it
(see Fig. 6). The numbers near the points indicate the valubg nozzle pressure ratio
at which they were obtained. The increase of the injectideceis observed, starting
with the airflowGi,,; /G, ~ 0.1.

Volume 40, Number 6, 2009



772 Zhirnikov, Kudin, & Nesterov

AR/P,

o) p”fpd%al - 7 all slots
e p,/p,=4-6oneslot

0.15 1

0.1 4

0 0.05 0.1 0.15 0.2 G, /G,

FIG. 6: Characteristics of the nozzle with slot perforations ofdélipansion wall.

As the measurements show, the pressure distribution almgxpansion wall at
the injection through one slot equalized and approachedrtit@ent pressure. This fact
allows us to draw the conclusion that the propagation of therfiow takes place with
the flow separation from the wall. In addition, the positi¥&’,, P,, 3 are explained by
the positive additions from the momentum of the jet, flowing the slot. It should be
noted that any increase of thrust is desirable only for thal dkrust component®,,
and the increase @, and, correspondingly, ¢ after their transition through zero will
result in the rise of a negative pitching moment. So, one si¢edxactly control the
injected flow in order to avoid undesirable moments.

Thus, based on the data mentioned above, one can concludéhileausing the noz-
zle with the external expansion wall, there is a possibiityyas dynamic thrust vector
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control. Depending on the disposable flow of additional @i can find an acceptable
method of such control.
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