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MIL L. MIKHAIL AND TSAGI

On November 22, 2009, 100 years had passed since the birth of the outstanding Rus-
sian scientist and helicopter designer M. L. Mil. During theperiod 1947 to 1970, first as
design manager and then chief designer, Mikhail L. Mil was atthe forefront in the engi-
neering of outstanding helicopters, civil and military helicopters of the mark “Mi”. De-
veloped by the experimental design office (EDO), these helicopters are known all over
the world and are in great demand on the domestic and foreign market. More than 90%
of the helicopters currently produced in Russia are the “Mi”helicopters, having the ba-
sic design laid out by M. L. Mil. In Soviet times the “Mi” helicopters exceeded the he-
licopters of other countries by total capacity.

M. L. Mil was closely related to TsAGI throughout his extraordinarily creative career
in the pursuit of multifaceted research interests.

GYROCOPTERS

Mikhail Mil, being a student of the Faculty of Aerodynamics of Novocherkassk Poly-
technic Institute, was absorbed by the theory and practice of gyrocopter creation and
studied with interest all the available works on the issue. In 1929 he wrote a letter to
Nikolay I. Kamov, a known designer of gyrocopters, in which he demonstrated deep
knowledge in this area, requesting a position which would allow him to work under
his supervision during the student holidays. His request was granted. That summer he
worked as an assistant engineer on the flight tests of the gyrocopter KASKR-1 of Kamov
and Skrzhinsky design. In 1930 M. Mil, although he was currently in Taganrog, requ-
ested that he perform his pregraduation practical work at the Department of Experimen-
tal Aerodynamics of TsAGI, and in 1931 he began working in this department as a full
staffer. His assignment was to perform calculations and experimental investigations with
regard to gyrocopter aerodynamics. In 1933 the gyrocopter section in the Department of
Experimental Aerodynamics was reorganized under the Department of Special Design
of TsAGI, which was engaged in the design of helicopters and gyrocopters. Mikhail Mil
was appointed head of the gyrocopter aerodynamic calculation team in the Department
of Special Design.

Throughout 1940 a number of TsAGI gyrocopters were designedand constructed at
the Department of Special Design. All these works were performed by Mil‘s team. But
Mil was not restricted to the implementation of aerodynamicresearch, computational
investigations, and wind tunnel tests; he literally “was inon” all the questions related to
the development, flight test support, design, and construction. Thus, while developing
the A-6, “ground resonance” type self-oscillations were successfully eliminated with
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the active participation of Mil. These works successfully combined the talents of two
outstanding scientists—V. A. Kuznetsov and M. L. Mil.

In March 1940 M. L. Mil was employed in factory no. 290 and became the deputy of
the design manager N. I. Kamov. He participated in the production and organization of
the A-7 gyrocopters used in the battles of Yelnya in August–September 1941, for which
he was awarded the Order of Red Star and other medals.

AIRCRAFTS

In May 1943 M. L. Mil returned to TsAGI, where neither gyrocopter nor helicopter re-
search and design existed at that time. Organized at the recommendation of I. V. Ostos-
lavskiy in laboratory no.1 was the Aircraft Stability and Control Group. Mil had begun
to study these issues in 1940. The vast experience he gained during his works on gyro-
copters proved useful to him. In his role as chief of the Aircraft Stability and Control
Group in laboratory no.1 of TsAGI, Mil focused not only on control simplification and
improvement of pilot comfort, but he also directed his efforts toward aircraft combat
applications—increasing the accuracy of aircraft shooting and bombing—which was, of
course, of special interest in wartime.

Theoretical analysis of the perturbed motion of the aircraft upon entrance to gusts
and the definition of loads on the controls were carried out. The requirements to the loads
on the control stick were formulated for the weakly stable aircraft in order ”to connect”
the pilot with the vehicle. Practical proposals to install special shock dampers on the
control stick or springs on the control crank in the longitudinal channel were confirmed
experimentally in the T-101 wind tunnel and on real aircrafts in flight tests.

During this period Mil and his colleagues studied the influence of friction in the
control circuit on the flight performances of aircrafts in detail. They established that a
significant friction in the longitudinal or transverse control channel was perceived by
the pilot as a reduction of the longitudinal or, respectively, lateral aircraft stability and
resulted in a decrease of the controllability estimation ofthe maneuverable aircrafts.
Recommendations were made regarding acceptable friction force values in the control
systems of different aircrafts, as well as acceptable relations between the value of friction
forces and the gradient of load growth by the stick deflection, providing regular aircraft
controllability. Standardized instructions on friction control in the aircraft control system
were developed.

All these investigations were aimed at improving the lift-to-drag ratio of the serial
military vehicles I-16, DB-3 (Il-4), SK-1, SK-2, OKO-6 bis,LAGG-3, Pe-2, La-5, and
Il-2, which was extremely important during the war. During these years Mil worked
closely with aircraft designers S. V. Ilyushin, S. A. Lavochkin, and A. I. Mikoyan. After
the war M. L. Mil, as a member of staff, was sent to Germany fromwhere they brought
the T-107 wind tunnel which operates at TsAGI at present. In October 1943 M. L. Mil
defended his PhD thesis on the issues surrounding aircraft stability and controllability.
For his work in this area he was awarded the Order of the Patriotic War of 2nd Class.

TsAGI Science Journal



Mil L. Mikhail and TsAGI 643

HELICOPTERS

After World War II Mil’s research focused on rotary wing aircrafts. Based on his works
on rotor aerodynamics, in October 1945 he successfully defended his PhD thesis and
became the head of the department in laboratory no.1 of TsAGI, where he assembled a
close-knit, like-minded group and aimed the work of his department toward helicopters.
Together with V. I. Yaroshenko, in a short time he developed an original method of heli-
copter aerodynamic calculation based on direct consideration of the vehicle polar. This
method was necessary for Mil for practical purposes. On his own initiative he began
to develop the experimental three-seat helicopter EG-1 at TsAGI, which was designed
in the classical single-rotor scheme with the tail rotor, anM-13 engine, and with an
original device performing automatic increase of flight stability. April 9, 1946 this heli-
copter project was submitted to the Ministry of Aircraft Production Commission, which
supported the project but with a number of recommendations.

Based on the decision of the Ministry of Aircraft ProductionCommission, Mil pro-
posed to build a full-scale helicopter plant for the tests inthe T-101 wind tunnel. In
accordance with Mil‘s idea, this plant was created for single-rotor helicopter produc-
tion, but without devices counteracting the reactive moment from the rotor, gear, and
other units. This significantly reduced the time for this plant “conversion” to helicopters.

The laboratory for solving scientific problems related to helicopter construction and
aircraft spin was created in 1947 based on the TsAGI T-105 vertical wind tunnel. M. L. Mil
was appointed head of the laboratory and its helicopter sector. Of course, Mil‘s experi-
ence working with rotary-wing and aircraft equipment contributed to this decision of
joining seemingly different directions. Employees of the helicopter sector (more than 20
people) formed the basis for the future EDO of Mil. Almost none of them had previous
experience in the design and construction of rotary-wing equipment. Therefore, Mil‘s
knowledge in the area of aerodynamics, design, and construction of both a vehicle as a
whole and its individual units, as well as his experience in flight development of rotary-
wing equipment, were overwhelmingly important. The cohesion and purposefulness of
like-minded fellows contributed to the fact that in a very short time the full-scale heli-
copter was built and tested in the T-101 wind tunnel. In the autumn of 1947 the full-scale
model of the three-seat helicopter EG-1, created in Mil’s laboratory, was approved by
the government commission.

December 12, 1947 the Council of Ministers of the USSR adopted a special resolu-
tion to create a communications helicopter for the Armed Forces of the USSR. Accord-
ing to this resolution, the design teams of A. S. Yakovlev, I.P. Bratukhin, and M. L. Mil
were ordered to create prototypes of the new helicopters; thus, development of the com-
munications helicopter was actually a competition. The resolution also obligated the
deputy minister of aircraft production to organize at TsAGIthe Experimental Design
Office on Helicopters and to approve the design manager of this EDO, M. L. Mil. De-
cember 12 is the official date of creation of the EDO named after M. L. Mil. By the end
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of July 1948 the EDO was located in the building of the T-105 vertical wind tunnel at
TsAGI. It was later relocated in Tushino and after that to 3 Rybinskaya str. at Moscow.
But Mil worked at TsAGI part-time until the mid-1950s.

Created under the leadership of M. L. Mil before 1970 were thehelicopters Mi-1,
Mi-4, Mi-6, Mi-10, V-7 (with the jet drive), Mi-2, Mi-8, Mi-14 (amphibian), V-12, Mi-20
(project), and Mi-24. The research and development for all these helicopters to a greater
or lesser degree was carried out at TsAGI.

It should be noted that the close cooperation of TsAGI with EDO was sometimes
accompanied by serious discussions on questions of principle. Discussions with regard
to the transverse scheme helicopter V-12 were especially hot: TsAGI was in principle
against this scheme. But Mil’s leadership guided the discussion, ultimately ensuring
that the correct decision was made—to proceed with plans to build the vehicle. Being
the head of the EDO, M. L. Mil always promoted and advanced theideas in which he
believed. On important issues he was known to lobby the government directly, even
making his case personally to Khrushchev. From this point ofview, M. L. Mil was not
only a designer, but by present standards, an excellent manager.

M. L. Mil‘s activity at TsAGI since 1943 and after in the EDO was of great impor-
tance to the formation and development of Russian science and helicopter engineering
schools.

”We have a great future, but we remember our relationship. Conceptually we are the fol-
lowers of the great Russian school of aerodynamics, foundedby Nikolai E. Zhukovsky,
and of his disciples B. N. Yuriev and A. M. Cheremukhin. Inherently we came out of
TsAGI, and therefore we are related to the science by blood ties. . . ” (From the speech
of M. L. Mil on the meeting devoted to the 15thAnniversary of EDO.)

TsAGI Science Journal
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APPLICATION OF A NEW MATHEMATICAL

TOOL (1D SPECTRAL PORTRAITS OF

MATRICES) TO THE PROBLEM OF

AEROELASTICITY VIBRATIONS OF TURBINE

BLADE CASCADES

S. K. Godunov∗, V. B. Kurzin, V. G. Bunkov & M. Sadkane

Sobolev Institute of Mathematics Siberian Branch of the Russian Academy of Sci-
ences 4, Acad. Koptyug avenue, Novosibirsk, 630090, Russia

∗Address all correspondence to S. K. Godunov E-mail: godunov@math.nsc.ru

Analysis of possibilities of current conventional programs for definition of the nonsymmetrical matrix
spectrum, associated with the problems of dynamic stability in aeroelasticity, was fulfilled. The feature
of bending-torsion flutter of a wing with multiple oscillation frequencies near the flutter boundary
was educed. The problem of flutter was studied by using the method of dichotomy.

KEY WORDS: dichotomy quality, spectral portrait, non-symmetrical matrix

1. INTRODUCTION

Design of integral structures is always based on computations, simulating operations of
these structures under certain conditions. Such conditions should be described by the
limitations, providing operational efficiency and safety and avoiding structural failure.
Admissible errors should be given for the numerical values of the limiting parameters,
which guarantee reliability of recommendations, based on the calculations.

In aeroelasticity theory, the computational procedures dealing with spectral analyses
of matrices are of great importance. It is well known that thestability criterion is reduced
to the following statement: all eigenvalues of definite matrices, obtained during model-
ing, lie strictly in the left part of the complex plane. A natural question arises: “What
accuracy is required for computing these eigenvalues?”

The examples, indicating that there is no clear-cut answer to this question, are pre-
sented below. The formulation of the question should be modified according to the clas-
sical Lyapunov theory. Based on this theory and on its moderngeneralizations, an algo-
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646 Godunov et al.

rithm, using the spectral dichotomy criteria and 1D spectral portraits of matrices, illus-
trating spectrum fibration, is suggested.

Naturally, the used computational procedures should meet the following require-
ment: their results must satisfy the guaranteed accuracy estimates. This requirement can
be met if standard algorithms included into public-domain software used in engineering
computations are based on the following natural postulate.

Postulate: Only those numerical functionsf(A) of N×N or N×M matrices can be
calculated, which satisfy the following inequality:‖f(A) − f(B)‖≤ω ‖A − B‖. Here,
ω = ω[||A||, f(A)] is a known function, independent ofN andM (matrix dimensions);
||A||, ||A – B|| are the matrix norms.

An example of admissible functionsσj(A) are the singular values of matrixA,

A = QDP ∗, Q∗Q = IN , P ∗P = IM , M < N

D =















σM 0
... 0

0 σM−1
... 0

· · · · · · .. . · · ·
0
· · ·
0

0
· · ·
0

...
· · ·
0

σM

· · ·
0















︸ ︷︷ ︸

M

〉

N

The admissibility follows from the inequality|σj (A + B) − σj (A) | ≤ σmax (B) =
‖B ‖ .

An example of inadmissible functions:λj =λj(A) are the eigenvalues of the quadra-
tic N ×N matrixA. This can be understood from the following numerical examplewith
the integer-valued 7× 7 matrixC:

C =
















289 2044 336 128 80 32 16

1152 30 1312 512 288 128 32

−29 −1980 756 384 1008 224 48

512 128 640 0 640 512 128

1053 2136 −604 −384 −856 800 108

−287 4 1712 −128 1968 −30 2032

−2176 −187 −1465 −512 −441 −1152 −189
















One can try to find its spectrum with the help of some MATLAB procedure, using the
standard number representation. For matricesC andCT , which must have identical spe-
ctra, the same procedure will give different results,

TsAGI Science Journal
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λ1 (C) = 6.5824 λ1

(
CT
)

= 8.0444

λ2 (C) = 4.0313 + 4.3421i λ2

(
CT
)

= 4.9557 + 5.6644i

λ3 (C) = 4.0313 − 4.3421i λ3

(
CT
)

= 4.9557 − 5.6644i

λ4 (C) = −1.4668 + 5.3883i λ4

(
CT
)

= −1.8107 + 7.0037i

λ5 (C) = −1.4668 − 5.3883i λ5

(
CT
)

= −1.8107 − 7.0037i

λ6 (C) = −5.8557 + 2.3387i λ6

(
CT
)

= −7.1672 + 3.0701i

λ7 (C) = −5.8557 − 2.3387i λ7

(
CT
)

= −7.1672 − 3.0701i

The matrixC is obtained asC = L−1RL, where

R =












1 2028 256 128 64 32 16
0 −2 1024 512 256 128 32
0 0 4 512 1024 256 64
0 0 0 0 512 512 128
0 0 0 0 −4 1024 156
0 0 0 0 0 2 2048
0 0 0 0 0 0 −1












L =












1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 1 0 0
1 0 0 0 0 1 0
0 1 1 0 1 0 1












From here, one can see that the actual eigenvalues ofC are

λ1 = 0, λ2 = −1, λ3 = +1, λ4 = −2, λ5 = +2, λ6 = −4, λ7 = +4

The reason for the demonstrated paradox is as follows. All eigenvalues, computed in
MATLAB , are the precise eigenvalues of perturbed matrices appearing in the course of
computation rather than those inherent in the matrixC itself. And the spectrum of pertur-
bations of the matrix under consideration covers the entiredomain where the computed
values lie.

Here is another simple example. Consider 25× 25 matricesA + ωB, where

A =











−1 10 O
−1 10

. . . .. .

O
.. . 10

−1










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is a two-diagonal matrix, whileB has only one nonzero element, equal to unity, and is
located in the lower-left corner:

B =










0 0
... 0

· · · · · · . . . · · ·
0 0

... 0

1 0
... 0










If ω = 0, then the spectrum ofA + ωB lies in the left half-plane; ifω = 10 × 8−25 ≈
2.6 × 10−22, then the eigenvalues ofA + ωB containλ = 1/4.

These examples raise the following question: How should oneuse Lyapunov theo-
rem, which asserts that the solutions of the systemdx/dt = A·x are stable if, and only
if, the spectrum ofA lies strictly in the left half-plane? The point is that this formulation
is, in fact, a vulgarization of the Lyapunov theorem. Lyapunov proved that the constraint
Re(λj) < 0 (for all λj) is necessary and sufficient for a positive definite solutionH =
HT > 0 of the Lyapunov matrix equationHA + A∗H + C = 0 to exist for all positive
definiteC =C∗>0. The Lyapunov function (Hx,x) diminishes with increasingt on the
solutions ofẋ = Ax; hence,

‖x(t)‖ ≤
√

‖H‖ ‖H−1‖ ‖x(0)‖

How can one compute the coefficient
√

‖H‖ ‖H−1‖ [the ratio of the maximal and min-
imal axes of an Lyapunov ellipsoid, where the trajectoryx(t) lies]? This coefficient de-
pends not only on matrixA, but also on the choice of the right part ofC in the Lyapunov
matrix equation. Therefore, the stability analysis shouldnot only include the solvability
of the equationHA + A∗H + C = 0, but also introduce some particularC, providing
an acceptable value of

√

‖H‖ ‖H−1‖.
On the basis of these arguments, mentioned in Ref. [1], it wassuggested to findH

from the equationHA+A∗H +2 ‖A‖ I = 0 and to take as the characteristics of the sta-
bility quality the value ofκ = ‖H‖ , which ensures the validity of the following estimate:

‖x (t)‖ ≤
√

κe−t‖A‖/κ ‖x (0)‖ =
√

κe−t/τ ‖x (0)‖ , τ =
κ

‖A‖
Here,κ = κ (A) is the solution of the extremal problem

κ (A) = sup
x(o)







∞∫

0

‖x (t)‖2 dt

∞∫

0

exp (−2t ‖A‖) ‖x (0)‖2 dt






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The parameterτ = κ/‖A‖ is the characteristic time of solution decay. The inequality
|κ (A + B) − κ (A)| < 13κ3 (A) ( ‖B‖ / ‖A‖ ) [ this holds if( ‖B‖ / ‖A‖ ) < 10−κ−2

]
shows thatκ = κ (A) is stable with respect to perturbations of the matrix considered in
terms of the postulate formulated above.

It turned out [2, 3] thatH = H(A) can be represented as a matrix integral

H (A) =
‖A‖
π

+∞∫

−∞

[A∗ + iωI ]−1 [A − iωI ]−1 dω

which makes sense not only for Gourwitz matrices with the spectrum, located strictly in
the left half-plane. For the convergence of this integral, only the absence of eigenvalues
at the imaginary axis is necessary. The valueκ = ‖H‖ can be considered as a criterion of
spectral dichotomy with respect to the imaginary axis, a criterion estimating the distance
of λj (A) from this axis, regardless of the number of eigenvalues in the left half-plane
and those in the right half-plane.

The curve of the dependence of the dichotomy criterionκ (A − aI) on a illustrates
spectrum fibration by straight lines Re(λ) = a, parallel to the imaginary axis. Examples
illustrating the use of such graphs (1D spectral portraits)in some simple problems of
aeroelasticity are given below.

The first example, illustrating the use of dichotomy criterion, is a simple flutter mo-
del, proposed by TsAGI [4], in which the plate-airfoil is considered as a system with four
degrees of freedom. When ignoring the aerodynamic effects,the vibrations of the plate
are described by

dx

dt
= −Gy

dy

dt
= x

G =







37.7 O
169

899
O 1792







Aerodynamic effects are modeled by adding new elements, depending on the flow ve-
locity v to the coefficients of the system. The system acquires the following form:

dx

dt
= −vDx − (G + v2F )y

dy

dt
= x

D = 0.73 · 10−2







1 0
1

1
0 1






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F =







0 −0.197 · 10−2 0 0
0.12 · 10−3 0 −0.419 · 10−2 0.171 · 10−3

0 0.176 · 10−3 0 0
0 −0.154 · 10−3 0 0







Fibration of the spectrum of this system with lines, parallel to the imaginary axis,
for different velocitiesv is shown in Figs. 1a and 1b by the solid curve; the dashed curve
showsτ = κ/ ‖A‖. It is convenient to superimpose the spectral zones in one figure with
Re(λ) as the abscissa axis and the velocityv as the ordinate. The shaded area in Fig.1c
(internal area, bounded by the dot-and-dashed curve) is thedomain of Re(λ) values, such
that lg

√
κ ≥ 3.95; the external area refers tolg

√
κ ≥ 3.75. The middle area, bounded

by the white curve, is the domain whereτ = κ/ ‖A‖ ≥ 3.75.

The graphs presented allow one to evaluate the critical flutter velocity, obtained from
the computed ratio Re(λj) / ‖A‖ and from the proposed criterionκ (A). The admissi-
ble error forκ (A) should be chosen by analyzing the accuracy of modeling the phe-

FIG. 1: Spectrum stratification by the straight lines of an imaginary axis at various ve-
locities: (a)V = 395 m/s, (b)V = 411 m/s, and (c) spectral zones.
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nomenon by differential equations and validated against experimental data. Subspaces,
corresponding to clusters of eigenvalues (projections onto them or their bases), are com-
puted simultaneously with the spectral portraits. This allows one to indicate the cell-
diagonal canonical form of the matrix examined and, by computing the similar transform
matrix, find its condition number.

The canonical form of matrixA(v = 411) is

Q−1AQ=
































−3.67e −1.01e 0 0 0 0 0 0
+0 +2
1.17e −1.32e 0 0 0 0 0 0
+0 +0
0 0 4.30e 3.93e −2.64e 2.68e 0 0

+2 +2 +1 +0
0 0 −4.76e −4.33e 2.92e −2.96e 0 0

+2 +2 +1 +0
0 0 7.85e 7.11e −1.79e 1.88e 0 0

−1 −1 +2 +1
0 0 7.75e 7.01e −1.77e 1.76e 0 0

+0 +0 +3 +2
0 0 0 0 0 0 6.73e 9.77e

−1 +1
0 0 0 0 0 0 −1.21e −1.67e

+0 +0
































‖Q‖
∥
∥Q−1

∥
∥ = 267.0132

As an example for test computations of spectral portraits, let us consider coupled bending-
torsion vibrations of blades in the cascades of turbomachinery in a gas flow. The system
of differential equations that describes small vibrationsof such a cascade has the form
[5]

mnḧn + Snän + Knhhn = Ln + Fn

Snḧn + Jnän + Knaan = Mn

(n = 1, 2, ..., N)

wherehn, an are the generalized coordinates of blade deformation owingto bending-
torsion vibrations,mn, Jn are the generalized masses and moments of inertia of the
blades,Knh,Kna are the coefficients of generalized bending and torsion stiffness,Sn

are the coefficients of generalized coupling of bending and torsion vibrations,N is the
number of blades in the cascade,Fn are the elastic coupling forces of blades with each
other, andLn,Mn are the generalized aerodynamic forces and moments acting on the
nth blade. In the theory of cascades in an unsteady flow [6], thelatter quantities can be
presented as
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Ln = qσ

N∑

r=1

(

l′r−n,h

hr

b
+ l′′r−n,h

ḣr

ωb
+ l′r−n,aar + l′′r−n,a

ȧr

ω

)

Mn = qσ
N∑

r=1

(

m′
r−n,h

hr

b
+ m′′

r−n,h

ḣr

ωb
+ m′

r−n,aar + m′′
r−n,a

ȧr

ω

)

whereq is the free-stream dynamic pressure,σ andb are the surface area and chord of
the blade,lr−n, mr−n are the aerodynamic coefficients of the blade effect, which are
functions of the Strouhal numberk = ωb/V, V is the free-stream velocity,ω = Imλ,
andλ is the root of the corresponding characteristic equation ofthis system.

We now introduce the notation

ω2
nh =

Knh

mn
, ω2

na =
Kna

Jn
, γn =

Sn

mnb
, ρ2

n =
Jn

mnb

ν =
ω2

na

ω2
nh

, εn =
qσ

mnbω2
, h̄n =

hn

b

and note that the estimateεn< 1 is valid because the unsteady aerodynamic forces act-
ing on the blade are much smaller than the elastic forces and forces of inertia. With this
notation, the system takes the form

¨̄hn + γnän + ω2
nhhn = εnω2L̄n +

1

mn
Fn

γn
¨̄hn + ρn

(
än + νω2

nhan

)
= εnω2M̄n (n = 1, 2 ... N)

where

L̄n =

N∑

r=1

(

l′r−n,h

h̄r

b
+ l′′r−n,h

˙̄hr

ωb
+ l′r−n,aar + l′′r−n,a

ȧr

ω

)

M̄n =

N∑

r=1

(

m′
r−n,h

h̄r

b
+ m′′

r−n,h

˙̄hr

ωb
+ m′

r−n,aar + m′′
r−n,a

ȧr

ω

)

Note that the matrix corresponding to the left-hand side of the system is a Hamiltonian,
and the matrix corresponding to the right-hand side can be considered as its perturbing
component. As the initial parameters required for solving the system, one can use the
values ofωnh,γn,ρn,ν, εn, k, and aerodynamic influence coefficients whose values are
summarized in Gorelov et al. [7] as functions of cascade geometry and flow parameters
(within the framework of the ideal fluid model).

Figures 2–6 show the 1D spectral portraits of matrices in a system that describes
vibrations of a cascade of thin blades atc = 0 (cascade densityτ = 1.5; ejection angleβ
= 30 deg; deflection of the midline of the blade, related to itschord,f = 0.025; Strouhal
numberk = 0.5; and number of blades in the periodN = 10) in a flow of an ideal incom-
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FIG. 2: Dichotomy criterionκ (a) andXa (b) for the cascade of blades, having the
same inertial and elastic parameters:γ = −0.3,ν = 2,ρ = 1, ε = 0.01.

FIG. 3: Dichotomy parameters (a)κ and (b)Xa for the blades cascade with the char-
acteristicsγ = 0,ν = 1,ρ = 1, ε = 0.01.

pressible fluid. The symbolκ is the criterion of dichotomy of the spectrum of matrices
by concentric circles with the center at the origin of the complex plane of eigenvalues,
depending on the circle radius, and the symbolXa denotes the quality of dichotomy by
lines, parallel to the imaginary axis, from the coordinatea of their intersection with the
real axis. The values ofR and a, for which κ and Xa are almost infinite, determine
the absolute values and real parts of eigenvalues; more exactly, those intervals that are
considered as reliable on the basis of the computations performed.

Figure 2 shows the dichotomy criteriaκ (Fig. 2a) andXa(Fig. 2b) for the above-men-
tioned cascade with blades possessing identical inertial and elastic parameters, equal to
γ = −0.3,ν = 2,ρ = 1, ε = 0.01.

Note that for these parameters of the cascade, the Hamiltonian component of the
matrix has essentially different eigenvalues (Fig. 2a); therefore, the real values of the to-
tal matrix that describes cascade vibrations with allowance for aerodynamic interaction
(Fig. 2b) can be fairly accurately determined by the perturbation method.

Figure 3 shows the dichotomy parametersκ andXa for the cascade whose blades
have the following characteristics:γ=0,ν=1,ρ=1, ε=0.01. In this case, the absolute
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FIG. 4: The dichotomy quality for almost the same cascade as that in Fig. 3, but with
additional allowance for elastic coupling of blades with each other.

FIG. 5: (a,b) The dichotomy quality of the cascade in Fig. 2 and (c,d)its change while
passing from the larger order matrices to the lower-order ones.

values of matrix eigenvalues almost coincide with each other (Fig. 3a); hence, the pertur-
bation method cannot be used to determine the real parts of the eigenvalues. The curve
of the dichotomy qualityXa characterizes the positions of these values with guaranteed
accuracy (Fig. 3b). For this combination of blade parameters, several eigenvalues of the
matrix are located in the right half-plane, i.e., the corresponding matrix is unstable.
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FIG. 6: The influence of a small perturbation of the Hamiltonian component of the
matrix by the example of Fig. 3.

Figure 4 shows the dichotomy quality for almost the same cascade as that in Fig. 3,
but with additional allowance for elastic coupling of blades with each other. The di-
chotomy parameterκ for the corresponding matrix withc = 0.2ω2

n is plotted in Fig. 4a,
which shows that this matrix consists of Jordan cells of dimension 2 and 4. According
to available knowledge, such a matrix should be more sensitive to perturbations, which
is evidenced by its dichotomy qualityXa (Fig. 4b).

One advantage of the spectral portraits of matrices is the possibility of reducing the
analysis of stability of high-order matrices in some cases to the analysis of stability of
their submatrices of lower order. The presence of clusters,representing the numerous
eigenvalues, located close to each other, is the criterion of existence of this possibil-
ity. These clusters are well removed from each other in the complex plane at a good
dichotomy quality.

As an example, consider a matrix whose dichotomy parametersare shown in Fig. 2.
It follows from the dichotomy quality of this matrixκ, with allowance for elastic cou-
pling Fn (Fig. 5a), that the criterion indicated above is satisfied inthe case considered.
A comparison of the dichotomy qualityXa for the total matrix (Fig. 5b) with similar de-
pendencies for the corresponding submatrices (Figs. 5c and5d) supports this statement.

The influence of a small perturbation of the Hamiltonian component of the matrix
on the stability of the latter is illustrated in Fig. 6. As an example, consider the matrix
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whose spectral portrait is shown in Fig. 3. Its perturbing component describes the action
of blade coupling forces of the formFn = (−1)nc(hn+1 + hn−1 − 2hn).

Figure 6a shows the spectrum dichotomy by radial circles. Figure 6b illustrates the
portrait of the same spectrum by dichotomy by straight lines, parallel to the imaginary
axis; some part of the spectrum is seen to lie in the right half-plane. After detuning, the
entire spectrum is located in the left half-plane, which is illustrated in Fig. 6c. As the
detuning parameter increases, the spectrum is shifted to the left (Fig. 6d). This example
illustrates the known fact of the influence of small geometric inhomogeneity of cascades
on the stability of their vibrations.

The methods of stability analysis described in this paper are implemented with the
use of simple iterative algorithms, proposed and describedin Bulgakov [1] and Malyshev
[8]. The algorithms solve Lyapunov matrix equations and their generalizations to the
case of spectrum dichotomy. These generalizations, as we have learned, have appeared
in the book [9]. Unfortunately, its content was not understood by us. This slowed the
explanation, to which we paid less attention, than to the numerical schemes construction.
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Results of 3D aerodynamic calculations concerning the influence of the turbojet nozzle chevron de-
flection angle into the flow on engine thrust characteristics are presented. The optimum deflection
angle, at which the chevrons exert the minimum influence on the thrust losses, is chosen. The scheme
of the deflection angle control by the ring, made of the shape-memory material nitinol is proposed.
The investigation results of the aerogasdynamic and acoustic characteristics of the nozzle with the
chevrons are given.

KEY WORDS: 3D analysis, experiment, nozzle, chevron, jet, thrust losses, engine, chevron
deflection angle, optimization, noise, shape-memory materials

1. INTRODUCTION

Nowadays, in order to decrease the noise from the reaction jet of the turbojet engine,
the chevrons, being fixed on the nozzle exit (Fig.1) and having sufficiently high acoustic
efficiency at relatively easy structure, are widely spread.The jet noise decrease by the
chevrons is known to be based on the intensification of the mixing process of the external
flow and the nozzle jet. In addition, as experiments show [1],the transformation of the
jet noise spectrum occurs—the noise level decreases at low frequencies and increases
at high frequencies. The greater the deflection angleα of the chevrons in the nozzle,
the stronger is the jet noise spectrum transformation, so atgreat chevron deflection an-
gles, the negative effect of the noise increase at high frequencies can exceed the positive
effect of the noise decrease at low frequencies, which results in the fact that the total
noise level of the nozzle with chevrons is higher than that ofone of the nozzles without
chevrons. This implies that there is an optimum deflection angle (αopt)ac at which the
noise decrease at a chosen mode is maximum for every chevron configuration.

1948–2590/09/$35.00c©2009 by Begell House, Inc. 657
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FIG. 1: Chevrons with nitinol drive.

The chevrons’ effect on the jet leads to a change in the nozzlethrust characteristics.
In addition, depending on the nozzle and chevrons’ shape, there is an optimum deflection
angle of the chevrons(αopt)t at which the thrust losses of the nozzle with chevrons at
cruise mode are minimum. In the general case, the optimum acoustic and thrust angles
are not equal, i.e.,(αopt)ac 6= (αopt)t , because even a small deflection of the chevrons’
setting angle from(αopt)t during flight can lead to an essential loss of engine efficiency.
Therefore, the investigations concerning the developmentof the schemes of the chevron
deflection angle control during the flight are carried out in engine companies. This will
allow setting(αopt)ac and(αopt)t during the flight for the maximum decrease of noise.
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Nowadays, the scheme, using shape-memory material, for example, titanium nicke-
lide TiNi (nitinol) is the simplest and the most perspectivefor chevron control. The com-
panies Boeing, General Electric, Goodrich Aerospace, and NASA within the framework
of the program Quit Technologies Demonstrator 2 (QTD2) could decrease the noise level
at takeoff by 3–4 dB and improve the fuel rate under the conditions of cruise flight by
1% by using shape-memory chevrons at the nozzle of the aircraft Boeing 777-300ER
(see Fig. 1) [2–4].

Consequently, while designing the chevron control scheme,it is necessary to know
both angles(αopt)ac and (αopt)t. The value of(αopt)ac for the concrete engine with
chevrons can be defined by the results of full-scale or model acoustic tests. As for the
angle(αopt)t , it can be defined both experimentally and by means of 3D calculations of
the nozzle overflow [5].

Given in the present paper are the results of the calculations of flow over the tri-
angle chevrons, fixed on the engine nozzle with mixing (with the annular mixer), with
various chevron deflection anglesα, by means of which the angle(αopt)t is specified.
The authors propose and investigate the scheme of chevrons control by means of the
ring, made of the nitinol, which changes its diameter (“remembers” its shape) as the
temperature varies, and correspondingly changes the chevron deflection angles.

The scheme of the nozzle with triangular chevrons was considered. The chevron
bases were situated close to each other on the nozzle exit.

The computational area was chosen from the condition of the periodical arrangement
of the chevrons. Its beginning was displaced upstream, as isshown in Fig. 2, and the end
was situated at a distance of∼7 diameters from the nozzle exit, the radius was∼8 nozzle

FIG. 2: Computational area.
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exit radii. The computational grid contained∼1 million nodes. All the calculations were
fulfilled for the mode close to the cruise flight of an aircraft.

The ideal gas, which is close to the air in its characteristics, i.e., the gas constant is
Rg =287.13 J/kg K and the adiabatic coefficient isk = 1.4003, was taken to be the ope-
rating medium. In order to analyze various variants of the nozzles, we used the engine
thrust losses∆P̄ (%)

∆P̄ =

(

1 −
P

Pid

)

100

whereP is the real (measured or calculated) engine thrust (the thrust component directed
along the engine axis),Pid =(Pid.n−GaV∞cos δ) is the ideal engine thrust specified by
the real gas flow through the nozzleGn (here,Pid.n = GnVid is the ideal nozzle thrust,
i.e., the thrust of an ideal nozzle where the gas extends up toatmospheric pressurep∞
perfectly, without losses) at the same parameters at the nozzle entry(p∗, T ∗, andGn)
as in the investigated real nozzle;Vid =acrλid =

√

2kRgT ∗/(k + 1) λid is the ideal ve-
locity of the gas flow from the nozzle,k = 1.4003 is the specific heat ratio;Rg = 287.13
is the gas constant;λid is the ideal reduced velocity of the flow, which can be defined
from the equation

π (λid) =

(

1 −
k − 1

k + 1
λ

2
id

)k/(k−1)

=
p∞

p∗
;

whereGa is the airflow at the engine entry,V∞ is the flight velocity, andδ is the angle
between the free-stream direction~V∞ and the engine axis. The calculation results are
presented in Fig. 3.

Among all the investigated variants of the nozzles with chevrons, the nozzle with
the deflection angleα = 0 (Fig. 4) has the minimum thrust losses, which are only 0.06%
greater than that ones of the initial nozzle without chevrons. Therefore, the optimum
thrust angle for the given nozzle(αopt)t = 0.

Taking into account the fact that from the viewpoint of noisesuppression, the op-
timum chevron deflection angles are 6–12 deg [5], it follows that the calculated engine
thrust losses, while fixing the chevrons at the angleα ∼= 6 deg, are∼10% greater than
the thrust losses in the case of the nozzle without chevrons (see Fig. 3).

In order to reduce the thrust losses during the flight, the authors propose the follow-
ing scheme of the chevron deflection angles’ control by meansof the ring, made of the
shape-memory material nitinol. The use of this ring to provide the rigidity and connec-
tivity of the entire chevron structure was already proposedin a patent [7] in 1995 (Fig. 5).
The ring is fixed to every chevron. The operating principle ofthe proposed scheme con-
sists of the following. The chevrons are fixed on the nozzle insuch a way that in the free
state without the ring, their deflection angle is close to zero (α ∼= 0). The initial length of
the nitinol ring is chosen in such a way that while putting it on the chevrons during take-
off, from the viewpoint of the noise suppression, the deflection angle becomes equal to
the optimum angle. At the cruise mode, the ring temperature decreases to approximately
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FIG. 3: Engine thrust losses efficient versus the chevron deflectionangle.

FIG. 4: The nozzle with chevrons,α = 0.
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FIG. 5: The use of the ring for the rigidity and connectivity of the chevrons’ structure
from the patent 2289921 [6].

0◦C, in this case the nitinol elasticity coefficient is decreased 2–3 times because of the
transition from the austenitic to martensite state [6]. Consequently, the ring allows the
chevrons to straighten up toα ∼= 0 owing to their own elasticity. This provides the min-
imum thrust losses at cruise mode. At landing mode, the ring is heated, and the reverse
transition from the martensite to austenitic state to increase the nitinol elasticity coeffi-
cient occurs in it. As a result, the ring “remembers” its shape, namely, its initial length
becomes shorter and deflects the chevrons inside the jet up tothe optimum deflection
angle.

According to the calculations fulfilled in this work, the thrust losses in the variant
with the ring increased only by 0.15% in comparison to the variant of the nozzle without
chevrons, and by 0.09% in comparison to the nozzle without ring, i.e., the ring leads to
an increase of the thrust losses by∼0.1%.

The additional thrust losses associated with the ring fixingessentially depend on its
shape. For example, the thrust losses in the variant with thering with the rectangular
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cross section (Fig. 6b) at the optimum deflection angle are greater than in the variant of
the ring of the aerodynamic shape (Fig. 6a) withα = 0 by 2.11%.

In order to estimate the loads necessary for the optimum deflection angle of the
chevrons, special calculations were completed. The chevron represented the bent sheet
(Fig. 7). The forward part of the chevron was rigidly fixed, and in the area of the chevron
contact with the ring, the load, equidistributed over the plane, was set. The shift of the
chevron tipS and the equivalent deflection angleαe were defined depending on the

FIG. 6: Flow pattern: (a) the flow over the ring with the cross sectionof the streamlined
shape (ring width 15 mm, maximum thickness 1.5 mm, external surface is made in form
of the circle arc); (b) the flow over the ring with the rectangular cross section (10×2
mm).
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FIG. 7: The chevron computational scheme.

applied load (Fig. 8). Shown in Fig. 9 is the pattern of the chevron deformations and
tensions obtained by the calculation.

In order to provide the deflection of the considered chevron at the optimum angle, it
is necessary to apply some force. The decrease of this force can be achieved by dimin-
ishing the chevron thickness. For this purpose and also for the definition of the nitinol

FIG. 8: Specification of the chevron tip shiftS and of the equivalent deflection angle
αe under the action of the loadF .

FIG. 9: Strength calculation of the chevron: (a) the chevron deformation (m); (b) stress
spectrum in the chevron.
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ring geometric parameters, providing the required force, it is necessary to complete cal-
culations of the chevrons of various thickness with the nitinol ring.

In order to provide the optimum chevron deflection angle, theshift S should be on
the orderLtg (αe) , i.e., the nitinol ring should elongate by the value2π [(R + S) − R] =
2πS, which equals∼4% of the initial ring length for the case considered in this paper.
Ordinary metals cannot bear such deformations. The nitinolcan reproduce its shape,
even at deformations on the order of 10% owing to its superplasticity [6]. However, it is
necessary to carry out special cyclic tests to check the performance of the drive during
the given period of time.

Finally, it is worth noting the advantages and the shortcomings of this chevron con-
trol scheme in comparison with the initial variant, in whichthe chevron “control” was
realized by means of nitinol plates. In the initial variant,the nitinol drive was made in
the form of the plates, placed inside the chevron (see Fig. 1). The main advantage of the
initial variant in comparison with the proposed scheme withthe ring is the absence of
the additional drag due to the drive.

The disagreement of the chevron deflection angles during theexploitation (because
every drive is made and is working individually) and the absence of the possibility to
adjust the scheme can be referred to as the shortcomings of the initial variant. In the
scheme with the ring, all the chevrons and the drive are working in agreement with
each other. This fact excludes the possibility of the angles’ disagreement during the
exploitation. In addition, the ring gives an additional rigidity to all the structure.

Both schemes can be considered to be approximately of the same mass. In the pro-
posed scheme, the ring mass can be greater than the total massof the nitinol plates in
the initial variant, but owing to more rigid structure, one can make the chevrons thinner
in the scheme with the ring. The complex of the experimental investigations concerning
the analysis of the deflected chevrons’ influence on the noisedecrease, on the value of
the angle of the jet axis deflection, and on the value of the nozzle effective thrust losses
was carried out along with the numerical investigation.

It is worth noting that the complex solution of the problems,mentioned above, re-
sulted in the necessity to choose the optimum chevrons’ geometry, their amount and
arrangement on the nozzle exit, the optimum deflection angleof the chevrons into the
reaction jet, and so on. In addition, the complex experimental investigations of the noz-
zles with chevrons involved the specification of the aerogasdynamic and acoustic char-
acteristics on the special facilities in TSAGI.

The illustration of the experimental results is presented in Fig.10. The following re-
sults in Fig.10 are the most important:

• The location of the chevrons along the nozzle exit contour allows for a decrease in
the noise level by approximately 1–1.5 dB, whereas the deflections of the chevrons
into the jet essentially increases its mixing with the ambient air and decreases the
noise by∼7 dB.
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FIG. 10: Generalization of the results of the investigation of the nozzle with chevrons.

• In addition, the corresponding arrangement of the deflectedchevrons allows the
deflection of the engine jet axis (TVC) approximately at 12 deg, which allows an
increase the stability and controllability of the aircraftduring takeoff and landing.

• The price of the chevron deflection to solve the problems, mentioned above, is
equivalent to an increase in the nozzle effective thrust losses by∼3% of the ideal
thrust (approximately 9–10% of the engine thrust losses) from the viewpoint of
the aerogasdynamic efficiency, which is unacceptable in thepresence of the un-
controllable chevrons.

• The use of the chevron location control by means of the memory-shaped materials
allows obtaining the maximum effect from the chevrons’ deflection during the ta-
keoff/landing mode and to minimize the thrust losses at the cruise flight mode of
the aircraft.
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Performed are the numerical investigations of the separated flow over a slender circular cone-delta
wing combination within a wide range of key parameters, with the combination being situated sym-
metrically relative to the free stream. Two approaches are used to solve the problem. Within the frame-
work of the slender body theory, nonunique symmetrical and asymmetrical solutions are obtained.
The area of existence of various solutions is specified. The 3D-RANS CFD calculations of the small
aspect ratio combination with the forebody in the form of a circular cone and with the delta wing,
taking into account the viscosity, are carried out. It is shown that in this case, the problem has unique
solutions, which are symmetrical at small angles of attack and asymmetrical at greater ones. At rela-
tive angles of attack, being less than 2, the lift coefficients, obtained by two approaches, are very close.
This fact estimates the application area of the slender body theory. The flow patterns in the section of
the combination conical part, illustrating the flow peculiarities, are given.

KEY WORDS: asymmetry, non-uniqueness, separated flow, cone-delta wing, low aspect
ratio, calculations with account of viscosity

1. INTRODUCTION

Many works are aimed at the investigation of inviscid stationary separated flow over a
slender wing-body conical combination. Provided that the angle of attack and the apex
angle of the delta wing are small, the initial 3D stationary problem is usually reduced to
the 2D nonstationary problem and then one finds its self-similar solution. The various
models of the vortex sheet getting off the trailing edge havebeen proposed and improved
in Refs. [1–4]. In the most complete among these models, the sheet exterior was sim-
ulated by the finite number of intervals with distributed vorticity, and the vortex spiral
interior was represented by the discrete vortex. The evolution equation of the sheet was
used to specify its shape and intensity [5]. The use of the conformal transformation of
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the body contour in the cross section on the interval, situated along the free stream, or
on the circle, was a significant aspect of most of the works. This fact allowed to meet au-
tomatically the no-leakage boundary condition. It should be noted that also in Ref. [6],
where the aerodynamic singularities, whose intensity was specified by the no-leakage
condition, were distributed on the body contour. Such an approach allows to investigate
the conical layouts, where the contour of the cross section cannot be conformally trans-
formed to an interval or to a circle in a simple way. One used the iteration method or
relaxation method to solve the obtained equations [7–9].

A lot of calculations were completed by the mentioned technique. For example, the
calculations of the combination of the delta wing with the conical fuselage, having a
half-circle in the cross section [10], and also the calculations of the wing, having the arc
of a circle in the cross section [11]. Cited in Ref. [12] are the calculation results of the
flow over the yawed delta wing.

The nonuniqueness of the problem solution within a certain range of the angle of
attack and of the ratio of the fuselage diameter to the wing span was discovered while
investigating the symmetrical flow over the circular cone–delta wing combination [13].
Shown in Ref. [14] is the fact that if the solution symmetry isnot required previously
(i.e., to solve the problem for the complete body, rather than for its half), then at the
symmetrical position of the combination relative to the free stream, the problem has
both symmetrical and asymmetrical solutions, including the unstable ones. However,
the stability investigation was carried out for the simplest model of vortex sheet (“vortex
cut”) because in this case, such investigation can be fulfilled analytically.

The first part of the present work is aimed at the investigation within the framework
of the slender-body theory of the existence of the area of thestable symmetrical and
asymmetrical solutions of the problem concerning the separated flow over the circular
cone–delta wing combination, situated symmetrically relative to the free stream. Car-
ried out in the second part are the calculations of the finite length combination with the
forebody in the form of the cone and the delta wing by means of the 3D-RANS method.

2. PROBLEM STATEMENT

The separated flow over the slender circular cone–delta wingcombination is investi-
gated. We will consider the fluid to be inviscid and incompressible, the shear layers to
be represented by the velocity tangential discontinuity, and the separation lines to be at-
tached to the wing sharp edge. The half-angle at the wing apexδ and the angle of attack
α are small:δ∼ α = o (1). TheX-axis of the reference frameOXYZis directed along
the combination axis, theY -axis is directed upward, and theZ-axis is in the wing plane.
According to the conventional procedure, the original 3D problem (in variablesX, Y ,
Z) is reduced to the 2D nonstationary problem concerning the separated flow over the
uniformly widening body, which represents the combinationcross section (in variables
t = X/U∞, Y , Z, whereU∞ is the free-stream velocity). The self-similar variablesx
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andy are introduced further so thatY = yU∞ttgδ andZ = xU∞ttgδ, and the complex
variablez = x + iy.

In thez plane, the free-stream velocity (relative angle of attack)α0 = sin α/tgδ ∼=
α/δ, the wing edges are at the points –1 and 1, and the fuselage radius is denoted by
m < 1 (Fig. 1).

Then, according to Refs. [4, 5], the evolution equation of the vortex sheet, result-
ing from the discontinuity absence conditions of the velocity component, normal to the
sheet, and from of the pressure across the sheet, is written as follows:

z̄ − ∆ϕ
dz̄

d (∆ϕ)
=

dw

dz
(1)

wherew (z) is the dimensionless complex potential of the flow,ϕ = Re (w) , and∆ϕ =
Γ is the discontinuity of the real part of the complex potential across the sheet. At the
point (–1, 0),∆ϕ = G1, and at the point (1, 0),∆ϕ = G2, whereG1 andG2 are the
total circulations of the left and right vortex sheets.

In order to create the flow complex potential, we transform the exterior of the body
contour to the exterior of the circle of the unit radius in theplane of the complex variable
µ = ζ + iη. Such a transformation is given by

FIG. 1: The body contour and the vortex sheet in thez plane.
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Taking into account that at infinitydµ/dz=2/(1+m2), and using the reflection method,
we write the complex potential as follows:

w (µ) = m2 ln z − iα0
m2 + 1
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+
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2π i
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Thus, the constructed potential satisfies the no-leakage condition on the body and be-
haves at infinity as−iα0z.

While taking into account Eq. (2) and introducing the new variableλ = 1−(∆ϕ/G),
Eq. (1) is reduced to the form

(1 − λ)2
d

dλ

(

z̄
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)

=
m2

z
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(

1 +
1
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dµ
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+
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2πi
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1
∫

0
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1

µ − µ2 (λ)
−

1

µ −
[

1/µ2 (λ)
]

)

dλ

]

dµ

dz
(3)

Subscripts 1 and 2 in the integration elements denote that the integration is over the
contour of the left or right sheets.

The Chaplygin-Zhukovsky condition at the sharp wing edges,where the derivative
dµ/dz becomes infinite, gives two additional real equations for the intensitiesG1 and
G2, which are to be determined, provided that the sheet geometry is known,

2πα0

(

m2+1
)

+G1

1
∫

0

[

1 − ς2
1 (λ) − η

2
1 (λ)

]

[1 − ς1 (λ)]2+η2
1 (λ)

dλ+G2

1
∫

0
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2 (λ) − η

2
2 (λ)

]

[1 − ς2 (λ)]2+η2
2 (λ)

dλ=0 (4)
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2
1 (λ)
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[1 + ς1 (λ)]2+η2
1 (λ)
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∫

0
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2 (λ) − η

2
2 (λ)

]

[1 + ς2 (λ)]2+η2
2 (λ)

dλ=0 (5)

3. NUMERICAL SOLUTION METHOD

For the numerical solution of the problem, every sheet was represented by the exterior
part, being divided into the finite number of intervalsN1 andN2, and the interior part,
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being replaced by the discrete vortex (the core). The end of the last interval of the exterior
part was connected to the discrete vortex by the cut to avoid the nonuniqueness of the
velocity potential (shown in Fig. 1 by the dashed line). Accordingly, the integration in
Eqs. (3)–(5) was fulfilled between the limits 0 andλN1

and between the limits 0 and
λN2

, respectively, and the integrals over the interior parts of the sheets were replaced by
the corresponding effect of the discrete vortices. The integrals over the sheet intervals,
being adjacent directly to the edges(λ � 1) , were calculated using the asymptotes near
the sharp edge of the slender wing, according to which in the problem considered is

µ1 (λ) = −1 − a1λ
1/2 + ib1λ + · · ·

µ2 (λ) = 1 + a2λ
1/2 + ib2λ + · · ·

The real constantsa1, a2, b1, andb2 were specified numerically.
In order to specify the coordinates of the cores, the well-known condition of the

absence of the total force, effecting the vortex-section system, was used. This condition
is written as follows:

2zC − zN =
dw

dz

∣

∣

∣

∣

C

(6)

wherezC are the coordinates of cores 1 or 2, andzN are the coordinates of the end of
the corresponding sheet exterior part. The complex conjugate velocity was calculated in
the corresponding pointzC .

Equations (3)–(6) were solved by the iteration method. In this case, Eq. (3) was ap-
plied at the middle points of the sheet intervals, and the integration was fulfilled by the
trapezoidal method, being of the second approximation order. The model of the sheet,
the exterior part of which consisted only of the asymptotical area, adjoining to the edge,
was used as the initial approximation. The solution for thismodel converged rapidly; and
furthermore, the number of intervals of the exterior part and its length were successively
increased up to the formation of approximately one spiral turn. After that, forces acting
on the combination were calculated. A more detailed finite-difference interpretation of
the equations and of the calculation algorithm is given in Ref [13].

4. CALCULATION RESULTS

As was mentioned above, the solution is nonunique at the symmetrical problem state-
ment within the framework of the slender-body theory. Within a certain range of the
angles of attack and of the relative fuselage radii, there are two stable solutions and
one unstable solution to the symmetrical disturbance. Shown while investigating the
solutions at a nonsymmetrical statement [14], is the fact that one of the symmetrical
solutions is unstable to nonsymmetrical disturbances. In addition, a set of stable and un-
stable nonsymmetrical solutions exists. Since these investigations were fulfilled within
the framework of the simplified model of the vortex sheet (vortex cut), there is still a
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question about how the situation changes while using more a detailed model to answer.
Carried out in the present work are the calculations of the flow within a wide range of the
problem parameters for the complete sheet model (sheet–vortex cut) at a nonsymmetrical
statement.

Let us consider the results of these investigations. Shown in Figs. 2 and 3 are the lift
and lateral force coefficients versus the relative angle of attackα0 for the various values
of the fuselage radiusm (K = tgδ) . The symbols corresponds to the symmetrical solu-
tion, and the symboluscorresponds to the nonsymmetrical one. The stable symmetrical
solution exists for all the valuesm andα0 < α01 (m) . If α0 exceedsα01(m), the sym-
metrical solution will lose stability. In this case, atm < m∗ ≈ 0.8, the solution becomes
unstable to nonsymmetrical disturbances, but in the absence of these disturbances, the
solution can be extended to greater angles of attack. Ifm > m∗ andα0 > α01(m), the
symmetrical solution is unstable both to nonsymmetrical and to symmetrical disturban-
ces.

Based on the performed calculations, one can plot the diagram showing the existence
areas of the problem stable solutions (Fig. 4). The curveα01 (m) in this diagram repeats
qualitatively a similar dependence, cited in Ref. [14]. However, this dependence, as was
expected, proved to be shifted down by the angles of attack. This difference is caused
by the fact that the simplified vortex sheet model was used in Ref. [14]. In addition, the
curveα02 (m) , corresponding to the rise of the asymmetry, and the curves separating
the existence areas of various asymmetrical solutions, areplotted in Fig. 4.

One can distinguish five areas with a various number of stablesolutions in Fig. 4
(furthermore, we will consider two asymmetrical solutions, being the mirror reflection

FIG. 2: Lift coefficient versus the relative angle of attack.
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FIG. 3: Lateral force coefficient versus the relative angle of attack.

FIG. 4: Existence areas of the problem stable solutions:�, rise of the nonsymmetrical
solution; —, loss of stability of the symmetrical solution;©, nonsymmetrical solution
1; ∆, nonsymmetrical solution2.
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of each other relative to they-axis, to be one solution), i.e., 1 represents one symmet-
rical solution, 2 represents one asymmetrical solution, 3 represents two solutions (one
symmetrical and one asymmetrical solution), 4 represents two asymmetrical solutions,
and 5 represents three solutions (one symmetrical and two asymmetrical solutions).

Shown in Fig. 5 is the shape of the vortex sheets for several values of the parameters
α0 and m, corresponding to the areas 3, 4, and 5. The configurations ofthe sheets,
corresponding to the various solutions, are seen to be sufficiently different.

5. FLOW CALCULATION WITH ACCOUNT OF THE VISCOSITY

The problem nonunique solutions, mentioned above, take place at sufficiently great rel-
ative angles of attack. In this case, the assumption of the slender-body theoryα ∼ δ =
o (1) begins to be violated. In addition, the viscosity and the influence of the finite body
length can play a sufficient role in the realization of one or another solution. Thus, to
overcome the limitations of the slender-body theory and to take into account the viscos-
ity the CFD calculations of the steady flow over two combinations, having the forebody
in the form of a circular cone with the slender delta wing of zero thickness were carried
out.

Both combinations have the same fuselage, namely, the conical part length is 1 m,
the cylindrical part length is 0.5 m, and the tail part represents a half-sphere. The wing
of the first combination (Fig. 6) has the apex half-angleδ = 5 deg, with the ratio of the

FIG. 5: Vortex sheet configuration: (a)m = 0.8,α0 = 3.5; (b) m = 0.8,α0 = 5.4; (c)
m = 0.98,α0 = 5.2 —— — symmetrical solution,∆ — solution1, � — solution2.
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FIG. 6: Geometry of the wing-fuselage combination.

fuselage diameter to the wing span beingm = 0.9. The apex half-angle of the second
wing is δ = 6 deg, which corresponds to the parameterm = 0.75. Since the essential
qualitative difference in the calculation results for these two variants has not been found
out, further on, mainly the data form = 0.9 are given. The calculation area had the
following dimensions: from –1.5 to 5 m along theX-axis, from –1.3 to 1.7 m along the
Y -axis, and from –1.5 to 1.5 m along theZ-axis, and contained about one million cells.
The fuselage nose was situated at the origin.

The Reynolds-averaged Navier-Stokes equations with the SST turbulence model
were solved. The free stream had the velocity 50 m/s, the density 1.2 kg/m3, and the
viscosity 1.83× 10−5 kg/m s. The calculations were performed for the angles of attack
up to 45 deg, which corresponded toα0 = 8.082.

Shown in Figs. 7 and 8 are the lift and lateral force coefficients in the sectionX = 0.7
m versus the relative angle of attack atm = 0.9. For convenience of the comparison with

FIG. 7: Lift coefficient versus the relative angle of attack (m = 0.9).
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FIG. 8: Lateral force coefficient versus the relative angle of attack (m = 0.9).

the slender-body theory (sbt) results, their values are divided byK2. Plotted in Fig. 7
by the dashed line is the curve corresponding to the calculation of the half-combination
(symmetrical problem statement). The lift coefficients in the two considered cases are
seen to be very close. The difference is observed only withinthe rangeα = 26–37 deg,
which corresponds to the maximum in absolute magnitude lateral force in the asymmet-
rical solution.

The unique solution is realized within the entire investigated range of the angle of
attack. In this case, up to the angle of attack 12 deg(α0 = 2.38), it is symmetrical
and the lift coefficients, obtained by the slender-body theory and by the CFD method,
are almost the same. At greater angles of attack, the solution loses symmetry, and the
lateral force appears. Its behavior corresponds to the experimental data [15, 16]. Any
intermittent vortex structures, which are observed at the flow over the slender rotational
bodies, have not been found out. Shown in Fig. 9 are the streamlines, getting off the
wing edges on the conical part of the combination atα = 30 deg,m = 0.9. The flow is
seen to be asymmetrical and close to the conical one in this area, even at such a great
angle of attack. It is known that in the conical flows, the streamlines near the vortex core
are almost cylindrical. One can see in Fig. 9 a small deflection of these streamlines from
the cylindrical surface (spreading), which can be caused bya great angle of attack, by
the integration method of the streamlines, and by their great length.

Presented in Fig. 10 are the patterns of the vorticity fields for the layout withm =
0.75 in the cross sectionX = 0.7 m for the angles of attack 10 and 15 deg. The vortex
sheets, calculated by the slender-body theory, are indicated by the dots. At small angles

TsAGI Science Journal



Separated Flow over a Slender Conical Wing–Body Combination 679

FIG. 9: Streamlines getting off the delta wing edges (α = 30 deg, m = 0.9).

FIG. 10: Vorticity fields in the planeX = 0.7 m (m = 0.75).

of attack, both methods give very close flow structures (as well as the integral character-
istics). Atα = 15 deg in the CFD calculation, the main vorticity area is shifted upstream,
and the asymmetry and the secondary separation from the conesurface become visible.
At even greater angles of attack, the differences of the flow patterns increase.

For the investigation of the flow patterns in the sectionX = constant, we form the
following modified velocity field:
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U1 = U − U∞ cos α, V1 = V − U∞ cos α R2 Y

(Y 2 + Z2) X

W1 = W − U∞ cos α R2 Z

(Y 2 + Z2) X

whereU, V , andW are the velocity components, andR is the fuselage radius in a sec-
tion. Shown in Fig. 11 are the “streamlines” corresponding to such a velocity field for
m = 0.9,X = 0.7 m and various angles of attack. Within the rangeα = 9–12 deg, the
second separation area exists on the upper fuselage surface. The directions of the gas
motion in this area and in the area of the main separation are the same.

FIG. 11: Flow fields in the planeX = 0.7 m (m = 0.9).
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As the angle of attack increases, the flow becomes asymmetrical, the second sep-
aration disappears, and the secondary separation from the fuselage, which is situated
closer to the wing, arises. The curvecy (α) in the vicinity of α = 12 deg essentially
changes the slope. Atα ≈ 25 deg, the flow becomes more symmetrical and the lat-
eral force disappears. Further on, the lateral force reverses sign, and atα ≈ 32 deg,
achieves the minimum. Another transition of the lateral force through zero takes place
atα ≈ 38.5 deg.

The steady symmetrical and asymmetrical solutions of the problem of the separated
flow over the circular cone–delta wing combination at the symmetrical position relative
to the free stream are obtained within the wide range of the key parameters. Shown is
the fact that the use of the vortex sheet full model instead ofthe simplified “vortex-
cut” model specifies both the flow characteristics and the existence areas of the various
solutions.

The calculations of the finite length combination by the 3D RANS method are ful-
filled. It is shown that the solution has an essentially different character at great angles
of attack while taking into account the viscosity. The solution is unique, in addition,
at small angles of attack, it is symmetrical, the lift coefficient is the same as that one
obtained by the slender-body theory, and this theory application area is limited by the
relative angles of attack about 2. Asα increases, the solution transforms to the asymmet-
rical one and it differs from the results obtained by the slender-body theory. In addition,
the qualitative coincidence of the lateral force behavior by the angle of attack with the
experimental data is observed.
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Completed in the present work are the calculations of supersonic viscous perfect gas flow over a set
of sharp elliptical cones by means of a numerical simulation method [1,2] applied to the experiment
conditions [3]. Carried out is the comparison of calculated and experimental local and integral char-
acteristics of cones. The calculated and experimental data prove to be in a good agreement. Discussed
is the influence of the angle of attack and of the cross-sectional shape on the behavior of local aerody-
namic characteristics of the cone.

KEY WORDS: elliptic cone, elliptic coefficient, angle of attack, numerical simulation, ver-
ification of the method

1. INTRODUCTION

Worked out in Refs. [1, 2] is the approach to the numerical simulation of 3D supersonic
flows over sharp bodies based on the nonstationary 3D equations of viscous gas dyna-
mics. Given in Ref. [1] is the method of numerical simulationusing Navier-Stokes equa-
tions, and carried out is its verification by means of comparison of the results of calcu-
lations of flow over a sharp circular cone (Mach number M∞ = 10.4, cone half-angle
θc =15 deg, angles of attack0≤α/θc ≤1.2) with the experimental data [4]. Described
in Ref. [2] is the procedure of numerical simulation using Reynolds equations on the
assumption of Bussinesq about Reynolds stresses with the use of a two-parameter dif-
ferential (q − ω) turbulence model [5], and fulfilled is the comparison of numerical and
experimental data (M∞ =4,θc =4 deg,0≤α/θc ≤ 2) by the integral characteristics of
a sharp circular cone. In both papers, calculations are carried out on the assumption of
flow symmetry, and a good agreement of computational and experimental data, both
in a qualitative and in a quantitative sense, is obtained. This circumstance enables the
use of the mentioned approach to investigate the supersonicviscous gas flow over sharp
conic bodies. Particularly, supersonic (M∞ = 4 and 5) flows over a sharp circular cone
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(θc = 4 deg) with thermally insulated[(∂T/∂n)w =0] and isothermal(Tw0 = 0.5) sur-
faces are examined in detail in Refs. [6, 7] within some rangeof angle of attack and of
Reynolds number Re.

As was mentioned above, verification of the numerical simulation method is given in
Refs. [1, 2] for supersonic flow over sharp circular cones having cross-sectional contours
of a constant curvature. Naturally, this brings up the question about how this method
works when the curvature of the body cross-sectional contour is variable. To answer this
question is the goal of this work, in which the verification ofthe numerical method is
fulfilled with the example of supersonic flow over a set of sharp elliptical cones with
thermally insulated surface applied to the experiment conditions [1].

2. EXPERIMENTAL CONDITIONS

Cited in Ref. [1] are the results of experimental investigation of aerodynamic charac-
teristics of a set of sharp elliptical cones at Re= V∞L/ν∞ = 8×106 and M∞ = 1.97
and 2.94 within the range of the angles of attack0≤α≤ 16 deg. Here,V∞ is the free-
stream velocity,ν∞ is the kinematic viscosity coefficient in the free stream, and L is the
typical linear size (the model length). The Reynolds numberis so great that the laminar-
turbulent flow regime is realized in the experiment.

The body cross section represents an ellipse with ellipticity δ = b/a, wherea, b
are major and minor semiaxes of the ellipse. The investigated set of elliptical cones
(1/6≤δ≤1) has a fixed base areaL/d∗ = 3.67, whered∗ = 2

√
ab = 2a

√
δ is the equ-

ivalent base diameter. In other words, one considers the setof cones to be of equal
volume. So, the cone half-angles in the planes of major and minor semiaxes turn out
to be variable values and are specified by the relationstgθc = a/L = 0.13624/

√
δ and

tgθc2 = b/L = 0.13624
√

δ, accordingly, i.e., as the ellipticity decreases, the conehalf-
angle in the plane of the major semiaxis increases, and the one in the plane of the minor
semiaxis decreases. Particularly, for the cones withδ = 1, 2/3, 1/3, 1/6, we haveθc = 7.7,
9.5, 13.3, 18.5 deg andθc2 = 7.7, 6.4, 4.5, 3.2 deg, accordingly.

3. CALCULATION CONDITIONS

Based on the numerical integration of Reynolds equations according to the procedure
[2] on the assumption of Bussinesq about Reynolds stresses use of a two-parameter
differential (q−ω) turbulence model [5], we simulated the supersonic flow overa set of
sharp elliptical cones of lengthL at an angle of attackα, with the flow velocity vector
being located in the plane of the minor semiaxis (Fig. 1). In this case, the lengthL is
taken as a typical linear size. The outflow boundary of the computational area falls on the
base sharp edge so that the flow in the near wake behind the coneis not calculated. Such
an approach to the problem corresponds to the considerationof flow over a half-infinite
cone.
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FIG. 1: Scheme of a sharp elliptical cone.

At the numerical simulation, the moving medium is considered to be a perfect gas
with specific heat ratioγ = 1.4, Prandtl number Pr = 0.7, and dynamic viscosity coeffi-
cient depending only on temperature[µ/µ∞ =(T/T∞)ω, ω=0.7]. Supposing the flow
to be symmetrical with respect to the vertical plane, we calculate one half of the flow
field on the nonuniform grid 41×101×81 (in longitudinal, normal, and circular direc-
tions, accordingly). In this case, the surface of the cone issupposed to be thermally in-
sulated.

We fulfilled two series of calculations for the considered set of elliptical cones with
thermally insulated surface applied to the experiment conditions [3] at Re= 8×106 in
setting the following values of the free stream turbulence parameters:q∞ = q∗∞/V∞ =
0.003, andω∞ = ω∗

∞L/V∞ = 1. In the first series of calculations, we studied the su-
personic flow (M∞=1.97 and 2.94) over the elliptical cones at zero angle of attack; and
in the second series, we considered the supersonic flow over the elliptical cones at an
angle of attack of0 ≤ α ≤ 16 deg and at Mach number M∞= 2.94.

4. AERODYNAMIC CHARACTERISTICS

The numerical analysis of the Reynolds equation resulted inthe definition of the fields
of gas dynamic variables near the considered cone, by which we calculated its aerody-
namic characteristics, namely, pressure coefficientcp = (p− p∞)/q∞, and friction drag
coefficients in both the radialcfr =τrw/q∞ and circularcfθ =τθw/q∞ directions. Here,
q∞= 0.5ρ∞V 2

∞ is the free-stream dynamic pressure.
Calculated by the known distributions of the local characteristics over the cone sur-

face were its integral aerodynamic characteristics. Firstof all, we specified the axialT
and the normalN components of the aerodynamic force vector

T = Tp + TF , N = Np + NF
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Here,Tp, Np andTF , NF are the projections of normal and tangential stresses applied
to the cone streamlined surface, to the cone axis, and to its normal in the flow symmetry
plane. We also calculated the momentMz of aerodynamic forces about thez-axis, being
orthogonal to the symmetry plane and passing through the cone apex. By these forces,
we calculated the aerodynamic coefficients of axialcx and normalcy forces and of the
momentmz as

cx =
T

q∞Sm
= cxp + cxF , cy =

N

q∞Sm
= cyp + cyF , mz =

Mz

q∞SmL

Here,Sm = πab is the cone base area (the midsection area). By means of the pointed-
out aerodynamic coefficients, we calculated the lift coefficientscya

, the drag coefficients
cxa

, and the cone lift-drag ratioK by the relations

cya
= cy cos α − cx sin α, cxa

= cx cos α + cy sinα, K =
cya

cxa

5. ZERO ANGLE OF ATTACK

According to the calculation results, the elliptical cone is streamlined without flow sep-
aration at zero angle of attack. In this case, the flow field near the circular cone (δ = 1)
is axisymmetric, and the flow field near the elliptical cones (δ < 1) is essentially spatial,
the flow divergence line situated on the body surface in the major semiaxis plane, and
flow convergence line situated in the minor semiaxis plane. In other words, in the first
case, the gas motion occurs in the longitudinal direction; and in the second case, the
cross flow, being directed from the flow divergence line to theflow convergence line,
takes place along with the longitudinal flow.

The local aerodynamic characteristics of cones at M∞ =1.97 and 2.94 qualitatively
are the same, so let us consider them only at M∞ = 1.97. The influence of the cross-
sectional shape of the considered assemblage of cones on thedistribution of pressure
coefficient along the flow divergence and flow convergence lines is shown in Fig. 2.
(Here,x̄ = x/L is the dimensionless coordinate along the cone axis.) One can see that
on the cone surface, the pressure coefficient in the longitudinal direction is approxi-
mately constant. The decrease of the ellipticity leads to the increase of pressure on the
flow divergence line and to the decrease of pressure on the flowconvergence line, and
consequently enhances irregularity in the pressure coefficient distribution in the cone
cross section. The comparison of pressure coefficient distribution in the base section of
the cones withδ = 1/3 and 1/6 with the experimental data [3] is presented in Fig. 3, which
shows a good agreement between the calculation and the experiment. (Here,̄z = z/zmax

is the dimensionless coordinate, normalized by its maximumvalue in the considered
cross section of the cone.)

The distributions of the longitudinal component of the friction drag coefficient on
the flow divergence and flow convergence lines are presented in Fig. 4. According to
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(a) (b)

FIG. 2: Distribution of pressure coefficientcp on the flow divergence lines (a) and on
the flow convergence lines (b) of elliptical cones at zero angle of attack (M∞ = 1.97, Re
= 8×106).

(a) (b)

FIG. 3: Comparison of calculated and experimental distributions of pressure coefficient
cp in the midsection of an elliptical cone (M∞ = 1.97, Re = 8×106) (a) δ = 1/3; (b)δ =
1/6; —— — calculation;♦♦♦ — experiment [3].
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(a) (b)

FIG. 4: Distribution of the valueC◦ = cfr

√
Re on the flow divergence lines (a) and on

the flow convergence lines (b) of elliptical cones at zero angle of attack (M∞ = 1.97,
Re = 8×106).

the calculations, laminar-turbulent transition (LTT) on all the cones is observed in some
vicinity of sharp body apex so that the established turbulent flow regime in the boundary
layer takes place on the majority of the streamlined surface.

One can estimate how reasonably the used model of turbulencepredicts the location
of LTT in the boundary layer by the behavior of the integral aerodynamic characteris-
tics of the elliptical cones. Shown in Fig. 5 is the comparison of the experimental data
with the calculated pressure drag coefficients and the drag coefficients for both Mach
numbers.

According to the mentioned results, frictional forces playa prominent part in the
creation of drag for the considered set of elliptical cones at the given conditions of flow.
The calculated results are in a good agreement with the experimental data for the pres-
sure drag coefficient. At the same time, the results of calculations of cone drag coef-
ficients are in a qualitative agreement with the corresponding experimental data, but
exceed them quantitatively. In this case, the maximum difference between them is ob-
served for the circular cone at M∞ = 1.97 and comes to 15%. Note that the calculated
data for the circular cone, the flow over which being axisymmetrical, were obtained by
two different programs, namely, a 3D one and a 2D one. The results of these calcula-
tions differ somewhat by the local characteristics (the useof the 3D program leads to the
slight disturbance of the flow axial symmetry) and coincide completely by the integral
characteristics. Consequently, the observed difference between the calculations and the
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(a) (b)

FIG. 5: Pressure drag coefficientscxp
and drag coefficientscxa

of sharp elliptical cones
at zero angle of attack and at Mach numbers M∞ = 1.97 (a) and 2.94 (b) (Re = 8×106):
—— — calculation; - - - - - — experiment [3].

experiment is associated with the calculation of the friction drag force, which is defined
by the location of LTT in the boundary layer. The following circumstance argues for this.

At M ∞ = 1.97, according to the calculations, the area of the transient flow on the
windward side of the cone (see Fig. 4a) is situated within thelimits 0.05 ≤ ∆xtr ≤ 0.1
and varies slightly depending on the ellipticity and the angle of attack. In Ref. [3], the
location of the transition point was specified experimentally by means of the sublimator
coating method. Mentioned as an instance are the pictures ofthe model atα = 15 deg
and M∞ = 1.97 for the cones with ellipticitiesδ = 1, 2/3, 1/3; according to these pic-
tures, the transition points on the surface of mentioned cones are situated in the sections
x̄ ≈ 0.31, 0.1, 0.23, accordingly. If it is granted that this pattern isapproximately the
same for zero angle of attack, it becomes apparent that the maximum difference between
the calculations and the experiment (∼15%) takes place in the case of circular cone, and
the minimum difference (∼4%) takes place in the case of elliptical cone withδ = 2/3.

6. NONZERO ANGLE OF ATTACK

In the presence of the angle of attack, the flow over all the elliptical cones (δ ≤ 1) is
essentially spatial. In addition, at the angles of attackα ≤ αS , a cone is streamlined
without separation and atα > αS , one observes a transverse separation of flow on the
leeward side of a cone. Here,αS is the angle of attack at which a transverse separation
of flow arises for the first time on the leeward side of a body; its value depends on the
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key parameters of the problem. For example,αS ≈ 8 deg for the circular cone at the
considered flow conditions, and its value diminishes as the ellipticity decreases. At flow
over a cone without separation, the flow convergence line is situated on its leeward side
in the flow symmetry plane. In the presence of transverse separation on the leeward side,
the flow convergence line is replaced by the flow divergence line. The different local
characteristics respond to this change of the flow pattern indifferent ways, as will be
shown later.

The influence of the angle of attack on the behavior ofcp is the same for all the
cones—the increase of the angle of attack leads to the monotonous increase of the pres-
sure coefficient on the windward side and to its monotonous decrease on the leeward
side. Shown in Fig. 6 is the distribution of the pressure coefficient in the flow symmetry
plane for the elliptical cone withδ = 1/6. In this case, in the fixed meridian section of the
cone, the value ofcp at x > 0.1 is approximately constant in the longitudinal direction,
both on the windward and on the leeward sides of the cone.

Analysis of the calculated results showed that at all the angles of attack, the LTT
was observed in the vicinity of the sharp apex for the considered cones, and atx > 0.2,
the established turbulent regime of flow was realized in the boundary layer. This can be
inferred from Fig. 7, where the behavior of the longitudinalfriction drag coefficient in
the symmetry plane on the surface of the elliptical cone withδ = 1/6 is shown.

As was mentioned above, the flow convergence lines are situated in the considered
symmetry plane on the elliptical cone surface at zero angle of attack. Starting with the
same conditions, the longitudinal friction drag coefficient varies differently on the wind-

(a) (b)

FIG. 6: Influence of the angle of attackα on the behavior of pressure coefficientcp in
the symmetry plane on the windward (a) and leeward (b) sides of the elliptical cone
(δ =1/6, M ∞=2.94, Re=8×106) —— — calculation;N∆ ©♦ — experiment [3].
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(a) (b)

FIG. 7: Influence of the angle of attackα on the behavior of the valueC◦ = cfr

√
Re

in the symmetry plane on the windward (a) and leeward (b) sides of the elliptical cone
(δ =1/6, (M ∞ =2.94, Re = 8×106) —— — calculation;N∆ ©♦ — experiment [3].

ward and leeward sides of a cone, depending on the angle of attack. As the angle of
attack increases, it increases monotonously on the windward side and varies slightly on
most of the leeward side, the corresponding curves being located in a quite narrow strip.
This fact is associated with the variation of the flow pattern, which leads to the replace-
ment of the flow convergence line by the flow divergence line, and of the pressure on the
cone surface. Both factors act in the same direction on the windward side and in opposite
directions on the leeward side.

The calculated results of the integral characteristics of the elliptical cones at M∞ =
2.94 are compared with the corresponding experimental data in Ref. [3]. In Figs. 8–11,
one can see that on the whole the calculation and the experiment are in a good agreement
by all the considered characteristics. Note that at a fixed angle of attack, the elliptical
cone provides higher values of aerodynamic characteristics than the circular one.

7. CONCLUSION

Fulfilled was the theoretical investigation of the supersonic perfect gas flow over the
set of sharp elliptical cones at small and moderate angles ofattack and Re= 8×106,
where the laminar-turbulent regime of flow takes place. The comparison of calculated
and experimental data for the integral aerodynamic coefficients of cones depending on
the angle of attack showed good agreement on the whole. This circumstance points out
the fact that the method of numerical simulation based on Reynolds equations with the
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FIG. 8: Influence of the angle of attackα on the lift coefficientcya
of sharp elliptical

cones (M∞ = 2.94, Re = 8×106):—— — calculation;N∆ ©♦ — experiment [3].

FIG. 9: Influence of the angle of attackα on the drag coefficientcxa
of sharp elliptical

cones (M∞ = 2.94, Re = 8×106): —— — calculation;N∆ ©♦ — experiment [3].

use of the differential two-parameter (q−ω) turbulence model allows one to obtain
reliable information about the local and integral aerodynamic characteristics of a body.
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FIG. 10: Influence of the angle of attackα on the lift-drag ratioK of sharp elliptical
cones (M∞ = 2.94, Re = 8×106):—— — calculation;N∆ ©♦ — experiment [3].

FIG. 11: IInfluence of the angle of attackα on the pitch moment coefficientmz of sharp
elliptical cones (M∞ = 2.94, Re = 8×106):—— — calculation;N∆©♦ — experiment
[3].
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A discontinuous Galerkin method (DGM) reported earlier in Refs. [1–3] has been developed for 3D
Euler and Navier–Stokes equations on unstructured hexahedral grids. The algorithm enables cal-
culations up to the fourth order and consideration of the curvature of the boundary. An ambitious
approach combining the p-multigrid method and the conventional agglomeration h-multigrid method
is applied as the convergence acceleration method. A variety of test cases is applied to validate the or-
der of accuracy and to evaluate memory and central processing unit (CPU) requirements. Test cases
shown in this paper cover the inviscid flow around a cylinder, the laminar flat plate, 3D flow in
a bend duct, 3D turbulent flow over an isolated wing, as well as an aero-acoustic test case for the
linearized Euler equations for propagation of a 3D acoustic wave. Results of calculations and CPU
requirements are compared with the results obtained through the finite volume method.

KEY WORDS: discontinuous Galerkin method, finite volume method, high-order scheme

1. INTRODUCTION

An increase of the accuracy of calculation of flow over bodieswith complex geome-
try requires very small computational grids. A convincing demonstration of this fact is
presented in proceedings of a well-known forum dedicated toaccurate calculations of
the drag of aircraft cruiser configurations (drag prediction workshops—DPWs [4]). It
is noticed there that even the grids with cells numbering more than 20 million nodes
turn out to be insufficient for the description of such relatively simple geometries as
“wing+fuselage”. Not only do the type and density of computational grids critically im-
pact the results, but also the turbulence model used. Therefore, the influence of different
grid parameters and turbulent model parameters on the accuracy of calculations is usu-
ally investigated. Meanwhile, order of accuracy of schemesis not considered, since all
the industrial computational codes are based on second-order finite volume methods.
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The applicability of high-order schemes to the solution of outer aerodynamics prob-
lems is discussed in Ref. [5]. The possibility of creating a reliable, highly accurate algo-
rithm of the Reynolds equations solutions of flow over bodieswith complex geometry is
investigated there. As an example, calculation of the Boeing 747-200 is considered on
the basis of block-structured grids.

One of the most prospective approaches to high-precision approximation both on
structured and on unstructured grids is a discontinuous Galerkin method (DGM) [6, 7]. In
recent years this method has aroused high interest among investigators due to its gen-
erality, flexibility, and reliable theoretical validity. Therefore, it is not surprising that
this method has been investigated intensively for the solution of three-dimensional (3D)
flows. For example, the DGM is used on structured grids in Refs. [8–10] and on tetra-
hedral unstructured grids in Ref. [11]. Certainly, other high-order methods can be used
as alternatives to the finite volume method of second order. Given in Ref. [12] is an
overview of different approaches to a high-precision approximation.

The hexahedral unstructured grids are shown to be advantageous during the com-
putation of 3D flows as compared to tetrahedral ones (Ref. [13]). That is why DGM is
adapted to the solution of Euler and Navier–Stokes equations, especially on hexahedral
unstructured grids.

The present paper shows the results of further development of investigations de-
scribed in Refs. [1–3]. The DGM was applied for the first time to the solution of 3D
Navier–Stokes equations using hexahedral unstructured grids. The computational scheme
algorithm enables calculations to be fulfilled up to the fourth order. In order to achieve
a higher order of precision, consideration of the curvatureof the airfoil is added to the
computational scheme. The original multigrid method of convergence acceleration (p-
multigrid convergence acceleration method together with aconventional agglomeration
h-multigrid approach) is implemented. The results of testing the algorithm precision or-
der and the evaluation of central processing unit (CPU) requirements are shown in the
paper in the examples of different test problems. Solutionsof the problems of nonviscous
flow over the cylinder, laminar flow over the plane, 3D viscousflow in a bend duct, and
3D turbulent flow over an isolated wing are considered. Propagation of a 3D acoustic
wave described by the linearized Euler equations is shown too.

Computational results and CPU requirements are compared with the results of the
industrial computational code FINETM/Hexa (NUMECA Int., Belgium) based on the
second-order finite volume method that is widely used at the present time.

2. DGM AND CURRENT EQUATIONS

Let us consider the system of Navier–Stokes equations in a conservative form:

∂U (t, x)

∂t
+ ∇ (F − Fv) = S. (1)
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HereU is a vector of conservative variablesU = (ρ, ρu,ρv,ρw,ρE) , F(U) is a non-
viscous flow,Fv (U,∇U) is a viscous flow, andS is a source term arising while us-
ing the turbulence model. The equation system (1) is solved computationally on the
basis of the DGM, and the solution in each cell is stored in theprimitive variables
Q = (ρ, u, v, w, p) . Meanwhile the pressure valuepis related to the total energy value
E by the state equation.

Navier–Stokes equations can be overwritten in primitive variables as follows:

Γ
∂Q
∂t

+ ∇ · (F (U) − Fv (U,∇U)) − S = 0, (2)

where

Γ =

(

∂U
∂Q

)

(3)

is a Jacobian matrix of transformation from the conservative variables to the primitive
ones.

Local polynomial basic functions are determined in each cell of the grid:

Q (t, x) =

Kf
∑

j=1

uj (t)ϕj (x ) , (4)

whereuj (t) are expansion coefficients determined in the solution process, andKf is a
number of basic functions in a cell. TheKf value is related to the maximum order of the
basic polynomialK as follows:

Kf =
(K + 1) (K + 2) (K + 3)

6
. (5)

The polynomial orderK possesses the valuesK = 0, 1, 2, 3 in the present paper, and
thereby the number of basis functions takes on the valuesKf = 1, 4, 10, 20. ForK = 3
the following set of basis functions is used:

j 0 1 2 3 4 5 6 7 8 9

ϕj 1 X y z x2 y2 z2 xy xz yz

j 10 11 12 13 14 15 16 17 18 19

ϕj x3 y3 z3 x2y x2z y2x y2z z2x z2y xyz

Basis functions are normalized in the following way:

ϕ1 =
(x − x0)

hx

, . . . , ϕ8 =
(x − x0) (z − z0)

hxhz

,

ϕ9 =
(y − y0) (z − z0)

hyhz

, . . . , ϕ19 =
(x − x0) (y − y0) (z − z0)

hxhyhz

. (6)
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Herex0, y0, z0 are the coordinates of the central point of the considered hexahedron,
and the valueshx, hy, hz determine the cell dimensions along the corresponding axes.
It is shown that it is this normalization that ensures superior accuracy and convergence,
especially in the case of viscous problems with much extended grid cells.

The system of grid equations for the coefficientsuj(t) of Eq. (4) is obtained using
the standard Galerkin finite element procedure when the orthogonality of misclosure of
solved equations is required [left part of system (2)] to each basis function being used
in the solution reconstruction. This requirement of orthogonality is formulated through
the zero equality of the integral of the product of equation system on each of the basis
functionsϕi (i = 1, . . . ,Kf ). After partial integration we have

d

dt

∫

Ω

ϕiΓQdΩ = −
∫

Σ

ϕi (F − Fv) dΣ +

∫

Ω

∇ϕi (F − Fv) dΩ +

∫

Ω

ϕiSdΩ. (7)

HeredΣ is an area element oriented in the direction of the normaln = (nx, ny, nz) , and
dΩ is the element of cell volume.

Equation (7) consists of volume integrals and of surface integrals over the cell bound-
ary. The values of all dependent variables have discontinuity at the boundaries of ele-
ments; therefore, the rules of calculation of variables andof flows on these boundaries
play a crucial role. Like in the finite volume method (FVM), the value of nonviscous
flow through the boundary between two cells is determined in DGM from the solution
of the Riemann problem for the decay of arbitrary discontinuity. An approximate, lin-
earized technique of Riemann problem solution, proposed byRow, is used in the present
paper:

Fbound =
1

2

(

FL + FR
)

− 1

2
|A|
(

UL − UR
)

. (8)

Here the superscriptsL andR designate that the corresponding values are calculated
from the left and the right sides of the interface, respectively, and A is a Jacobian matrix
of nonviscous flow:

A =
∂F
∂U

. (9)

The viscous flows are determined through the gradients of primitive variablesFv = Fv

(Qh,∇Qh) , where∇Qh = (∂Qh/∂x, ∂Qh/∂y, ∂Qh/∂z) . The gradients of primitive
variables can be obtained from the direct derivation of Eq. (4) for the solution reconstruc-
tion in a cell. However, as it is shown in Ref. [7], such a method of gradient calculations
is a reason for the absence of approximation. Therefore in DGM the gradients of prim-
itive variables are also presented as a linear combination of basis functions in order to
calculate viscous flows:

∂Q
∂xi

(t, x) =

Kf
∑

j=1

gi,j (t)ϕj (x) . (10)
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Herei = 1, 2, 3 corresponds tox, y, andz coordinates. After multiplication of Eq. (10) on
test functions (for the Galerkin method the test functions are the basis ones) and after the
partial integration, we obtain the following system of linear equations for the expansion
coefficientsgi,j :

∫

Ω

Kf
∑

j=1

gi,jϕjϕkdΩ +

∫

Σ

ϕkQnidΣ −
∫

Ω

∂ϕk

∂xi

QdΩ = 0; k = 1, ..., Kf . (11)

The solution of this system determines the gradients of primitive variables (10) and
allows calculating viscous flows in a cell.

Both gradients of primitive variables and values of flows have discontinuities at cell
boundaries in DGM. However, these values are required for calculation of contour inte-
grals and they cannot be found through averaging. The approximation rules [7] require
alternating choice of left and right cell for the solution reconstruction at the boundary.
Thus, if the values of primitive variables and their gradients are selected from the left
cell while calculating viscous flows (7)

Fv|b = Fv

(

QL,∇QL
)

, (12)

then in Eq. (11) the values of primitive variables while calculating the contour integral
should be chosen from the right cell

Q|b = QR. (13)

Finally, the system of nonlinear equations for the coefficientsui (t) of Eq. (4) is obtained
from Eq. (7) under the assumption of a small variation of Jacobian matrixΓ (3) inside
the cell:

dui

dt
=Γ−1M−1

[

−
∫

Σ

ϕi (F − Fv) dΣ +

∫

Ω

∇ϕi (F − Fv) dΩ +

∫

Ω

ϕiSdΩ

]

. (14)

HereM is a matrix of masses,i = 1, . . . , Kf .

3. CALCULATION OF INTEGRALS AND ACCOUNTING OF CURVATURE

The high order of approximation of DGM assumes the accurate calculation of volume
and of surface integrals in the system of equations (14). In order to calculate the inte-
grals, quadrature Gauss formulas are applied. Calculationof the volume integral inside a
hexahedron of arbitrary form is executed in a parametrical space in which every hexahe-
dral element has the form of a unit cube. This triquadratic isoparametric transformation
is built on the basis of 20 nodes, 8 of which are cube corners, and 12 nodes at the centers
of all cube edges. The presence of central nodes on edges enables the curvature of the

Volume 40, Number 6, 2009



700 Wolkov

streamlined boundary to be taken into account. With this approach the surface and the
volume integrals contain nonlinear Jacobian transformations, which demands higher re-
quirements to quadrature formulas of integration and requires more Gauss points. Thus,
calculation of the volume integrals requires application of quadratures that are accurate
for the polynomials of 3 K order.

The amount of calculations can be reduced when using the nonquadrature approach
proposed in Ref. [14]. This approach was used only for rough levels of the multigrid
solver.

It is commonly known that obtaining a high order of accuracy requires consideration
of the streamlined boundary curvature. The application of a20-point transformation for
boundary integrals can be avoided while calculating the flows of nonviscous fluid. Mean-
while the original approach proposed in Ref. [15] can be used. In nonviscous flow, the
boundary condition on the streamlined body is formulated asthe requirement of equality
to zero velocity component normal to the body. Shown in Ref. [15] is the fact that for
account of the correct curvature in nonviscous flow it would be sufficient to use only
the “proper” direction of normals, oriented strictly normally to the true curved boundary
at every Gauss point. Meanwhile the integration itself is implemented on a hexahedron,
disregarding its curvature near the boundary.

The right direction of normals to the streamlined boundary can be obtained either
during the construction of biquadratic transformation of acurved surface quadrangle
into a plane square, or from calculation of the normals of theoriginal surface set in a
system of automated design.

Shown in Fig. 1 is the approximation of the leading edge of theairfoil LANN [21],
where a polygonal presentation of contour, biquadratic interpolation of surface, and real

FIG. 1: The leading edge of the airfoil LANN [21]. Comparison of the polygonal
boundary of the grid with biquadratic interpolation of the surface and with the real sur-
face.
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geometry are compared. Presented in Fig. 2 is the value of error in the calculation of
the normal to the cylinder surface in the case of polygonal presentation of the boundary

and of biquadratic interpolation. Here the value of error
√

(
∑

i=1,M (1 − niNi)
2)/M

depends on the number of cylinder surface partitions.Ni designates the normal ati
point,ni is a precise normal, andM is the total number of checkpoints on the cylinder
surface. It is seen that the biquadratic interpolation ensures a more precise description of
the surface.

4. SOLUTION OF A SYSTEM OF GRID EQUATIONS AND A MULTIGRID
SOLUTION ACCELERATION METHOD

The solution of a system of grid equations (14) is executed bymeans of an explicit
method of time integration. The search for a stationary solution enables use of the local
time step depending on cell dimension; this fact accelerates the convergence process
appreciably, i.e., the misclosure tendency [right part of Eq. (7)] to computer zero. A
five-step Runge–Kutta method is used. This method ensures maximum stability of the
procedure, or, in other words, rapid diminishing of misclosure during the time iteration
process.

The implementation of an explicit Runge–Kutta method of solution search requires
virtually no additional memory resources. However, in spite of the local time step and
the presence of a multistep scheme, the number of iterationsrequired for attainment of

FIG. 2: Error in the determination of a normal to the cylinder surface as a function of
the number of boundary points.
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the stationary solution is too high. Significant acceleration of solution is achieved by
implementation of a multigrid method.

The multigrid method is an effective approach for solution acceleration of mathemat-
ical physics problems. The main idea of this method consistsof the quick transmission
of information between different parts of the computational grid. For this purpose in the
classical multigrid method (a so-called h-multigrid method) the solution of determina-
tive equations is fulfilled on a set of successively finer grids. A coarse grid solution is
used for determination of a fine grid solution and vice versa,and the fine grid solution
is used as an initial approximation for the coarse grid solution. Meanwhile, the determi-
native equations on a coarse grid are modified in order to takeinto account the approxi-
mation inaccuracy on coarse cells. On each grid level the Runge–Kutta method (or other
solution method) ensures effective suppression of high-frequency errors. However, high-
frequency errors on a coarse grid are low-frequency ones on afine grid. Therefore, a few
variables on a coarse grid enable quick determination of alllow-frequency peculiarities
of flow. The conversion of the coarse grid solution to the fine grid solution allows accel-
eration of information transmission and correction of the low-frequency component of
the basis solution.

In the finite element method the solution in each element is a linear combination of
basis functions. This combination forms a polynomial reconstruction of maximum order
K. The coefficients before basis functions are the required degrees of freedom. The hi-
erarchical basis functions are used in the present paper. This means that the coefficients
before basis functions in the solution expansion have clearmathematical meaning, no-
tably, they express the value of averaged solution in a cell,the value of solution gradient
in three directions, the second derivative of solution, etc. Therefore, given these ba-
sis functions, the solution is presented in terms of Taylor expansion in a cell. In other
words, the coefficients in the solution reconstruction express the contribution of different
harmonics in the solution.

The ideas of the p-multigrid method (Refs. [16–18]) for the finite element approach
are similar to the ideas of the classical multigrid method described above. The decrease
or increase of maximum order (K) of the polynomials of basis functions or, in other
words, the variation of a set of basis functions in the element is similar to the coarsening
or to the refinement of cells inside the grid. The applicationof basis functions of low
order (K = 0) enables quick determination of the low-frequency solution component
and correction of the total solution at a maximum set of basisfunctions.

In the present paper, the greatest gain in convergence acceleration resulted from com-
bining the conventional multigrid method with the p-multigrid method. The agglomer-
ation multigrid method [19] realized in the solver of industrial code [22] is used as the
basis of the conventional multigrid method. This method is used in solving using the
simplest approximation scheme (K = 0, one piecewise constant function). Then the suc-
cessive increase of the number of basis functions is executed on the finest grid, i.e., the
p-multigrid method is realized.
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5. TEST CALCULATIONS

The peculiarities of the DGM scheme up to the fourth order (K = 3) are investigated
in the process of solving of a series of test problems that cover 3D nonviscous, viscous,
and turbulent flows. The results are compared with data obtained through the FVM (finite
volume method) [22].

The agglomeration three-level multigrid method is used forthe solution acceleration
in the second-order FVM. The four-level method is implemented in DGM (K = 1). The
first three levels represent the conventional multigrid method where piecewise constant
functions are used (K = 0). On the fourth level the approximation of equation system
is fulfilled on a fine grid but on the basis of piecewise linear functions (K = 1). The
solution for DGM (K = 2) is found using the fifth level, the sixth level implemented for
DGM (K = 3). In all cases the five-step Runge–Kutta method is used as asmoothing
procedure for the high-frequency component of error.

5.1. Nonviscous Flow Over a Cylinder at Mach Number M = 0.15

Nonviscous potential flow over a circular cylinder is a knowntest case enabling the de-
termination of numerical scheme precision order. The computation is made at low Mach
numbers of incident flow (M = 0.15) when the compressibility influence is negligible.
All numerical tests are fulfilled on a set of four analytical grids with dimensions varying
from 16×4 to 128×32 by doubling the number of points in each direction (Fig. 3). N
concentric circles containM uniformly distributed nodes in the X-Y plane. The radius
of each circle is determined by the following relationship:

rj = r0

(

1 +
2π

M

j−1
∑

k=0

α
k

)

, j = 0, ..., N. (15)

The cylinder radius is equal to 0.5. Theα parameter from Eq. (15) is determined from
the condition that the radius of the maximum circle constraining the computational area
is equal to 20. On the external boundary, the distant field condition based on Riemann
invariants is imposed.

Presented in Fig. 4 is a computational pressure distribution coefficient in compari-
son with an analytical incompressible solution (dotted line). Shown in Fig. 4a are the
pressure fields along the cylinder surface obtained on the most coarse grid (16×4) using
DGM of the second order (K = 1), of the third order (K = 2), and of the fourth order
(K = 3). Presented in the same figure are the results of computations using FVM [22].
Shown in Fig. 4b is the comparison of pressure fields calculated on different grids un-
der the condition of using approximately the same quantity of unknown variables or,
in other words, equal number of degrees of freedom<, determined by the product of
a quantity of cells and a number of variables in a cell. The results presented demon-
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FIG. 3: Error in the determination of a normal to the cylinder surface as a function of
the number of boundary points.

(a) (b)

FIG. 4: Pressure distribution at the cylinder surface: (a) numerical solution for DGM
K = 1, 2, 3 and for FVM on a coarse grid 16×4; (b) numerical solution for the schemes
with an equal number of degrees of freedom.

strate that DGM provides better accuracy, even in the case ofapplication of equivalent<
number.
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The precision order of computational scheme is evaluated atentropy error value:

eent =
p/ργ

p∞
/

ρ
γ
∞

− 1.

Since the flow under consideration is isoentropic, the entropy must be equal to zero at
exact solution. Shown in Table 1 are the dimension of the grid, the total number of ele-
ments in it,L2 - the norm of entropy error, calculated over each element of the grid, the
value of cylinder drag, and the obtained precision order of computational scheme. This
precision order turns out to be close to the theoretical value O

(

hK+1
)

. Precision order
is calculated by the value of error diminishing at successive transition from the coarse
grid (i − 1) to the finer one (i) using the following relationship:

Order= 2
lg
[

ei

ei−1

]

lg
[

<i−1

<i

] .

Calculation of viscous laminar flow is executed on a sequenceof grids described in the
previous section at Re = 40. Precision order is evaluated on the basis of the value of
cylinder total drag. Analysis of the asymptotic behavior oftotal drag value is fulfilled as
a function of the averaged dimension of the grid cell calculated through the equation

h = 1/
√
<.

TABLE 1: Precision order of schemes for FVM and DGM (K = 1, 2, 3).

Grid
Number FVM DGM K = 1
of
elements

cx L2,
entropy
error

Order cx L2,
entropy
error

Order

16×4 64 1.18e−1 1.03e−2 7.47e−2 1.00e−2

32×8 256 2.73e−2 3.11e−3 1.73 7.34e−3 2.73e−3 1.88

64×16 1024 1.4e−3 6.85e−4 2.18 2.75e−3 6.05e−4 2.17

128×32 4096 9.05e−4 1.36e−4 2.33 1.56e−3 1.18e−4 2.36

Grid
Number DGM K = 2 DGM K = 3
of
elements

cx L2,
entropy
error

Order cx L2,
entropy
error

Order

16×4 64 8.94e−3 5.55e−4 2.66e−3 1.13e−4

32×8 256 7.01e−4 7.79e−5 3.25 5.83e−5 5.26e−6 4.42

64×16 1024 2.37e−4 7.50e−6 2.95 6.92e−6 3.66e−7 3.85

128×32 4096 3.74e−5 8.93e−7 3.07 1.95e−6 2.12e−8 4.11

Viscous flow near the cylinder at M = 0.15, Re = 40.
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Note that at such determination, the averaged grid step depends not only on its dimension
but on the approximation method too. For FVM, in which only one variable in a cell is
used, the averaged cell dimension in a uniform rectangular grid is identical to the actual
step of grid.

An asymptotically limiting value of dragcx∗ = 1.5685 results from the extrapolation
of values from the two finest grids to the grid with infinitesimal step. Assumingci−1

x =
cx∗ + O

(

hp
i−1

)

andci
x = cx∗ + O (hp

i ) , we have

Order= 2
lg
[

ci
x−cx∗

ci−1
x −cx∗

]

lg
[

<i−1

<i

] .

The results of calculations, shown in Table 2, demonstrate the expected precision order
of all considered computational schemes.

The computational area shown in Fig. 5a has the following dimensions:−0.24 <
x < 0.4; 0 < y < 0.05; 0 < z < 0.00625. The plate is installed in the range0 < x < 0.4.
Computational investigations are implemented on four generated grids, shown in Fig. 5.
These 2D grids have only one cell in thez-direction. Some of the grid parameters pre-
sented in Table 3 show a number of cells in a grid, a distance from the wall surface to
the first cell layer, a coefficient of distance increase between successive ranges of grid
points, and a total number of nodes iny-direction. The number of elements in grid 1 is
approximately four times greater than in grid 2, while grids3 and 4 have the number
of grid cells correspondingly 10 and 20 times less. Such gridselection enables compar-
ison of different computational schemes in the case of approximately similar degrees of

TABLE 2: Drag coefficient and evaluation of scheme precision order for the problem
on viscous flow over cylinder Re = 40 for FVM and for DGM K = 1, 2, 3.

Grid
Number of FVM DGM K = 1
elements cx Order cx Order

16×4 64 0.403598 0.298054
32×8 256 0.271965 1.10 0.191675 2.02
64×16 1024 0.180503 2.30 0.166170 1.90
128×32 4096 0.161464 2.46 0.159011 2.11

Grid
Number of DGM K = 2 DGM K = 3
elements cx Order cx Order

16×4 64 0.190749 0.163027
32×8 256 0.161390 2.90 0.156464 3.99
64×16 1024 0.157401 2.05 0.156829 4.00
128×32 4096 0.156790 3.11

Laminar flow over flat plate at M = 0.35, Re = 76,000.
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(a)

(b)

FIG. 5: Computational area and fragments of grids: (a) grid 1 and (b)grids 2, 3, 4.

TABLE 3: Grid parameters for calculation of laminar flow over the plate.

Grid Number of
cells

Distance up to
the first layer
y+

Coefficient
of layer
expansion

Number of
grid lines in
y-direction

1 6739 1×10−5 1.02 25

2 1707 64 1×10−5 1.20 13

3 680 64 2×10−5 2.00 8

4 281 32 4×10−5 2.50 5

freedom.
Some computational results are shown in Figs. 6 and 7 in termsof velocity profiles

compared with a Blasius analytical solution for uncompressible flow. All dependences
are presented as a combination of lines and markers. Each line is drawn through a set of
points and is in precise correspondence with the equation for solution reconstruction in
a cell. On each line, the markers are located approximately in the middle of cells. Thus,
the number of markers on a line reproduces the density of the grid.

TheU -component of velocity is shown in Fig. 6 for all the approximation schemes
under investigation. All the schemes demonstrate good matching with analytical solu-
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FIG. 6: Comparison of numerical schemes on different grids at the condition of similar
number of degrees of freedom: (a)U -component of velocity and (b)V -component of
velocity.

tion. TheV -component of velocity, shown in Fig. 6b, is more sensitive to the quality of
a grid. The results, obtained through DGMK = 2 on grid 3 andK = 3 on grid 4, are
in better agreement with the analytical solution than the results obtained through con-
ventional FVM on the finest grid 1, in spite of the equivalent quantity of the degrees of
freedom set in motion.

Shown in Fig. 7 is the influence of scheme precision order on the V -component of
the solution. The computation on the coarsest grid 4 is executed by means of DGMK
= 2 andK = 3. Observed here is an appreciable improvement of matching, in spite of
the extremely small number of computational grid nodes, located crosswise from the
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FIG. 7: Effect of increase of precision order of computational scheme fromK = 2 up
to K = 3 for V -component of velocity.

boundary layer.
The comparison of the distribution of local friction coefficient obtained on the coars-

est grid 4 with a Blasius analytical solution is shown in Fig.8. It is seen that in spite of
the extremely coarse grid, good matching of the calculations with the exact solution is

FIG. 8: Comparison of the analytical solution with DGMK= 3 solution, obtained on a
coarse grid 4, for the local friction coefficient.
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obtained.

5.2. 3D Laminar Flow in a Bend Duct

This 3D test case for laminar flow inside a 90◦ bend duct with a constant section is
investigated experimentally [20] by laser-Doppler velocimetry with water as a working
fluid. The investigations are executed at three different Reynolds numbers, including
the laminar case at Re = 500. This case is considered in the present paper. The flow
established in a duct, determined by the balance of viscous and nonviscous forces, is
characterized by the presence of a couple of vortices swirling in opposite directions to
each other, formed downstream after passing the duct bend. There are velocity profiles
measured experimentally in five sections along the duct: Section 1 is at 0.58 diameter
upstream from the bend, Section 2 is at 30◦ along the bend, Section 3 is at 60◦ along the
bend, Section 4 is at 75◦ along the bend, and Section 5 is at 1 diameter downstream from
the bend.

Five unstructured hexahedral grids are generated using thegrid generator HEX-
PRESSTM [13]. The number of cells in these grids varies from the finestgrid to the
coarsest one within the range 140,000÷2500. Some grid fragments are shown in Fig. 9.
A dashed line indicates the duct surface for grid 5. The difference between the grid
boundary and the real one is easily seen here. Considerationof the airfoil curvature en-
ables this difference to be considered.

The calculations are fulfilled for all the grids using different approximation schemes.
Velocity profiles at different duct sections are shown in Fig. 10. Here, the results obtained
on the coarsest grid with schemes DGMK= 2 and 3 are compared with the experimental
data. The results through the scheme DGM (K = 3) are seen to have good matching

FIG. 9: Set of grids for the computation of laminar flow in a bend duct.
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FIG. 10: Velocity profile in four sections of the duct. Comparison of the experiment
with the computational results obtained through DGMK= 2 and 3 on a coarse grid 5.

with the experimental velocity profiles. This figure also demonstrates the effect from the
increase of scheme order.

The advantages of the fourth-order scheme are also presented in Fig. 11. The velocity
profiles calculated through the scheme DGMK = 3 on the grid with 2500 cells are
compared with results from the FVM scheme [22] obtained on a dense grid containing
140,000 elements. The calculations implemented through the conventional FVM scheme
on the grid with 62,000 elements are far from the experimental data. Thus, the FVM
results are obtained with satisfactory precision only on the grid with 140,000 nodes.

A comparison of computational consumption is shown in Table4. It is seen that the
time spent on the four-order DGM scheme is three times longerthan the FVM scheme,
provided that the equivalent number of degrees of freedom isused (the 62,000 grid).
Taking into account the more precise results of DGM, it is better to compare total time
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FIG. 11: Comparison of the experiment with the computational results obtained through
DGM K = 3 coarse grid 5 and through FVM on grid 1.

of computational schemes required for obtaining results with equal precision. It is seen
from the table that approximately the same calculation timeis required for a new scheme
with 2500 cells and for a FVM scheme with 140,000 cells, whichcasts some doubt on
the benefit of applying a scheme with high precision order in this computational experi-
ment.

The current DGM scheme realization is far from optimal and there are still potential
opportunities for reducing the computational time. One of the key moments is the usage
of optimized quadrature rules for the calculation of volumeand surface integrals. It is a
subject for further investigation related to the optimization of new approximation scheme
applications.

The calculation of 3D turbulent transonic flow over the LANN wing (Ref. [21]) is
fulfilled using a second-order scheme DGMK = 1. The results are compared with the
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TABLE 4: Evaluation of CPU time for different schemes.

Method Number
of cells

Number of
degrees of
freedom<

Time for
50 MG
iterations,
sec

CPU time
for a
degree of
freedom

Time ratio

DGM K = 36-level 2502 50,040 1185 4.74×10−4 3.00

DGM K = 25-level 6393 63,930 826 2.58×10−4 1.63

DGM K = 14-level 14,265 57,060 439 1.54×10−4 0.99

FVM 3-level 62,689 62,689 496 1.58×10−4 1.00

FVM 3-level 139,902 139,902 1115 1.59×10−4

Calculation of 3D turbulent flow over LANN wing (M = 0.82,Re = 7.3 × 106,
α = 0.6◦).

experiment and with the calculation fulfilled on a denser grid through the conventional
FVM scheme (Ref. [22]).

All the calculations are executed on unstructured hexahedral grids generated by code
HEXPRESS of the NUMECA Int. Company. For the DGM scheme the grid with 190,213
cells is used. The results through FVM are obtained on a denser grid containing 625,076
cells, enabling application of an equivalent number of variables. In both cases the first
layer of nodes is located at a distancey+ ≈1 from the body. Figure 12 demonstrates the
fragments of a coarse grid used for the analysis of a new scheme. All the calculations are
executed at M = 0.82,α = 0.6◦, andRe = 7.3×106, which corresponds to experimental
conditions. The S-A (Spalart, Allmaras) turbulence model is applied.

The comparison of pressure distribution in the airfoilz = 0.475 for two discretization

FIG. 12: Fragments of unstructured hexahedral grid around the LANN wing.
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FIG. 13: Pressure distribution in the section of LANN wing at transonic turbulent flow:
(– – – ) FVM on a grid with 625,076 cells and (——) DGM on a grid with 190,213 cells.

schemes is shown in Fig. 13. It is seen that in spite of the use of a denser computational
grid, the results obtained through the DGM scheme provide a better shock-wave position.

5.3. The Propagation of a Spherical Acoustic Wave

The solution of aeroacoustic problems requires the application of high-order computa-
tional schemes possessing minimal dispersive and diffusedproperties. The investigated
scheme possesses such properties and is considered for the further industrial realization.
Particularly, the scheme properties are investigated, while solving the classic problem on
the acoustic momentum propagation, having comparatively small initial perturbation.

The numerical problem is considered within the cube computational area[0<x<1];
[0 < y < 1] ; [0 < z < 1] . The following initial conditions exist att = 0:

u (x, y, z, 0) = 0, v (x, y, z, 0) = 0, w (x, y, z, 0) = 0,

p = p∞

(

1 + ε 2
−R2

r2
0

)

, ρ = ρ∞

(

1 +
ε

c2
2
−R2

r2
0

)

, r0 = 0.02, ε = 0.001,

whereR2 = (x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2 .

In this case, the solution of a linearized problem is described by the following equa-

TsAGI Science Journal



Peculiarities of DGM Application for Solution of 3D Euler and Navier–Stokes Equations 715

tion:

pexact = p∞

(

1 + ε

[

1

2

(

2
−

(r−ct)2

r2
0 + 2

−
(r+ct)2

r2
0

)

− ct

2r

(

2
−

(r−ct)2

r2
0 + 2

−
(r+ct)2

r2
0

)])

,

wherec is a sound velocity. The solution of grid equations is obtained by the Runge–
Kutta method of fifth order with an overall time step. Presented results correspond to the
time 0.4/c, i.e., to the moment when the leading Mach front does not yet achieve the
boundary of computational area.

Shown in Fig. 14a is the comparison of the results for DGMK = 1, 2, 3 schemes
and for the conventional FVM scheme [22]. The exact solutionof this problem is also
presented here. Shown in Fig. 14a is the case when the investigated schemes are used
on individual grids chosen to equalize the number of degreesof freedom. It is seen that
the schemes with higher precision order provide better matching with the exact solution.
However, these schemes consume more CPU. Therefore the comparison of required
CPU is fulfilled for the case when equal accuracy of calculations is ensured. Shown in
Fig. 14b are the results for DGMK = 2 and 3, obtained on individual grids. It is seen that
the accuracy of both results is the same. The comparison of CPU for this case is shown in
Table 5. The fourth-order scheme provides good results 5.6 times quicker and consumes
1.4 times less memory. It is impossible to obtain such accuracy of results using the DGM
K = 1 scheme and even more so using the conventional FVM scheme due to excessively

(a) (b)
FIG. 14: Comparison of the exact solution with the numerical one for the acoustic
momentum: (a) equivalent number of degrees of freedom and (b) equivalent accuracy of
solutions.
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TABLE 5: Comparison of CPU in the case of equal accuracy of results of the calcula-
tions for DGM (K = 2 and 3) schemes.

Scheme Grid Number of
degrees of
freedom

Operated
memory,
Kb

Memory
ratio

Time of
CPU

Time
ratio

DGM K = 2 60×60×60 2,160,000 743 1.4 13 h
48 min

5.6

DGM K = 3 32×32×32 655,360 528 1.0 2 h
28 min

1.0

high CPU requirements

6. CONCLUSIONS

The discontinuous Galerkin method (DGM) was applied to the solution of Euler and
Navier–Stokes equations on the basis of unstructured hexahedral grids. Considered test
cases demonstrated good matching with theoretical or experimental results while using
the fourth-order scheme, even on extremely coarse grids.

Comparisons were made of CPU required for a new scheme and fora scheme using
the finite volume method (FVM) of second order of precision. In the case of application
of an equivalent number of degrees of freedom in a discrete problem, the higher order
scheme required more CPU.

The investigations showed that given equal accuracy of results, the calculation times
of DGM and FVM schemes could be similar for some problems. Therefore, the conclu-
sion about the necessity of applying higher order schemes was still unclear. The advan-
tages of higher order schemes were obvious only in the acoustic problem on spherical
wave propagation.

However, practical realization of the investigated schemehas many possibilities for
significant reduction of calculation time. It is the solution of these problems regarding
optimal realization of the DGM that offers the challenge forits widespread application.
Questions regarding optimal realization of the scheme and its robustness are subjects for
further investigation.
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INVESTIGATION OF THE APPLICATION OF

ELECTRICAL DISCHARGES FOR WAVE DRAG

REDUCTION

V. V. Skvortsov

Central Aerohydrodynamic Institute (TsAGI) 1, Zhukovsky str., Zhukovsky,
140180, Moscow region, Russia; E-mail: vlaskvortsov@rambler.ru

The problem of the main mechanism of electrical discharge influence on the wave drag of bodies at
initial values of drag coefficient cx and static pressures that are of interest for aviation applications is
investigated based on the experiments in classical wind tunnels with well-known and stable parame-
ters of flows. It is shown that such a main mechanism is heat one for the types of discharges proposed
for practical application. It is also shown that electrical discharges being generated in front of models
can lead to unsteady supersonic flow. In turn, this stipulates essentially nonsteady flow over a body
that can seem as a shock wave disappearance at insufficient time resolution of an optical method of
registration.

KEY WORDS: wave drag, electrical discharge, heat mechanism of drag reduction, ion-
overheat instability, non-stationarity of flow over bodies, optical method of registration,
time resolution

1. INTRODUCTION

The problem of the application of electrical discharges forwave drag reduction of air-
craft was extensively investigated and discussed at the endof the last century and at
the beginning of this century by some scientific centers in Russia, the United States,
and Great Britain [1–6]. Physical investigations implemented on the models with high
initial values of drag coefficientcx testified to the possibility for considerable energy-
profitable wave drag reduction while using this method. The effects of the disappearing
of shock waves at the generation of discharges in front of models at supersonic flows
were demonstrated. These effects were referred to as the newunknown properties of
plasma.

The principal position of specialists adhering to the classical point of view toward
the role of discharges is if the weak volume forces created byelectric fields acting in
plasma outside the boundary layer in the absence of an external magnetic field are not
considered, the main mechanism of discharge influence on wave drag will be heat one,
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with the ensuing consequences about energy consumption. This mechanism manifests
itself in the fact that the pressure redistribution occurs in the area between the shock
wave and the body, while supplying heat energy in this area. As a result, the shock wave
deforms and stands off the body; meanwhile, the slope of streamlines to the axis of
the body decreases, the value of the pressure component acting lengthways on the body
diminishing.

To solve the problem set by physical experiments, research in this direction was
made at TsAGI. The necessary condition for implementation was the requirement for the
test accomplishment in classical wind tunnels with well-known and stable parameters of
flows. The drag coefficients of models and the static pressures was of interest for aviation
applications. The problem of the disappearing of shock waves was also studied.

Among different concepts of electrical discharge influenceon aerodynamic char-
acteristics of bodies, the concept of heat influence predicts rather definitely that at the
generation of discharges in front of the bodies, the values of wave drag reduction will
diminish, and energy consumption will increase at the improvement of the aerodynamic
shape of the body. Therefore, in the frame of this problem, itis important to compare
the energy efficiency of the present method for models with various aerodynamic shapes
and to compare the values of drag coefficient that can be obtained at the generation of
discharges near these models with the values of drag coefficients of models of optimal
aerodynamic shape for corresponding Mach numbers without discharges near them.

The investigations of interest are accomplished in two types of experiments. In the
first one, the discharges are created directly on models using plasma generators devel-
oped and manufactured by ideologists of the present method of wave drag reduction [1,
2]. The independent analysis of the results obtained was made at TsAGI. The conclu-
sions made do not coincide in a number of counts with the conclusions of the present
drag reduction method associates, particularly in efficiency. As a rule, there are no ref-
erences to conclusions obtained at TsAGI in publications, especially in foreign ones.

In the second type of experiments, the models are installed in the wake of a lon-
gitudinal discharge with a low level of pulsations of current and of power supplied to
this discharge. The results obtained by the author during the second type of experiments
concerning the influence of power supplied to the discharge on the value of the varia-
tion of drag forces and on the efficiency of energy have not been published for a wide
readership before.

The experiments of the first type were fulfilled in the TsAGI wind tunnel T-113 at
Mach numbers equal to 4 and 2. The power supplied to the discharges are within the
range from a few hundred watts up to∼6.5 kW. This wind tunnel is known to have
the dimensions of the test section equal to 600×600 mm; the length of test section is
equal to 1.9 m. These dimensions are much larger than the characteristic dimensions of
models used in the experiments. This fact ensures the absence of inverse effects of the
energy supply near the models on the characteristics of the stream inside the primary area
of the flow. The balance of the electromechanical type, insensitive to electromagnetic
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disturbances of the discharge, was used for the measurements. The level of pulsations in
a supersonic flow inside the test section of this wind tunnel was< 1%.

The total number of runs fulfilled in wind tunnel T-113 equalsapproximately 110.
The same regularity was revealed during all these runs, namely, a considerable decrease
of energy efficiency was observed while passing from the models with high initial values
of cx to ones with low values, in accordance with the prediction ofthe heat concept of
discharge influence on wave drag.

The variants of models involved in tests at M = 4 are shown in Fig. 1. Models A1
and A2 have a semispherical blunting of the nose part [7], models B1 and B2 have a
cone blunting of the nose part and differ by structural features. Models A1 and B1 are
made of caprolon (polyamide 6.6), and models A2 and B2 are made of radio ceramics.
The cylindrical part of the models has a diameter equal to 40 mm. In addition, shown
in Fig. 1, is the profile of model B3. Its nose part is close to the optimum shape for

FIG. 1: Variants of models in experiments at M = 4.
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M = 4 described by the equation [8, 9]̄R = x̄3/4, whereR̄ and x̄ are relative coordi-
nates of the nose part. Models B1 and B2 (with cone blunting) and model B3 (with the
optimum nose shape) had been proposed by TsAGI as having lower values ofcx. The
models with the semispherical and cone blunting are equipped with plasma generators
[10]. There is no plasma generator on the model with the optimum nose shape.

Plasma generators consist of eight electrodes of the same polarity mounted a flush
on the lateral dielectric surface of the model, and of one electrode of another polarity
representing a sharp metal cone, located in the model nose part. Plasma generators of
the A models are energized both from the source of a quasi-constant current (capacitor
bank) and from the source of an alternating current. The discharges for the B models
are realized only by an alternating-current source. The electric potential between the
electrodes turns out to be insufficient for the breakdown of the discharge gap while using
the source of quasi-constant current. The circuit layout ofthe plasma generators under
alternating current was established in such a way that the cone electrode has the same
potential as the wind tunnel. One of the interesting resultsof tests led by Klimov [10]
is that the discharges of the alternating current can burn atlower potentials than the
discharges of the direct current. This is the reason for the lower energy consumption
while using discharges under alternating current.

The velocityW of the incident flow at M = 4 is equal to 570 m/sec, and the static
temperatureTst and the static pressure are equal to 69 K and 29 Torr, respectively. The
unit Reynolds number is equal to3.1×107 1/m.

The main results of the test analysis are shown in Figs. 2 and 3and in Table 1. Par-
ticularly, shown in Fig. 2, is the dependence of the energy efficiency parameter on the

FIG. 2: Parameter of energy efficiency versuscx coefficient in experiments at M = 4.

TsAGI Science Journal



Electrical Discharges for Wave Drag Reduction 723

FIG. 3: Parameter of energy efficiency versuscx coefficient in experiments at M = 4.

TABLE 1: Test analysis.

Nose part type Discharge type cxinit Drag
reduction
value
∆cx/cx

(%)

Ratio of the
decrease of drag
work in unit
time to power
consumed
to generate
the discharge
W∆X/N

Semispherical blunting Direct current 0.22 18 1.49
Semispherical blunting Direct current 0.192 36 1.2
Semispherical blunting Direct current 0.196 13.3 0.38
Semispherical blunting Alternating current 0.22 6.8 1.56
Semispherical blunting Alternating current 0.194 11.3 1.86
Cone blunting Alternating current 0.15 2.6 0.1
Cone blunting Alternating current 0.155 3.2 0.1
Cone blunting Alternating current 0.122 6.1 0.48
Cone blunting Alternating current 0.128 7.8 0.4
Optimal shape of the
nose part without
discharge

— 0.095 — —
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initial values of the coefficientcx of the models for the case when plasma generators are
energized from the source of alternating current. The efficiency parameter is determined
as the ratio of drag work decrease in unit time∆XW at the discharge generation to the
powerN supplied to the discharge. For the correct comparison, the data were presented
for a short range of ratio∆cx/cx = 0.05−0.08, which is similar for different models and
close to the maximum values obtained for the models with the nose part cone blunting.

It is seen from these data that a sharp decrease of the efficiency parameter occurs
while passing from the models with semispherical blunting having sufficiently high ini-
tial values of coefficientcx to the models with cone blunting possessing lower values
of cx, in compliance with the heat concept of discharge influence onwave drag. Mean-
while, the model with the optimum nose part shape without plasma generator has a lower
value of coefficientcx than the models equipped with operating plasma generators.This
fact is seen from the data shown in Table 1 and in Fig. 3, where the value of the drag
coefficient at the discharge generation is plotted as a function of the drag coefficient for
the same models without discharge.

Similar results were obtained in the experiments at Mach numbers equal to 1.78 –
2 (Tst ≈ 160 K,W ≈ 500 m/sec). The comparison of the results for models having the
values of coefficientcx within the range 0.14–0.2 with the experimental data for the
shortened model of the F-15 airctraft nose part havingcx = 0.35−0.37 (Fig. 4) was
made. The former models are equipped with the combination ofmultielectrode plasma
generator of current and erosion generator of plasma [11]. Their initial values ofcx are
different due to either the design features of the installation of generators in a model
or the progressive surface failure subjected by discharges, or else due to specially made
ledges. The second model is equipped with plasma generatorsof a different type [11].
Shown in Fig. 4b as an example is a variant of models with the generator similar to the

(a) (b)

FIG. 4: Variants of models in experiments at M≈2: (a) scheme of models with appli-
cation of the combination of erosive generator and direct current generator (1, erosive
generator; 2, metal surface; 3, anodes of direct current generator; 4, dielectric surface);
(b) shortened model of the aircraft F-15 nose part.
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another one applied in the tests at Mach number M = 4 (the length of the knot of central
electrode equals 98 mm).

The experiments were implemented at static pressures within the range from 100
Torr up to 300 Torr (from1.33 ·104 Pa up to4 ·104 Pa). The dependence of the efficiency
parameter on the drag coefficientcx for the range of∆cx/cx values from 0.045 up to
0.06 (these values correspond to their limiting values obtained for the models presented
in Fig. 4a) is shown in Fig. 5. The importance of the choice of asufficiently narrow range
of values of this ratio, similar for different models, becomes notably evident in this case,
since the high values of the efficiency parameter can be obtained for the model with
a bad aerodynamic shape [12]. The maximum value of ratio∆cx/cx for the last model
equals∼0.05. As seen from Fig. 5, the efficiency parameter decreasessignificantly while
passing from the model with a high initial value of the drag coefficient to the models
with lower values; the same results from the heat influence concept. Meanwhile, in the
majority of cases, the TsAGI model with an optimal aerodynamic shape of the nose
part, whose contour is described by the relationshipR̄= x̄2/3, has the minimal value of
cx, without additional energy consumption as compared to other models, equipped with
operating plasma generators (Fig. 6).

Similar results were obtained at the installation of modelsin a wake of longitudinal
discharge with a low level of pulsations of current and of power supplied to the discharge
generated in supersonic airflow [13]. The discharge generation scheme is shown in a
Toepler picture (Fig. 7), where the dashed line designates the contour of the electrodes.
The discharge is generated between a brass anode 1 installedin profiled support 2 with
the tip directed along the flow and duraluminum profiled support 3 (cathode) with two

FIG. 5: Energy efficiency parameter versuscx coefficient in experiments at M≈ 2.
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FIG. 6: Value of cx coefficient at the generation of discharges versuscx without dis-
charge in experiments at M≈2: 1, model having a shape close to the optimal one; 2,
experiment data; 3, line of equal values of drag coefficientswith discharge and without
it.

FIG. 7: Toepler photography illustrating the scheme of discharge generation with low
level of pulsations of current and of power supplied to the discharge.

ledges. The ledge that is closer to the upper electrode is meant for a reliable breakdown
of the discharge gap. After firing, the discharge is brought downstream along the plate,
undergoes contraction at a certain length of the discharge gap, and closes up primarily
on the ledge located far from the anode. The discharge current is equal to 1 A; the dis-
charge burning voltage is equal to 1 kV. Such a discharge has amuch smaller value of
current pulsations as compared to the discharges in which the discharge channel crosses

TsAGI Science Journal



Electrical Discharges for Wave Drag Reduction 727

a supersonic stream at the current closing up from one electrode to another one and in
which the current pulsations can amount to 40–50% from the average value.

The tests were implemented in the supersonic wind tunnel T-42M with flow size eq-
ual to 120×120×400 mm, developed by rectangular nozzle and walls of the facility ad-
joint with it. The level of velocity pulsations equal to∼0.6%. The low static pressure
was generated by means of a supersonic ejector. Unit Reynolds number Re varyied from
∼0.9×107 up to∼2.1×107 1/m. The electrodes did not have galvanic contact with the
facility walls.

The tests have shown that the conditions of the most stable burning of discharge with
a low level of pulsations of current (∼3%) and of power (∼5%) are achieved when the
distance across the flow between the points of discharge connection to the electrodes
does not exceed 1.5–2 mm, which seems to be the characteristic radius of the discharge
channel, and the discharge closes on the leading edge of the back ledge of the cathode.
At discharge shift outside the cathode, the pulsations of current increase up to 5%, and
the pulsations of power increase up to 7.5%.

The qualitative investigations of the reduction temperature distribution in a wake
behind the discharge in the area without discharge where themodels are installed have
shown that the area heated by the discharge in the plane perpendicular to the flow is of
elliptical shape, the major axis of ellipse being perpendicular to the cathode plane, which
is related to the character of the flow over the cathode ledge.As a result of investigations
of total pressure distribution in a wake behind the discharge, it was determined that the
flow was supersonic, with the value of Mach number in the center of distribution equal
to∼1.3–1.6.

The investigations implemented have demonstrated an important feature of electrical
discharge in gas flow, namely, the discharge is able to amplify the density pulsations of
neutral flow, which appear inevitably; for example there pulsations can arise due to
the flow separation or due to the development of the flow vortexstructure—even with
profiled electrodes. Taking into account that the flow is isobaric, this means there are
zones with a different gas temperature in the discharge area.

Some results of investigations of the influence of supersonic flow heating by longi-
tudinal discharge on the drag of models of different geometry, but of similar midsection,
that are installed in a wake of discharge, as well as the evaluation of the energy effi-
ciency, are shown in Fig. 8. The results obtained conform well to the prediction of the
heat concept of discharge influence on aerodynamic effects.Notably, the effect of the
influence of the energy supply decreases whilecx of models is diminishing from the
values about 1 (semispherical blunting, cone with apertureangle equal to2α = 80 deg)
up to the value of∼0.3 (cone with aperture angle2α = 40 deg). The efficiency of the
energy supply decreases even more sharply. For the models with a high value ofcx, the
value∆XW/N increases as the ratioD/dch magnifies, whereD is the model diameter,
dch is the channel diameter. It is similar to the calculations [14, 15] fulfilled on the basis
of the gas dynamics equations with energy supply, i.e., the heat concept.
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FIG. 8: The variation of drag force (a) and energy efficiency (b) at the installation of
models in a wake behind the longitudinal discharge versus the power supplied to the
discharge: 1, semisphere; 2, cone; 3, semisphere; 4, cone atpst = 58 Torr; 5, cone at
pst = 85 Torr.

At the same time, a series of effects of the discharge influence on the wave drag can
be noted that are likely to refer to the nonthermal effects. Namely, in the case of the
discharge creation on the models these effects are the dependence of the drag reduction
effect on the polarity of the electrodes, and the decrease ofenergy consumption at the
feed of discharges by alternating current and at their pulse-periodic feed. Several authors
relate the features that take place at the simultaneous application of electrical discharge
and electron beam to the nonthermal effects [16,17]. The same is true for the possibility
of initiating a strong electric field at shock waves that can influence the gas dynamics of
the flow [18, 19].

In the tests fulfilled of the first and second types, there was no special investigation
of Mach number influence on the amount of wave drag reduction for the models of sim-
ilar geometry with the same energy supply to the discharges.For example, the geometry
of models for the tests in wind tunnel T-113 at different Machnumbers was selected
to be close to the geometry of models with an optimum shape of nose part and to be
acceptable with technological possibilities of plasma generators arrangement. These ge-
ometries differ substantially for different values of Machnumber. The experimental data
on Mach number influence on energy efficiency of the method with application of gen-
erators with plasma jet blowing toward the airflow are contained in Ref. [11]. As follows
from Ref. [11], at M>1.5, there is a substantial decrease of the indicated value.

Investigated in the experiments with longitudinal discharge application was the time-
resolution pattern of supersonic flow over models. This flow is exposed to the mentioned
discharge. The flow pattern was registered by the IAB-451 instrument of a Toepler type
with its time sweep done by a high-speed photochronograph operating at a time mag-
nifier mode. In addition, the flow pattern photographing was fulfilled as a starting point
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for our investigations by the same devices at an exposure time of∼0.01 s. The tests of
this type, but otherwise stated, were fulfilled at TsAGI previously by Kalachev and by
Alferov.

The discharge was generated in the way shown in Fig. 7. The electrodes and the
power supplied to the discharge were installed so that the minimum of pulsations was
realized. The distance between the anode tip and the leadingedge of the cathode ledge
situated far from anode was equal to∼70 mm. The Mach number of the cold flow was
2.5. The static pressure of the facility test section was7.7×103 pascal (58 Torr). Used
as the models were semispheres of 15 mm diameter and a cone having a semiapex angle
equal to 20 deg and a base diameter equal to 6 mm. In all the tests, the models were
installed on the axis of the facility test section at a distance equal to 20 mm from the
cathode rear face.

During the implementation of the time-sweep tests, the lighter of the Toepler de-
vice worked in a pulse regime and was activated from the desk of the high-speed pho-
tochronograph camera simultaneously with the start of the image sweep on the photo-
graphic film. The high-speed photochronograph camera operated with a two-row insert;
only one row of the lens was used.

Toepler photos of the cold flow over the model obtained by means of the high-speed
photochronograph reveal classical shock waves at all exposure times. On the photos of
the flow over the same models with a heat supply inside the flow by means of longitudi-
nal discharge (the discharge current equals 1 A, the discharge voltage equals 1 kilovolt)
and with longer exposure time(∆t≈0.01 s), the flow pattern in the central zone (where
the flow is heated) turns out to be blurred, like in some other works. But the unsteady
flow pattern was registered clearly (Fig. 9) while decreasing the exposure time up to
∼1.5 microsec at a time interval between the starts of the adjacent frames equal to∼3
microsec. The period of pulsations of this pattern was closeto the period of pulsations
of the flow density gradient, measured during the tests usingthe combination of Toepler
device and photoelectric multiplier with a rather wide-range frequency characteristic.
Besides this, for the flow heated, the shock wave in the central part moved forward,
which corresponds to a decrease of the Mach number. This behavior of the flow was
observed only in the central (i.e., heated) flow part, which was varying with time under
the influence of the discharge. Given the constant pressure,this indicates a heterogene-
ity of temperature, density, sound speed, and Mach number along the flow. This gives
arise of spatial zones with high temperature, which alternate with zones of lower tem-
perature, and to the corresponding moving alternating density gradients. This leads to
an unsteady flow pattern. When such flow inflows on the model, the area in front of
the body looks like a zone of the shock wave “disappearance” if the method of optical
imaging has a large averaging time. The gas-dynamic analysis of the periodic inflow of
zones with different values of temperature and of density onthe shock wave, accom-
plished by Kuznetsov (TsAGI), conforms satisfactorily to the experimentally observed
picture of the phenomenon. A possible cause of the unsteady flow is the mechanism of
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FIG. 9: High-speed sweep of flow pattern over model installed in a wake of longitudinal
discharge, illustrating unsteady behavior of flow.

heterogeneous heating of the flow, typical for discharges. The ionization-overheating in-
stability can be such a mechanism [20]. Therefore, the testsdone and their analysis have
shown that the cause of this effect consists not in the disappearance of shock waves in
front of the body under the influence of electrical dischargeon incident flow, but in the
appearance of substantially unsteady flow over the body.

2. CONCLUSIONS

The tests fulfilled proved the heat concept of electrical discharge influence on the wave
drag of bodies to be essential and basic one at the values of drag coefficientscx and static
pressures that were of interest for aviation applications.During the tests with TsAGI
models that had the optimum shape of the nose part and that were not equipped with
plasma generators, the lowest values of the wave drag coefficient were obtained in most
cases as compared to the models that were equipped with operating plasma generators.
It was shown that the cause of the disappearance of shock waves influenced by electrical
discharges on supersonic flow demonstrated in a series of investigations could be the ap-
pearance of substantially unsteady flow over models caused by the development of alte-
rnating zones with different densities and temperatures ofgas in the incident flow.
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It should also be noted that the conversion of the energy of the electrical field that
maintains the discharge in the airflows into the heat energy passes through a series of
stages. Therefore, it significantly decreases the efficiency of the process. At the values
of the ratio of electric field intensity to the concentrationof neutral molecules that are
typical for discharges in air, up to 50–80% of this energy goes first of all into the exci-
tation of the vibrational degrees of freedom of the nitrogenmolecules [20]. Then, this
energy relaxes gradually into translational degrees of freedom. The rest of the energy
goes into the excitation of the vibrational degrees of freedom of the oxygen molecules,
the lowest proportion of the energy going into the excitation of the rotational and trans-
lational degrees of freedom (i.e., directly of thermal ones). The speed of the relaxation
processes depends on the gas temperature in the discharge, and it can be low at the initial
stage of heating (especially for nitrogen) [21]. Shown experimentally in Ref. [22] is the
fact that the ratio of the energy going into the heating to thetotal discharge energy in the
nitrogen can be on a level of 10%. This ratio is taken to be equal to 20% in many nu-
merical calculations as the result of the averaging of different experimental data. These
values show that the essential energy release occurs downstream, but not in front, of the
body.
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INVESTIGATION OF THE SONIC BOOM OF

THE OBLIQUE WING AIRCRAFT
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The characteristics of the lift-drag ratios and sonic boom intensity of the aircraft, consisting of the
oblique wing, fuselage, and vertical fin, were investigated at M∞ ∼ 1.2−1.98. The investigation
results were compared to the results, obtained for the Tu-144 aircraft, having the same fuselage and
fin. The Tu-144 aircraft has the same wing area as the aircraft with the oblique wing.

KEY WORDS: oblique wing, aerodynamic characteristics, sonic boom

1. INTRODUCTION

It is known that at transonic and small supersonic flow velocity, the aerodynamic char-
acteristics of aircraft with the oblique wing have special advantages in comparison with
aircraft with the symmetrical wing. Given in Ref. [1] is the wing drag equation, taking
into account friction, induced, and wave drag separately,
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Y 2

πql
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wherecf is the friction coefficient,q is the dynamic pressure,Sw is the wetted wing area,
Y is the lift, l is the wingspan, M∞ is the free-stream Mach number,V is the volume,
andx1 andx2 are specified by the equations
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whereθ is the inclination of the cutting Mach plane andx(θ) is the length of an equiva-
lent axially symmetrical body.

The first term in Eq. (1) specifies the friction drag, the second term corresponds to
the induced drag, the third term corresponds to the wave dragdue to the lift, and the
fourth term corresponds to the wave drag due to the wing volumes. At small supersonic
Mach numbers.x1 andx2 are approximately equal to the lengthLw for a symmetrical
wing with a great sweep angle and to two lengthsLw for an oblique wing. It follows
from Eq. (1) that the oblique wing wave drag due to the lift is four times less than the
wave drag due to the lift of the symmetrical wing, and the oblique wing wave drag due
to the volume is 16 times less than that one of the symmetricalwing under the condition
of equal area and span. Shown in Fig. 1a is the dependence of the lift-drag ratio on the
Mach number(M∞∼0.6−1.4) for the oblique and symmetrical wing [2]. One can see
that the oblique wing with the ratio of the ellipse sidesb : a = 10 : 1 and with variable
sweep has better characteristics than the symmetrical wingwithin the whole range of
Mach numbers.

The method, based on the solution of Navier-Stokes equations was used for the cal-
culation of sonic boom intensity of aircraft with symmetrical and oblique wing [3]. This
method requires the creation of a special computational grid near the aircraft surface
to take into account properly the viscosity effects and to plot the velocity profile in the
boundary layer. For this purpose, the value of they+ parameter, specified by the distance
between the surface and the first grid node, is to be< 200, and at least 10 layers should

(a) (b)

FIG. 1: Comparison of the lift-drag ratio of the elliptic oblique and symmetrical wing
depending on Mach number: (a) lift-drag ratio as a function of Mach number [1]; (b)
geometry of the symmetrical and oblique wing.

TsAGI Science Journal



Sonic Boom of the Oblique Wing Aircraft 735

be across the boundary layer. In this paper, we used the modelof a turbulent flow SST
with the initial fractional intensity equal to 5% and eddy viscosity ratio equal to 10 in
all cases while calculating the flow over an aircraft under the full-scale conditions for
Reynolds numbers Re>3×108 [4].

2. COMPARISON OF AERODYNAMIC CHARACTERISTICS OF THE
SYMMETRICAL AND OBLIQUE WINGS

The flow problem is solved for two oblique wings and one symmetrical wing. The wing
surfaces are constructed by NACA64412 airfoil (Fig. 2a). Cited in Table 1 are the geo-
metric parameters of the wings and of the computational grid. The area of all the wings
equals 501 m2, the maximum thickness ratio of the airfoils being equal to 12%. The

FIG. 2: Comparison of the lift-drag ratio of the oblique and symmetrical wing: (a) the
schemes of the symmetrical and oblique wing; (b) the wing drag; (c) the lift-drag ratio.
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TABLE 1: Wing types and parameters.

Wing type/- parameters Symmetrical wing
Oblique wing

χ = 60 deg χ = 60 deg χ = 70 deg

Airfoil type NACA 64412 (maximum thickness ratio 12%)

AreaSw, m2 501

LengthLw, m 40.67 62.35 67.66

Spanl, m 36 36 24.63

Aspect ratioλ 2.59
2.59 1.21

10.35 (atχ = 0)

Mass, t 150

cy
M∞ = 1.2 1.4 1.6 1.8 1.98

cy = 0.287 0.211 0.162 0.128 0.106

Grid
Form Tetrahedral grid

Number of nodes 571,348 (symmetry) 1,152,486 1,156,159

Number of elements 1,718,338 (symmetry) 3,461,882 3,498,721

oblique wing aspect ratio is equal to 10.35 atχ = 0 (χ is a sweep angle), the symmetrical
wing aspect ratio being equal to 2.59 and coinciding with theoblique wing aspect ratio
atχ = 60 deg. The lift coefficient is specified at various Mach numbers from the condi-
tion of flight at an altitude of 16100 m and the aircraft mass is150 t. Cited in the bottom
lines of Table 1 are the tetrahedral grid parameters. The computational area, aimed at the
calculation of the flow over the symmetrical wing, has the symmetry plane and therefore
one calculates the flow over a half wing. The oblique wing is considered completely.

Shown in Figs. 2b and 2c is the dependence of drag and lift-drag ratio on the Mach
number. Atχ > 60 deg, the Mach number, being normal to the leading edge, is< 1
within the range of the free-stream Mach numbers M∞ ∼ 1.2−1.98, but atχ = 60 deg
and M∞ ≥ 1.8, the Mach cone is tangent to the oblique wing leading edge. AtM∞ =
1.2 and 1.98, the symmetrical wing surface is streamlined without flow separation. The
separation arises at M∞=1.4, 1.6, and 1.8 after a shock wave in the narrow zone on the
surface. The separated flow appears on the surface of the oblique wing with the sweep
angleχ = 60 deg at M>1.4 from under an intense shock wave; and as the Mach number
increases, the separated flow area expands slightly. In order to provide lift atχ = 70 deg
and at the free-stream Mach numbers equal to 1.2 and 1.4, greater angles of attack—
α = 9, 6.42 deg, accordingly—are needed. For this reason, the separation arises on the
wing leading edge, and the wall streamlines, arising from the leading edge in front of
the separation area, pass through the arc trajectory over the wing surface to the leading
edge behind the separation area and cause a new separation area to appear. Because of
this fact, the drag of the oblique wing withχ = 70 deg increases abruptly at M∞ =1.2.
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The separated flow is not observed at M∞ >1.6 on the surface of the wing withχ = 70
deg and only at M∞ =1.98 does the flow on the wing rear accelerate and separate after
the shock wave in a narrow zone. At M∞ ∼ 1.2−1.98, the Mach cone is not tangent
to the leading edge of the oblique wing withχ = 70 deg, and Mach number normally
to the edge is Mn < 0.7. Thus, the drag of the oblique wing withχ = 70 deg decreases
abruptly as the free-stream Mach number increases. At M∞ = 1.2, the lift-drag ratio of
the oblique wing withχ = 60 deg is better than the lift-drag ratio of the other types of
wing, and as the free-stream Mach number increases, the oblique wing withχ = 70 deg
has the lowest drag.

The oblique wing has a peculiarity, consisting in the fact that the lift is created mainly
on the wing rear. This peculiarity results in the creation ofa roll moment with respect to
thex-axis.

3. COMPARISON OF THE SONIC BOOM INTENSITY OF AN AIRCRAFT
WITH THE OBLIQUE WING AND OF THE TU-144 AIRCRAFT

For the analysis, we chose the conception of the entirely rotating wing, varying its sweep
from χ = 0 deg for subsonic flight up toχ =≥ 60 deg for transonic and supersonic flight.
For the investigation of the sonic boom intensity, we chose the oblique wings with sweep
anglesχ = 60 deg for M∞ = 1.2 andχ = 70 deg for M∞ = 1.6, 1.98, installed on the
fuselage of the Tu-144 aircraft by means of a pylon (Fig. 3a).Cited in Table 2 are the
parameters of the Tu-144 aircraft [5] and of the aircraft consisting of the oblique wing,
fuselage, and vertical fins.

The oblique wing axis of rotation is situated at a distance of34 m from the fuselage
nose. The length of the aircraft with the oblique wing increases as the sweep angle
increases, and forχ ≥ 60 deg, it is greater than the length of the Tu-144 aircraft. The
wing aspect ratio of the Tu-144 aircraft is less than the wingaspect ratio of the aircraft
with the oblique wing withχ = 60 deg and greater than the aircraft with the oblique
wing with χ=70 deg. Shown in the bottom lines of Table 2 is the tetrahedral grid size.
In order to calculate the flow over the Tu-144 aircraft, one uses the unstructured grid,
taking into account the model symmetry. The aircraft with the oblique wing is considered
completely.

4. COMPARISON OF AERODYNAMIC CHARACTERISTICS

The flow over the aircraft with the oblique wing withχ=60 deg is calculated for the free-
stream Mach number M∞=1.2, and the flow over the aircraft with the oblique wing with
χ=70 deg is calculated for M∞ =1.6 and 1.98. The calculation results are compared to
the data obtained for the Tu-144 aircraft. At M∞ =1.98, a narrow separated flow arises
at the obliqueχ=70 deg wing tip after an intense shock wave. Shown in Fig. 3b is the
pressure distribution on the oblique wing surface at M∞ =1.2. Pressure drops are more
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( c ) ( d )

( b )( a )

FIG. 3: Comparison of the drag of the aircraft with the oblique wing and of the Tu-
144 aircraft: (a) the schemes of the aircraft with the oblique wing and of the Tu-144
aircraft; (b) pressure distribution on the surface of the aircraft with the oblique wing at
M∞ = 1.2; (c) drag as a function of the Mach number; (d) lift-drag ratioas a function
of the Mach number.

intense on the wing part situated downstream. Therefore, the lift on this part of the wing
is greater, which leads to the rise of the roll moment. The fuselage slightly influences the
distribution of pressure drop on the aircraft with the oblique wing. Shown in Fig. 3c is the
dependence of the drag of the aircraft with the oblique wing and of the Tu-144 aircraft
on Mach number. One can see that at M∞=1.2, the drag of the aircraft with the oblique
wing is less than the drag of the Tu-144 aircraft. The comparison of the lift-drag ratio is
presented in Fig. 3d. At M∞=1.2, the lift-drag ratio of the aircraft with the oblique wing
(cy/cx =10.76) is greater than that of the Tu-144 aircraft(cy/cx =8.21) by 2.55. As the
Mach number increases, the lift-drag ratio of the Tu-144 aircraft becomes greater than
the lift-drag ratio of the aircraft with the oblique wing. AtM∞=1.6, cy/cx =9.02 for the
aircraft with the oblique wing, andcy/cx =9.09 for the Tu-144 aircraft. At M∞=1.98,
the difference in the lift-drag ratio is equal to 0.95.
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TABLE 2: Aircraft parameters.

Parameters Tu-144 aircraft
Oblique wing aircraft

χ = 60 deg χ = 70 deg

Aircraft lengthL, m 64.45 66.1 68.44

Wing areaSw, m2 505.868 501

Airfoil type Special NACA 64412

Spanl, m 27.8 36 24.63

Wing aspect ratio,λ 1.53
2.59 1.21

10.35 (atχ = 0)

Mass, t 150

Flight altitude, m 16,100

cy
M∞ = 1.2 1.6 1.98 M∞ = 1.2 1.6 1.98

cy = 0.285 0.16 0.105 cy = 0.287 0.162 0.106

Grid
Form Tetrahedral

Number of 1,217,696 (symmetry) 1,724,604 1,846,352

nodes

Number of 4,193,568 (symmetry) 5,141,104 5,466,192

elements

5. COMPARISON OF THE SONIC BOOM INTENSITY

The intensity of the local sonic boom from the aircraft with the oblique wing is calcu-
lated during the flight at the altitude 16,100 m, at Mach numbers 1.2, 1.6, 1.98, and
aircraft mass 150 t. The calculation results are compared tothe data obtained for the Tu-
144 aircraft. Shown in Fig. 4a is the pressure distribution on the horizontal plane under
the Tu-144 aircraft at M∞=1.2, and shown in Fig. 4b is the pressure distribution under the
aircraft with the oblique wing also at M∞ = 1.2. It is evident that the maximum distur-
bance distribution for these aircraft markedly differs. Incase of the Tu-144 aircraft, the
maximum disturbance area is situated under the wing. In caseof the oblique wing, this
area is situated upstream, where the shock waves arising from the fuselage nose and the
wing forepart join. The pressure distribution integrationalong the wingspan allows one
to specify the equivalent axially symmetrical body area derivative S̄′

eq (Fig. 4c). Shown
in Fig. 4d is the curve of theF -function, and shown in Fig. 4e is the sonic boom inte-
nsity of the Tu-144 aircraft and of the aircraft with the oblique wing. The maximum
overpressure∆pmax in a shock wave is equal to 121 Pa for the Tu-144 aircraft and 81
Pa for the aircraft with the oblique wing, with the minimum overpressure∆pmin being
equal to –107 Pa for the Tu-144 aircraft and –56 for the aircraft with the oblique wing.
The difference in∆pmax between these two aircraft is equal to 40 Pa, and the difference
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FIG. 4: Sonic boom intensity of the aircraft with the oblique wing and of the Tu-144
aircraft at M∞ = 1.2: (a) pressure field of the Tu-144 aircraft; (b) pressure fieldof the
aircraft with the oblique wing; (c) distribution of the equivalent axially symmetrical body
area derivative

(

S̄′
eq

)

; (d) distribution of theF -function; (e) overpressure curve in the
N-shaped wave.

in ∆pmin is equal to 51 Pa. This great difference results from the different distributions
of the cross-sectional area and of the lift along thex-axis. If the entire wing is situated
inside the Mach cone, the disturbances, caused by the oblique wing lift, will spread in
a vast area along thex-axis. The variations of the area derivativeS̄′

eq of theF -function
and of the overpressure of the sonic boom are shown in Fig. 5a for M∞ = 1.6, and in
Fig. 5b for M∞ = 1.98. In addition, the disturbance distribution pattern on the com-
putational plane and the form of the curve of the equivalent axially symmetrical body
derivativeS̄′

eq do not differ from the calculated ones at the flight mode with M∞=1.2.
Shown in Table 3 are the maximum and minimum sonic boom intensities of the aircraft
with the oblique wing and of the Tu-144 aircraft at M∞ = 1.6 and 1.98. At M∞ = 1.6,
the difference in the maximum intensity∆pmax is 37 Pa, and the difference in the min-
imum intensity∆pmin is –53 Pa. At M∞ = 1.98, the difference∆pmax = 38 Pa, and at
∆pmin=50.
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FIG. 5: Sonic boom intensity of the aircraft with the oblique wing and of the Tu-144
aircraft at M∞=1.6 and 1.98: (a) sonic boom intensity at M∞=1.6; (b) sonic boom in-
tensity at M∞ = 1.98.

TABLE 3: Maximum and minimum sonic boom intensities.
M∞ Aircraft ∆pmax, Pa ∆pmin, Pa

1.6
Tu-144 114 −99
with oblique wing 77 −46

1.98
Tu-144 115 −101
with oblique wing 77 −51

6. CONCLUSION

Investigated in the present work was the supersonic aircraft with entirely rotating oblique
wing, the wing area, the fuselage, and the vertical fins of which were equivalent to the
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Tu-144 aircraft. The aircraft with the entirely rotating wing has a remarkable advan-
tage in the sonic boom intensity in comparison with the conventional Tu-144 aircraft
at all Mach numbers, and an advantage in the lift-drag ratio at small Mach numbers
(M∞=1.2) . However, the aircraft with the entirely rotating wing stillhas some prob-
lems to solve concerning the engineering solution of the rotation gear and the roll and
longitudinal trim.
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The kinetic equation describing translational and rotational Brownian motion of nonspherical convex
solid particles in moving highly rarefied thermally inhomogeneous monatomic gas is derived. The
regime of flow around the particles is free molecular, i.e., the characteristic dimensions of particles are
much smaller than the average free path of the gas molecules. The interaction between the particles
and their effect on the gas phase be neglected. The specular-diffuse law of interaction between the
molecules and the particle surface is supposed. The temperatures of particles are equal and differ
from the local gas temperature. Such a thermal nonequilibrium leads to the violation of well-known
relations between the diffusion coefficients in the spaces of translational and angular velocities and
the coefficients of forces and momentums acting on a particle. The coefficients in the Fokker-Planck
collision operator entering into the kinetic equation are calculated for the particles in the form of
the bodies of revolution. In the case of particles without longitudinal symmetry (circle cone of finite
length, hemisphere etc.), the Fokker-Planck collision operator contains the second mixed derivative
with respect to the translational and angular velocities.

KEY WORDS: kinetic Fokker-Planck equation, nonspherical thermally nonequilibrium
Brownian particles, fine-dispersed gas suspension

1. INTRODUCTION

During the derivation of the Fokker-Planck operator for Brownian particles, the assump-
tion of particles being in thermodynamic equilibrium with the gas was formerly used
[1, 2]. This fact did not allow to take into account the effectof thermal nonequilibrium,
i.e., the difference between temperatureTp of particles and local gas temperatureT . In
addition, sufficiently symmetric particles were considered, so the force and the torque
did not depend on the components of angular and of translational velocity, respectively.
Therefore, the Fokker-Planck operator did not contain the second mixed derivative of
the distribution function with respect to translational and angular velocities.
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Steady increase of interest in the investigations of gas suspension flows (i.e., the
flows of mixtures of gas with solid or fluid particles) is caused by corresponding de-
mands from aerospace engineering, applied chemistry, propulsion engineering, etc. Refs.
[3–5]. In many cases, it is important to consider the nonequilibrium due to the heating
(or cooling) of particles, from chemical processes on theirsurfaces, etc. The theory of
gas suspension mechanics is phenomenological, and sometimes just empirical. The ar-
eas based on kinetic theory [6, 7] are developing in order both to derive the equations of
motion of gas suspensions as a continuum and to calculate thekinetic coefficients and
the relaxation terms as it is done in the kinetic ideal gas theory. Moreover, in some cases,
the investigations of gas suspension flows are to be based on molecular-kinetic concepts.
Recently, these areas have been stimulated for the development by the investigations
of nanoparticles [7]. However, there are a lot of assumptions in the kinetic theory of
gas suspensions that is known to be explained by the complexity of the processes under
consideration.

The most important method of the theory accuracy analysis isthe consideration of
the simplest cases when it is possible to create convincing mathematical models. The
striking example is described in Ref. [8], where the small-parameter expansions of the
Boltzmann integral of collisions between heavy particles and light ones is implemented
on the assumption that all the molecules are elastic spheres. As a result, the kinetic Fok-
ker-Planck equation is derived from the kinetic Boltzmann equation for Brownian free
molecular spherical particles whose surfaces the gas molecules interact with according
to the specular reflection law. However, it was used to consider the kinetic Boltzmann
equation to be inapplicable for the description of Brownianmotion of particles, being
due to the collective (and not binary) action of medium molecules; therefore, the result
of Ref. [8]) enlarged the representations about the range ofapplicability of this equation.
This result can be generalized for taking into account the thermophoretic force acting on
a specular reflecting sphere in free molecular conditions, i.e., at a Knudsen number of
the Brownian particle Kn�1, by applying the equations from Ref. [9] obtained for the
special case of molecules considered as elastic spheres.

After that [10], the natural question arises of whether the Fokker-Planck kinetic
equation can be obtained in a similar way for other laws of interactions of molecules
of surrounding gas with the solid particle surface (insteadof the specular law), espe-
cially for the important diffusion law from the Boltzmann-type equation. By definition,
in the Boltzmann-type equation, the convective part equalsthe collision operator, char-
acterizing the difference between the number of particles incoming and outgoing from
the phase space element. It is required to construct this operator theory on the basis of
the free molecule flow theory with further application of thesmall-parameter expansions
by analogy with Ref. [8] assuming that the collisions of gas molecules with the particle
surface are instant (i.e., the collision time is assumed to be negligibly small in com-
parison with characteristic times of translational and rotational motions of particles), so
that the operator is calculated at a fixed particle orientation. The heating (cooling) of
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the particle does not crucially transform the character of the interaction processes be-
tween the gas and the particle; therefore, the temperaturesof the particles are assumed
to be identical and to differ from the gas temperature. This fact enables to investigate
the thermal nonequilibrium influence on the operator coefficients and to use the results
of the investigations for experiments on the problem of applicability of Boltzmann-type
equations.

Such a program is realized in Ref. [10–12] and in the present work. In each of them,
the major result for this mathematical model is underlined,namely, in the absence of
thermal nonequilibrium, i.e., at the equality of the temperatures of particles and of gas,
the equations obtained turn into the well-known kinetic equations for Brownian free
molecular particles determined by means of principally different techniques. This shows
that Boltzmann-type equations are applicable for the derivation of kinetic equations for
Brownian free molecular paricles.

The kinetic theory of the Fokker-Planck operator for free molecular thermal nonequi-
librium particles has been developed recently. At first, this theory was developed for a
spherical particle in stationary homogeneous gas at the diffuse law of the reflection of
gas molecules from the wall [10], and then a generalization has been carried out for the
case of a moving gas with a temperature inhomogeneity at the specular-diffuse reflection
law [11]. After that, the same statement of the problem has been extended to nonspher-
ical particles [12], where the coefficients in the sought operator are calculated for the
particles taken as the rotational bodies with longitudinalsymmetry. [According to the
terminology of Ref. [13], such bodies possess a symmetry plane that is perpendicular to
the axis of symmetry; for example, spheroids [12]. In this case, the collision operator
does not contain term with the second mixed derivative. Thermal nonequilibrium leads
to significant variations of known expressions for the diffusion coefficients in the spaces
of translational and rotational velocities of particles interms of the coefficients of forces
and moments acting on moving particle. Generally speaking,the degree of this variation
depends on the accommodation coefficient and on the shape of aparticle [11, 12].

Stated below in more details than in Ref. [12] is the derivation of the kinetic equa-
tion describing translational and rotational Brownian motion of free molecular particles
in a nonhomogeneous gas with the parameter of thermal nonequilibrium being not equal
to unity τ ≡ Tp/T 6= 1 and at an arbitrary law of interaction between gas molecules
and a particle surface. Next, the specular-diffuse law of interaction is used, with only a
slight nonhomogeneity of the gas temperature being considered. The integration in mul-
tidimensional quadratures contained in the collision operator is carried out with respect
to the relative velocities of molecules before and after thecollision with the particle
surface element. Final explicit expressions are obtained for a hemisphere and for a cir-
cular cone when the second mixed derivative of the distribution function appears in the
Fokker-Planck operator.

As before [10–12], the density of the particulate phase (assembly of particles) is
assumed to be so small that the collisions of particles and their influence on the flow pa-
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rameters of the carrier phase (the gas) are inessential. Themaximum particle dimension
dm is much smaller than the mean-free-path length of molecules, but much larger than
the diameter of a molecule, so the particle may be assumed to be a macroscopic body
interacting with the gas by the laws of free molecular flows (for brevity, the particles at
such conditions are called the free molecules [11,12]).

The particles are assumed to be convex, solid, and mass and temperature homoge-
nious. The velocity of the gas isU in a fixed frame of reference, and its mass density
ρ and temperatureT are constant at a length aboutdm. The differences of characteristic
phase velocities are much less than the characteristic thermal velocity of the molecules.
The gradient∇T is set away from the particle, with the thermophoretic forceresulting
from it.

Some errors made previously in Refs. [10–12] are corrected hereafter in this work.
Basic misprints [10, 11] are indicated in Refs. [11, 12], respectively. In the first equation
(2.5) of Ref. [12],ϕ→ −λϕ/(5nkT ), the minus sign must be omitted. The errors in
equations are most numerous in the English version of Ref. [12].

2. KINETIC EQUATION

The assumptions [10–12] applicable to the derivation of Boltzmann-type equation are
used. The time of interaction (collision) of the molecule with a particle surface is much
shorter than the characteristic time of variation of the particle distribution functionFp.
The variation of particle orientation during the collisionis unessential, so the operator
of collisions is derived at constant values of Eulerian angles. Meanwhile, it is possible
to involve the known results from the kinetic theory of gas consisting of nonspherical
molecules that are considered within classical mechanics [14].

The variation of the distribution functionFp ≡ Fp

(

r, t,ξp,ωp,α
)

in a phase space
element is described by the following expression:

DFpdrdtdξpdωpdα = (∆+ − ∆−) drdtdα ≡ Jdrdtdξpdωpdα (2.1)

The convective operatorDFp is determined by the following equation [14]:

DFp =
∂Fp

∂t
+

∂

∂r
·
(

ξpFp

)

+
∂

∂ξp

· (ΦFp) +
∂

∂ωp

· (ω̇p Fp) +
∂

∂α
· (α̇Fp)

α̇ ≡ ∂α

∂t
(2.2)

The value(∆+ − ∆−) is equal to the difference between the number of particles incom-
ing and outgoing from the phase space element during the timeunit at constant values
of Eulerian angles. This value determines the operator of collisions J using the second
equality of Eq. (2.1).
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There are the following notations in Eqs. (2.1) and (2.2):ξp is a center-of-mass ve-
locity of a particle relative to the fixed frame of reference;ωp is its angular velocity;r
is a radius vector of the center of mass;t is a time;α is a vector whose components are
equal to Eulerian angles;Φ is an external force related to the particle massmp.

Initiating calculation of the difference(∆+ − ∆−) , let us introduce the velocities of
particles and of molecules relative to the local gas velocity U [11] in order to take into
account the motion of gas,

Wp = ξp −U,W = ξ − U,U = U (r, t)

The equations connecting the velocities of molecules and ofparticles before collision
with the same variables after collision are as follows:

W′ = W − G

m
, W′

p = Wp +
G

mp

, ω′
p = ωp + I−1 · [x ×G] (2.3)

Here,m,mp are the masses of a gas molecule and of a particle, respectively; the stroke
designates the values after collision;W′,W are the relative velocities of molecules after
collision and before it;G is a momentum transmitted during collision;I is a tensor of
inertia of a particle relative to the moving frame of reference starting in its center of
mass;x=Re is a radius vector of an arbitrary point at a particle surfacein this frame of
reference;R is a length of radius vector (variable over the particle surface in contrast to
the sphere [10,11]); ande is a corresponding unit vector. By definition,I·I−1 =E, where
E is a unit tensor, and symbolT−1 introduces a tensor inverse to tensorT. The point
signifies the scalar product of vectors as well as the simple (inner) product of a second
rank tensor by vector or by a second rank tensor; two points signify the double product
of second rank tensors, for example,u · n,T · u,T ·T′,T : T′ respectively, whereu, n
are vectors, andT′ is a tensor. The sign× signifies the vector product that is put in
square brackets when it is a factor in an equation, for example, [u× n] . Applied for
dyads are common notationsuu, nn, etc. Other factors are put in brackets if necessary;
the expressionT : (T′ · uu) is a double product of tensorT by a tensor equal to the or-
dinary product of tensorT′ by a dyaduu. The following symbols are also applicable
later (k is Boltzmann constant):

g = W − v, g′ = W′ − v′, v = Wp − x× ωp, ∆g = g′ − g ,

Σ = mpI
−1 · [x× ∆g] , ε = m (mp + m)−1 , µ = εmp, h = 2kTm−1

(2.4)

The exclusion of momentumG from Eq. (2.3) is fulfilled earlier [12]. As a result, the
following relationships are found:

(

W′
p

W′

)

=

(

Wp

W

)

+ [e (e · ∆g) − Ω]

(

−ε
1 − ε

)

− ΨΞ

(

m−1
p

−m−1

)

,

ω′
p = ωp + I−1 · {[x × Ω] εmp − [x× Ψ] Ξ} ,
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Ω = e × (Π · [e × ∆g]) , Ψ = e × (Π · e) , Π =
(

E + µ I−1R2
)−1

,

Ξ = −µ2
{

1 − x ·
(

I−1 · [Π · x]
)

µ
}−1 {

x · I−1 · (Π · [x × ∆g])
}

. (2.5)

The number of collisions of molecules having the velocitiesfrom the elementdW with
the particles having the velocities from elementdWpdωp is equal to

|n · g| f (r, t, W) dWdSFp (r, t,Wp, ωp, α) dWpdωpdα drdt

Here,n is an external normal unit vector to the particle surface elementdS andf is a
distribution function of molecules. Furthermore, for brevity, the argumentsr, t in the
distribution functions will be omitted.

When the molecule impacts with a particle, the velocity of the latter does not change;
therefore, the argumentα in the function of the distribution of particlesFp is also omit-
ted.

The probability of the fact that the molecules after reflection from the elementdS get
relative velocities from the elementdg′ is P (g, g′) dg′, whereP is related to the flow
of incoming molecules, i.e., the total probability of molecule emission [the integral of
P (g, g′) over the regionn · g′>0] is equal to unity. As a result, the following equation
is obtained:

∆−=

∫

n·g<0

∫

n·g′>0

∫

S

|n · g| f (W) P
(

g,g′
)

Fp (Wp,ωp) dWdg′dWpdωpdS (2.6)

The number of collisions that convert the velocitiesW′,W′
p,ω

′
p into W,Wp,ωp is

calculated in the same way. Therefore, we have

∆+ =

∫

n·g′<0

∫

n·g>0

∫

S

∣

∣n · g′
∣

∣ f
(

W′
)

P
(

g′,g
)

Fp

(

W′
p,ω

′
p

)

dW′dgdW′
pdω′

pdS (2.7)

Using Eq. (2.5), it is possible to demonstrate that Jacobiandeterminants of transforma-
tions of variablesW,g′,Wp,ωp→W′,g,W′

p,ω
′
p→g,g′,Wp,ωp are of block form

and equal to unity. As a result, using Eqs. (2.1), (2.4), (2.6), and (2.7), we find the kinetic
equation of the Boltzmann type

DFp = J (2.8)

The left part of Eq. (2.8) is determined from Eq. (2.2). The following equation can be
found in the collision operator right-hand side:

J =

∫

{

H
(

−n · g′
)

H (n · g)
∣

∣n · g′
∣

∣ f
(

g′ + v′
)

P
(

g′,g
)

Fp

(

W′
p,ω

′
p

)

−H(−n · g)H
(

n · g′
)

|n · g| f(g + v)P
(

g,g′
)

Fp(Wp,ωp)
}

dgdg′dS (2.9)
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Here, the integration is implemented over the complete velocity spaces; the function
H(y) is equal to 1 fory >0 and to 0 fory <0, the vectorv is determined by the third
equation of Eq. (2.4). The variablesW′,W′

p,ω
′
p in the first term of the expression

under the integral sign of Eq. (2.9) are the substituted by right-hand sides of the first
three equations (2.5), then the variablesg′ andg are renamed tog andg′. For example,

f
(

g′ + v′
)

= f
(

W′
)

= f (W + ∆g − ∆η) = f
(

v + g′ − ∆η

)

→ f (v + g + ∆η)

= f (η+ ∆η)

After that, Eq. (2.9) for operatorJ takes on the form

J =

∫

[f (η + ∆η) Fp(Wp + ∆ξ,ωp + ∆ω)− f(η) Fp(Wp,ωp)]dΘ ≡
∫

[=] dΘ,

dΘ = H (−n · g) H
(

n · g′
)

|n · g|P
(

g, g′
)

dgdg′dS, η = g + v,

(

∆ξ

∆η − ∆g

)

= − [e (e · ∆g) −Ω]

(

−ε
1 − ε

)

+ ΨΞ

(

m−1
p

−m−1

)

,

∆ω = − I−1 · {[x× Ω] εmp − [x × Ψ]Ξ} (2.10)

Used in the two latest equations are the symbols from Eq. (2.5). Furthermore, analogous
to Ref. [10], we apply the infinitesimalityε� 1 on the assumption that the translational
and the rotational velocities of particles are on the order of ε as compared to the mean
thermal velocity of the gas molecules. We linearize expression =, put in square brackets
of the first formula of Eq. (2.10), by∆η,∆ξ,∆ω, which are small in comparison with
η,Wp,ωp, relatively. Therefore, we find the following:

= = Fp

(

∂f

∂η
·∆η

)

+ f

(

∂Fp

∂Wp

·∆ξ +
∂Fp

∂ωp

·∆ω

)

+
1

2
Fp

∂2f

∂η∂η
: (∆η∆η)

+
1

2
f

[

∂2Fp

∂Wp∂Wp

: (∆ξ∆ξ) +
∂2Fp

∂Wp∂ωp

: (∆ξ∆ω) +
∂2Fp

∂ωp∂ωp

: (∆ω∆ω)

+
∂2Fp

∂ωp∂Wp

: (∆ω∆ξ)

]

Indicated here for brevity areFp ≡ Fp (Wp,ωp) , f ≡ f (η) .

Now, we expand Eq. (2.10) inε for ∆η,∆ξ,∆ω, taking into account Eq. (2.5) and
a known relationship,

(E + εT)−1 ≈ E − εT, E−1 = E,

Volume 40, Number 6, 2009



750 Galkin & Rusakov

Here,E andT are the unit and arbitrary tensors of second rank, respectively. Omitting
the higher-ε-order terms, we obtain the following equations:

∆ξ ≈ ε∆g, ∆η ≈ ε∆g − ε [x × Σ] , ∆ω ≈ εΣ

Here, the valueΣ is determined by the fifth formula of Eq. (2.4). Taking into account
these expressions and the equationη=g+Wp−x×ωp, we have

∂f

∂Wp

=
∂f

∂η
,

∂2f

∂Wp∂Wp

=
∂2f

∂η∂η
,

∂f

∂ωp

· ∆ω = −∂f

∂η
· [x× Σ] ,

∂2f

∂ωp∂ωp

: (ΣΣ) =
∂2f

∂η∂η
: ([x × Σ] [x× Σ]) ,

∂2f

∂Wp∂ωp

: (Σ∆g) = − ∂2f

∂η∂η
: ([x ×Σ] ∆g)

The result obtained enables us to write the considered value= as follows:

= =ε

{

∂Fp

∂Wp

· ∆g +
∂Fp

∂ωp

· Σ
}

f +
ε
2

2

{

∂2Fp

∂Wp∂Wp

: (∆g∆g)

+
∂2Fp

∂ωp∂ωp

: (ΣΣ) +
∂2Fp

∂Wp∂ωp

: (∆gΣ)

}

f

Now, we use once again the assumption about the infinitesimality of the velocities of
particles,

f (η) = f (g + v) ≈ f (g) + v · ∂f (g)

∂g
, v · ∂f (g)

∂g
∼ ε,

g · ∂

∂Wp

∼ 1

ε
, (g g) :

∂2

∂ωp∂ωp

∼
l2p
ε2

etc. (here,lp is a maximum dimension of a particle).
Holding the dominant terms of expansions, we obtain the following relationships for

the collisions operator:

J =
∂

∂Wp

·
(

− F

mp

Fp

)

+
∂

∂ωp

· (−M∗Fp)

+
ε

2mp

{

∂2Fp

∂Wp∂Wp

:〈∆g∆gf〉+ ∂2Fp

∂ωp∂ωp

:〈ΣΣf〉+2
∂2Fp

∂Wp∂ωp

:〈∆gΣf〉
}

(2.11)

−F = 〈∆g f〉 +

〈

∆g
∂f

∂g

〉

· Wp +

〈

∆g

[

x× ∂f

∂g

]〉

· ωp (2.12)
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−M∗mp =〈Σf〉+
〈

Σ

[

x× ∂f

∂g

]〉

·ωp +

〈

Σ
∂f

∂g

〉

·Wp, Σ=mpI
−1 ·[x× ∆g] (2.13)

f = f (g) , Fp = Fp (Wp, ωp) , 〈Λ〉 ≡ m

∫

n·g<0

∫

n·g′>0

∫

S

ΛdΘ

It should be emphasized thatf ≡ f (g) in Eqs. (2.11)–(2.13) and later. The differential
dΘ is determined by the second formula of Eq. (2.10). Let us remember that the point
introduces the scalar product of vectors and the simple (inner) product of tensor by vector
or by tensor, and two points signify the double product of tensors. In the present case,
these tensors are dyads that can be written as follows:

∂2Fp

∂Wp∂Wp

, ∆g ∆g, ∆g

[

x × ∂f

∂g

]

, Σ
∂f

∂g

3. OPERATOR OF COLLISIONS

The expression for the operatorJ is general. To specify it, let us take the specular-dif-
fusion law of reflection to be reasonable, when

P
(

g, g′
)

= (1 − α) δ
{

g′ − g + 2n (n · g)
}

+ α
2

π
h−2

p

∣

∣n · g′
∣

∣ exp

(

−g′2

hp

)

,

n · g′ > 0, hp =
2kTp

m
, α = [0, 1] = const

whereα is a diffusion factor (it is also called an accommodation coefficient of tangential
momentum; atα = 1, there is a diffuse reflection), andδ is a delta function.

It is assumed [11, 12] that the distribution function of moleculesf is defined from
the first approximation of the Chapman-Enskog method, with only the term caused by
the gas temperature nonhomogeneity being taken into account. Therefore, the following
representation takes place in a fixed frame of reference:

f(g) = f0

(

g2
)(

1 +ψT
)

, f0

(

g2
)

=
ρ

m
(hπ)−3/2exp

(

−g2

h

)

, ψT = −Ã
(

g2
)

g · ∇T

It is the first term of functionÃ
(

g2
)

expansion in Sonin polynominals that is considered.
The accuracy analysis of such an approximation was implemented earlier in Ref. [11].

The first terms of Eqs. (2.12) and (2.13) take the form

〈∆g f〉 =
〈

∆g f0 (1 +ψT )
〉

, 〈Σ f〉 =
〈

Σ f0

(

1 +ψT
)〉

The functionf is substituted byf0 in all other terms of Eqs. (2.11)–(2.13). As a result,
the following expression for the Fokker-Planck operator isobtained:
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J =
∂

∂ξp

·
{

− F

mp

Fp + Dξ ·
∂Fp

∂ξp

}

+
∂

∂ωp

·
{

(

−M · I−1
)

Fp + Dω · ∂Fp

∂ωp

}

+ Dξω :
∂2Fp

∂ξp∂ωp

(3.1)

The forceF and the torqueM acting on a particle are caused by its translational motion,
by the gas temperature gradient, and by rotation of the particle. According to this,

F = Fξ + FT + Fω, M = Mξ + MT + Mω (3.2)

There are the following terms in the first Eq. (3.2):

Fξ = A
〈〈(

U − ξp

)〉〉

+ B (1)
〈〈

n
[(

U − ξp

)

· n
]〉〉

FT =
1

p

{

A

5
〈〈qT 〉〉 +

[

−B (1) +
6

5
B

(

5

6

)]

〈〈n (n · qT )〉〉
}

Fω = A 〈〈[x× ωp]〉〉 − B (1) 〈〈n (ωp · [x× n])〉〉

(3.3)

The terms of the second equation of (3.2) are determined by the relationships

Mξ = A
〈〈

x ×
(

U − ξp

)〉〉

+ B (1)
〈〈

[x× n]
[(

U − ξp

)

· n
]〉〉

MT =
1

p

{

A

5
〈〈x× qT 〉〉 +

[

−B (1) +
6

5
B

(

5

6

)]

〈〈[x × n] (n · qT )〉〉
}

Mω = A 〈〈x× [x × ωp]〉〉 − B (1) 〈〈[x× n] (ωp · [x × n])〉〉

(3.4)

The angular brackets〈〈〉〉 signify the integration over the surface of particle,

〈〈Z〉〉 ≡
∫

Z dS; Z =
(

U − ξp

)

,n
((

U − ξp

)

· n
)

, ... (3.5)

that is, for example,
〈〈

U−ξp

〉〉

=
(

U−ξp

)

S, whereS is a surface area of a particle. The
following symbols are used (λ is a coefficient of heat conductivity of gas):

A = 2ρ

(

h

π

)1/2
α

4
, B (l) = 2ρ

(

h

π

)1/2(

1 +
l π

√
τ− 6

8
α

)

, l = 1,
5

6
,

qT = −λ∇T, p =
ρ

m
kT, h =

2kT

m
, τ =

Tp

T
, ε =

m

mp

(3.6)

After a series of similar but more complicated computations, the following equations for
the diffusion coefficients in the spaces of translational and angular velocities are obta-
ined:
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Dξ =
ε

2mp

〈〈a0E + b0nn〉〉 (3.7)

Dω =
ε

2
mp

{

b0

〈〈(

I−1 · [x× n]
) (

I−1 · [x× n]
)〉〉

+a0

〈〈

(x · x)
3
∑

k=1

(

I−1 · ek

) (

I−1 · ek

)

−
(

I−1 · x
) (

I−1 · x
)

〉〉}

(3.8)

and for mixed diffusion coefficient,

Dξω = ε

(

3
∑

k=1

a0

〈〈

ek

(

I−1 · [x × ek]
)〉〉

+ b0

〈〈

n
(

I−1 · [x × n]
)〉〉

)

(3.9)

The following symbols are used:

a0 = α (1 + τ)
h3/2

4
√

π
ρ, b0 = a0 +

h3/2

√
π

[

α

4
π
√
τ+ 2 (1 − α)

]

ρ (3.10)

ek (k = 1, 2, 3) are unit vectors generating the right-hand system.
Let us consider the equilibrium case whenU = 0,∇T = 0, τ = 1, and the distribu-

tion function of particles over velocities is to be determined by the equation

Fp

(

ξp,ωp

)

= F (0)
p ∼ exp

[

− 1

2kT

(

mpξp · ξp + ωp · I · ωp

)

]

(3.11)

Therefore, its derivatives are as follows:

∂Fp

∂ξp

= F (0)
p

(

−mp

kT
ξp

)

,
∂F

(0)
p

∂ωp

= F (0)
p

(

−I · ω
kT

)

,

∂2F
(0)
p

∂ξp∂ωp

= F (0)
p

mp

(kT )2
(I · ωp) ξp (3.12)

where the symmetry of tensor of inertiaI is taken into account.
Let us bring under the integral all these derivatives and allthe coefficients that do not

depend on the coordinates of particle surface and let us write operator (3.1) in the form

J = 〈〈Jξ + Jω + Jξω〉〉 (3.13)

where Eq. (3.5) is used. Let us prove that the expression under integral sign in Eq. (3.13),
i.e., the sumJξ+Jω+Jξω, equals zero; therefore, the distribution (3.11) is valid.

With all of the above considered, operatorJξ is defined through the formula
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Jξ = − ∂

∂ξp

·
[

Fξ

mp

+
2

hp

(

Dξ · ξp

)

]

F (0)
p , hp =

2kT

mp

(3.14)

where vectorFξ is determined by the first equation of (3.3), and tensorDξ is determined
by Eq. (3.7). The Eqs. (3.6), (3.10) are bound by the relationship

(A, B (1)) =
1

h
(a0, b0)

and the following equation is valid for the product of a vector by a dyad:

ξp · nn = n (ξp · n)

we obtain that the expression inside the square brackets in Eq. (3.14) equals zero since

2

hp

(

Dξ · ξp

)

=
1

mp

(

Aξp ·E + B(1)ξp · nn
)

=
1

mp

[

Aξp + B(1)n
(

ξp · n
)]

=−Fξ

mp

,

whereE is a unit tensor. Taking into account the third formula of Eq.(3.4) and Eq. (3.8)
for Jω, we have

Jω = − ∂

∂ωp

·
[

Mω · I−1 + Dω · (I · ωp)
1

kT

]

F (0)
p (3.15)

Obtained by analogy is

Dω · (I · ωp) = kT [B (1)
〈〈(

I−1 · [x × n]
)

(ωp · [x× n])
〉〉

− A
〈〈(

I−1 · x
)

(x · ωp) − (x · x)
(

I−1 · ωp

)〉〉]

= −
(

Mω · I−1
)

kT

Therefore, the expression inside the square brackets equals in Eq. (3.15) zero. Finally,
applying the third equation of (3.3), the first one of (3.4), and Eq. (3.9), we find the
equation forJξω as

Jξω =
F

(0)
p

kT

{

Fω · ξp +
(

Mξ · I−1
)

· (I · ωp) +
2

hp

Dξω :
[

(I · ωp) ξp

]

}

(3.16)

The relation
(

a·T−1
)

·(T·b)=a·b is valid for every two vectorsa, b and for symmetric
tensorT. Besides this, tensorDξω is a dyad, and the relationab : cd = (a·d)(b·c) is
valid for the double product of dyads. Therefore, we find thatthe sum of two first terms
inside the square brackets in Eq. (3.16) is equal to the thirdone with a minus sign,

Fω · ξp +
(

Mξ · I−1
)

· (I · ωp) = 2
(

Fω · ξp

)

= − 2

hp

Dξω :
[

(I · ωp) ξp

]
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Therefore,Jξω = 0.

Thus, the expression under the integral sign in (3.13) and, therefore, operatorJ are
equal to zero, i.e.,

Jξ + Jω + Jξω = 0 ⇒ J = 0

and equilibrium distribution (3.11) is valid, which was to be proved.

4. PARTICLES AS BODIES OF REVOLUTION

Let consider the particles as bodies of revolution, with theaxis of symmetry set by unit
vectoru. It is possible in this case to write the coefficients of operator (3.1) through the
expressions determined only by the shape of particle. During the integration with respect
to g andg′, the technique described in Refs. [12,15,16] is applied.

The Fokker-Planck operator (3.1) now takes the following form:

J =
∂

∂ξp

·
{[

γξ · (ξp − U) + θ · ∇T − Fω

mp

]

Fp + Dξ ·
∂Fp

∂ξp

}

+
∂

∂ωp

·
{

[

γω · ωp − (Mξ + MT ) · I−1
]

Fp + Dω · ∂Fp

∂ωp

}

+ Dξω :
∂2Fp

∂ξp∂ωp

(4.1)

Tensors of second rankγξ,θ,Dξ,Dω are provided by the following experessions:

γξ = β‖ uu + β⊥ (E − uu) , θ = ϕ‖ uu +ϕ⊥ (E − uu) (4.2)

(

β‖

β⊥

)

= ϕ

[

χ

(

2F2

F1 − F2

)

+
α

2
F1

(

1
1

)]

, ϕ =
ρ

mp

(

h

π

)1/2

, (4.3)

χ = 1 +
(

π
√
τ− 6

) α

8

Used in Eqs. (2.10) and (4.3) and later are the equations of the form of columns. Mean-
while, for example,β⊥ =ϕ [χ (F1−F2)+(1/2)αF1]. The expressions forϕ‖,ϕ⊥ are
defined from Eq. (4.3) forβ‖,β⊥, respectively, by the following substitutions:ϕ→(λϕ/
5p), χ→1−(3/4)α.

The following equations are valid for other tensors:

γω = I−1 ·
(

ϑ‖ uu + ϑ⊥ (E − uu)
)

, Dξ = ς [E + φ (N E + (1 − 3N)uu)] F1,

(

ϑ‖

ϑ⊥

)

= ϕmp

[

χ

(

2H2

H1 − H2

)

+
α

2

(

G1 − G2

1

2
(G1 + G2)

)]

, (4.4)

ς =
1

8
εα (1 + τ)hϕ

Volume 40, Number 6, 2009



756 Galkin & Rusakov

Dω =
ς

2
m2

p

{

(

I−1 · I−1
)

[φ (H1 − H2) + G1 + G2]

+
(

I−1 ·u
)(

I−1 ·u
)

[φ(3H2−H1)+G1−3G2]
}

, φ=1+
1

1+τ

[

π
√
τ+

8

α
(1−α)

]

(4.5)

The expressions for factorsϕ, χ, ς,φ are set in Eqs. (4.3)–(4.5),I−1 is a tensor inverse
to the tensor of inertia in the moving frame of reference,E is a unit tensor, anduu is a
dyad. The coefficients that are determined only through the shape of a particle are given
by the following equations [using bracket operators (3.5)]:

F1 = 〈〈1〉〉 , F2 =
〈〈

(n · u)2
〉〉

, N =
1

2

(

1 − F2

F1

)

, G1 =
〈〈

x2
〉〉

,

G2 =
〈〈

(x · u)2
〉〉

, H1 =
〈〈

[x× n]2
〉〉

, H2 =
〈〈

([x × n] · u)2
〉〉

(4.6)

The integral of dyads over the surface appearing during the calculation of considered
tensors are expressed in terms of them (again,n is a unit vector of the external normal):

〈〈

nn

xx

[x× n] [x× n]

〉〉

=
1

2





F1

G1

H1



 (E − uu) +
3

2





F2

G2

H2





(

uu − 1

3
E

)

The calculation of these integrals is described in more details in Ref. [12], where the
particles with longitudinal symmetry (i.e., having a symmetry plane perpendicular to the
axis of symmetry) are considered.

Other terms of Eq. (4.1) appear in the case of bodies without longitudinal symmetry.
The following relations for the force resulted from the rotation, acting on a particle, are
valid:

Fω = Q [ωp × u] , Q = Aµ2 + B (1) υ (4.7)

The following expressions for the torques resulted from translational motion and from
temperature gradient are valid:

Mξ = Aµ2

[

u×
(

U − ξp

)]

+ B (1) υ
{

j
[(

U− ξp

)

· i
]

− i
[(

U− ξp

)

· j
]}

(4.8)

MT = −λ
p

{

A

5
µ2[u×∇T ] + υ

[

−B (1) +
6

5
B

(

5

6

)]

[j(∇T · i) − i(∇T · j)]
}

(4.9)

The appearance of last term from Eq. (4.1) with the mixed derivative is importance. The
following value is called the mixed diffusion coefficient:

Dξω=ε

{

µ2a0

3
∑

k=1

ek

(

I−1 ·[u × ek]
)

+ b0υ
[

i
(

I−1 ·[u × i]
)

+ j
(

I−1 ·[u× j]
)]

}

(4.10)
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The formal cause of the appearance of new terms in the collision operator is the fact that
the integrals over the surface of particle

α1 = 〈〈x〉〉 ; α2 = 〈〈nnx〉〉 ; nnx = (nνnµxλ) ; ν, µ, λ = 1, 2, 3 ,

containing the third component ofx vector, i.e., its symmetry axis componentx3, n
2
1x3,

n2
2x3, n

2
3x3, n1n3x3, n2n3x3 are not equal to zero in contrast to the case described in

Ref. [12]. It may be shown that integralsα1,α2 have the following form:

α1 = µ2u, α2 = µ1uuu +
1

2
(µ2 − µ1) (ii+jj )u +

1

2
µ3 (u [ii + jj] + iui + juj) ,

µ1 =
〈〈

(x · u) (n · u)2
〉〉

, µ2 =〈〈x · u〉〉 , µ3 =〈〈[x× u] [n× u] (n · u)〉〉 (4.11)

The unit vector in the line of symmetry axis of a particle forms the mutually perpendic-
ular triple with vectorsi andj, the unit vectorE being equal toE = ii + jj + uu. Using
Eq. (4.11) and a known expression for the mixed product, we find

〈〈n (ωp · [x × n])〉〉 = υ {i (i · [ωp × u]) + j (j · [ωp × u])} = υ [ωp × u] ,

〈〈(

ξp · n
)

[x× n]
〉〉

= υ
[

j
(

ξp · i
)

− i
(

ξp · j
)]

, υ =
1

2
(µ2 − µ1 − µ3) (4.12)

Expressions (4.11) and (4.12) are used for the calculation of Eqs. (4.7)–(4.10).

5. SPECIAL CASES

In order to obtain simple qualitative assessments, the special “degenerated” cases of the
motion of Brownian particles are considered [2]. It is assumed hereafter that vectoru,
related to the symmetry axis of a particle, is directed alongthez-axis of a fixed frame of
reference (the fixation of this axis is realized, for example, by external forces [2]), and
the velocity of the gasU = 0. In both cases, the integralH2 =0 [see Eq. (4.6)].

The first case is considered earlier [12]. The particles possess a longitudinal symme-
try, i.e., have the symmetry plane perpendicular to the symmetry axis that is parallel to
the vectorsξp =ξpu,ωp =ωpu,∇T =(dT/dz)u. The Fokker-Planck operator takes a
much simpler form,

J =
∂

∂ξp

{[

γξ ξp + θ
dT

dz

]

Fp + Dξ

∂Fp

∂ξp

}

+
∂

∂ωp

{

γωωpFp + Dω

∂Fp

∂ωp

}

(5.1)

Coefficientsγξ,γω,θ,Dξ,Dω are scalars, and the expressions for them result from
Eqs. (4.2)–(4.5) as

γξ = β‖, γω =
1

Γuu

ϑ‖, θ = ϕ‖, Dξ = ς [F1 + φF2] , (5.2)
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Dω =
ς

Γ2
uu

m2
p (G1 − G2)

whereΓuu is a moment of inertia with respect to the axis of a particle. These coefficients
are written using the integral values (4.6). The explicit expressions for the last ones
are obtained in Ref. [12] for circular cylinders of finite length, spherocylinders, and
spheroids. Using these expressions, the analysis of the influence of particle nonsymmetry
on the relations between the diffusion coefficients in velocity spaces and the coefficients
of forces and of momentums acting on a particle in thermal nonequilibrium is fulfilled.

Let us demonstrate these explicit expressions. For the circular cylinder with radius
R0 and lengthh∗R0, there are

(

γξ

θ

)

=Yϕ







σ1 +
π

4
α
√
τ

λ

5 p
σ1






,

(

γω

Dω

)

=Y σ2







α

2
ϕ

2 ς

R2
0






,

(

σ1

σ2

)

=







2 + α

(

h∗

2
− 1

)

1 + 2h∗ +
h3
∗

6






,

Dξ = Y ς (1 + h∗)

{

2 + h∗ +
1 + h∗

1 + τ

[

π
√
τ+

8

α
(1 − α)

]}

, Y = 2πR2
0

At h∗=0, we obtain the expressions for a circular disk. For a spherocylinder consisting
of a circular cylinder of radiusR0, of lengthh∗R0, and of two hemispheres at the ends,
we find

(

γξ

θ

)

= Yϕ







σ3 +
π

6
α
√
τ

λ

5 p
σ3






,

(

γω

Dω

)

=
mp

Γ
πR4

0

(

4

3
+ h∗

)

(

αϕ

2 ς

Γ
mp

)

, Y = 2πR2
0,

Dξ =
2

3
Y ς

{

4 +
3

2
h∗ +

1

1 + τ

[

π
√
τ+

8

α
(1 − α)

]}

,

(

σ3

Γ

)

=







4

3
+ α

h∗

2
mp R2

0

10

16 + 15h∗

4 + 3h∗







Coefficientsϕ, ς are determined by the last equations of (4.3) and (4.4). The correspond-
ing relations for a sphere result from these ath∗ = 0

γξ =
8

3
ρR2

0

√
πh
(

1 + α
π

8

√
τ

)

m−1
p , θ =

16

15mp

√

π

h
R2

0λ, γω =
4

3
ρR4

0

√
π hαΓ−1,

Dξ =
kT

mp

γξ (1 + δξ) , Dω =
kT

Γ
γω (1 + δω) ,

δξ = αδω

(

1 + α
π

8

√
τ

)−1

, δω =
τ− 1

2
, Γ =

2

5
mp R2

0, τ =
Tp

T

Here,λ is the heat-conductivity coefficient of a gas.
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The equations for the oblate spheroid with semiaxesa andb (axisa < b, the rotation
is around the small axis [17]) are the following:





γξ

θ

Dξ



= 4πϕ
(

a2 + b2
σ
)















χd1 +
α

4

λ

5p

[

d1

(

1− 3

4
α

)

+
α

4

]

ς

2ϕ
(1 + φ d1)















,

(

γω

Dω

)

=
mpπd2

4Γ

(

αϕ

2mp

ς

Γ

)

,

d1 = 1 − y2
[(

1 + κ2
)

σ− 1
]

κ2 (y2σ+ 1)
, σ =

1

2κ
ln

1 + κ

1 − κ , y2 = 1 − κ2, Γ =
2

5
mpa

2,

d2 = a4

{

3 − κ2 − y2
σ
(

κ
2 − 5

)

− 1

κ2

[

1 − κ4 −
(

1 − κ2
)3
σ

]

}

, κ
2 = 1 − b2

a2

The similar expressions for the prolate spheroid with semiaxesa andb (axisa > b, the
rotation is around the big axis) are obtained from the reduced equations for the oblate
spheroid by the following substitutions. In the equations for the column of elements
γξ,θ,Dξ. One needs to complete the substitutions

a2 + b2
σ→ a (a + bσ) , d1 → d3 ≡ 1 − y −

(

1 − 2κ2
)

σ

κ2 (y + σ)

and in the formulas for the column of elementsγω,Dω, the substitutions are

d2 → d4 ≡ b4y

{

y
(

3 − 2κ2
)

+ σ
(

5 − 4κ2
)

− 1

κ2

[

y
(

2κ2 − 1
)

+ σ
]

}

Made in Ref. [12] for this case is an error: in the equation forG1 the coefficient (3−κ2)
is to be substituted by (3− 2κ2). As in Ref. [12], there are the following values in all the
equation for the prolate spheroid:

σ =
1

κ
arcsin κ, y =

√

1 − κ2, κ
2 = 1 − a2

b2
, Γ =

2

5
mpa

2

Let us consider the second special case. The particles do notpossess longitudinal sym-
metry. Vectrorsξp =ξpi,∇T =(dT/dx) i,ωp =ωpj are perpendicular to the symmetry
axis of a particle. SymbolΓxx signifies the moment of inertia of a particle along the axis
perpendicular tou. Therefore, Eqs. (4.7)–(4.9) take the form

Fω = Qωpi, Mξ = −Q ξpj (5.3)

MT = −λ
p
V

dT

dx
j, V =

A

5
µ2 +

[

−B (1) +
6

5
B

(

5

6

)]

υ (5.4)
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Dξω :
∂2Fp

∂ξp∂ωp

= Dξω

∂2Fp

∂ξp∂ωp

, Dξω =
ε

Γxx

(µ2 a0 + υ b0) (5.5)

Instead of Eq. (5.1), using Eqs. (5.3)–(5.5), we obtain the following equation for the
operator of collisions:

J =
∂

∂ξp

{[

γξξp + θ
dT

dx
− Q

mp

ωp

]

Fp + Dξ

∂Fp

∂ξp

}

+
∂

∂ωp

{[

γωωp +
1

Γxx

(

Qξp +
λ

p
V

dT

dx

)]

Fp + Dω

∂Fp

∂ωp

}

+ Dξω

∂2Fp

∂ξp∂ωp

(5.6)

Let us remember that the radius vectorx= Re of an arbitrary point of the particle sur-
face in a moving frame of reference presented earlier is measured from the center of
inertia. In the first case, it coincides with the symmetry center, which is absent here.
This fact complicates the problem of the calculation of the coefficients in Eq. (5.6). The-
se coefficients are expressed through the integral values (4.6) and (4.11).

The following equations for these values are obtained for the circular cone of radius
R0, heighth∗ R0, and inertia center located at a distance(1/4)h∗R0 from the base:

F1 = F2l∗ = πR2
0(1 + l∗), N =

1

2

(

1 − 1

l∗

)

, H1 =
c

2

[

1 +
h4
∗ + 8

8 l∗

]

, l∗ =
√

1 + h2
∗,

G1 =

(

1 +
8

h2
∗

)

G2, G2 =
c

16
h2
∗(1 + l∗), µ1 = κ

(

−1 +
1

3 l∗

)

, c = πR4
0, (5.7)

µ2 = κ

(

−1 +
l∗
3

)

, µ3 =
8

3

κ

l∗
, κ =

h∗πR3
0

4
, Γxx =

3

20
mpR

2
0

(

1 +
1

4
h2
∗

)

This is similar for the semisphere of radiusR0 and inertia center located at a distance
(3/8)R0 from the base,

F1 = 3πR2
0, F2 =

5

3
πR2

0, N =
2

9
, H1 =

11

16
c, G1 =

139

64
c,

G2 =
65

192
c, c = πR4

0, µ1 = µ2 = −1

4
µ3 = −1

8
πR3

0, Γxx =
83

320
mpR

2
0

(5.8)

As in the case of a cone, the contribution of the base is taken into account (the integra-
tion is fulfilled over the whole surface of particle). Equations (5.2) are valid for factors
γξ,θ,Dξ, and we have the following relations for factorsγω,Dω:

γω =
ϕ

Γxx

mp

{

χH1 +
α

4
(G1 + G2)

}

, Dω =
ς

2

(

mp

Γxx

)2

(φH1 + G1 + G2)

Taking into account the relationships of the last section and Eqs. (5.7) and (5.8) for the
coefficients in Eqs. (5.3)–(5.5), we find
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Q = Q0

[

α s0 +

(

1 +
π
√
τ− 6

8
α

)

s1

]

, V =
1

5
Q0

[

α s0 +

(

1 − 3

4
α

)

s1

]

Dξω =
h ε

2Γxx

Q0

{

α (1 + τ) s0 +
[

α

4
(1 + τ) +

α

4
π
√
τ+ 2 (1 − α)

]

s1

}

where for the cone

Q0 = ρ κ

(

h

π

)1/2

, s0 =
1

2

(

l∗
3
− 1

)

, s1 =
l∗
3
− 3

l∗

And for the hemisphere

Q0 = −ρ
2

(πh)1/2 R3
0, s0 =

1

8
, s1 = 1

Thus, for longitudinally unsymmetrical bodies of revolution, the mixed diffusion coeffi-
cientDξω differs from zero, and the Fokker-Planck operator containsthe second deriva-
tive ∂2Fp/∂ξp∂ωp. The gas temperature gradient results not only in thermospherical
force, but also in torqueMT [the first equation of (5.4)].

6. CONCLUSIONS

Presented above is not only a more general and comprehensivekinetic equation deriva-
tion than the previous one [10–12], but also the summary of the explicit expressions for
the coefficients of the collision operator obtained here andin previous papers [10–12]
and the results from Ref. [12] are transformed into a more convenient form. Using these
expressions, one can analyze the influence on the coefficients of the thermal nonequilib-
rium parameterτ, of the accommodation parameterα, and of the particle shape similar
to Refs. [11, 12]. Certainly, it is necessary to investigatethe importance of the technique
and of the present results as well as of previous ones [8–12] for Brownian motion theory,
for molecular-kinetic theory, and for gas suspensions dynamics.

Thereby, let us underline the following. At the accepted technique of derivation of
the kinetic equation of the Boltzmann type, and then, of the Fokker-Planck operator, a
considerable number of assumptions are made. However, the important necessary condi-
tions of its validity hold true, namely, the operator vanishes on the equilibrium distribu-
tion function at the equilibrium conditions, atτ=1 the known expressions [10, 11] result
from it. Consideration of the thermal nonequilibrium atτ 6=1 demonstrates the capabili-
ties of this theory and provides additional opportunities for experimental and theoretical
analysis of this technique applicability and of kinetic equations of the Boltzmann type
in general.
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Presented are the results of experimental investigation of the jet flow gas dynamic effect in order
to control the thrust vector and to reduce the drag of the vehicle. The vehicle has a flat nozzle with
an external expansion wall, being the part of the fuselage. The gas dynamic control method, based
on the injection of additional air through the perforation in the expansion wall, is considered. The
conclusions about the efficiency of gas dynamic control by means of various methods of additional air
injection are drawn according to the weight tests and measured pressure distributions.

KEY WORDS: discontinuous Galerkin method, finite volume method, high-order scheme

1. INTRODUCTION

The fuselage aftbody surface of the vehicle, in which the power plant is integrated with
the fuselage, is used as the wall of the nozzle with external expansion of the jet [1].
Depending on the flight mode, the various flow patterns are realized in the nozzle with
the external expansion wall. At the cruise mode, such an aftbody allows to obtain the
additional thrust. The thrust vector is directed straight forward and passes through the
aircraft center of mass. However, at the initial flight stages, the expansion wall is the
source of drag. At a nozzle pressure ratio corresponding to these flight conditions, the jet
has the cell structure, attaches to the expansion wall, and propagates along it (Fig.1a).
The jet overexpansion results in the appearance of areas of negative pressure on the
wall. The negative excess pressure on the wall gives rise to the appearance of the down-
directed force. The effective thrust vector turns out not tobe directed along the aircraft
axis, but to be deflected down, which leads to the rise of a pitching moment. Due to
the large area of the surface streamlined by the jet, this moment is so significant that
it is difficult to counteract it by ordinary control elements. The necessity to find a gas
dynamic control methods arises.

In this work, the gas dynamic method of control by means of theinjection of ad-
ditional air through the perforation in the expansion wall is considered. The concept of
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(a)

(b)
FIG. 1: (a) Flow pattern behind the nozzle at the off-design mode; (b) the expansion
wall of the model nozzle with two perforations.

this method is to increase the wall pressure by the injectionof additional air in the areas
of negative pressure, or to convert the flow from the scheme with the jet attachment to
the scheme with the separation of the jet from the wall and to connect the separation
area with the ambient. The aim of this work is to estimate the efficiency of this flow
control method from the viewpoint of the opportunity to remove the undesirable forces
and of the required value of the additional airflow. This workis the extension of the
investigations mentioned in Ref. [2].

2. THE MODEL—THE EXPERIMENTAL EQUIPMENT

The model consists of a flat nozzle with rectangular exit section, and of a flat plate ad-
joining to the long side of the nozzle exit section. The ratioof the sides in the nozzle
exit section is 1:6 and the value Ma on the nozzle exit equals 1.9. The half-angle of the
supersonic part of the nozzle is 10 deg. The plate of the 20.7h length (the height of the
nozzle exit section ish = 10 mm) simulates the lower surface of the vehicle aftbody. The
slope angle of the plate relative to the symmetry horizontalplane is 15 deg. Cutbacks
of height 2h are installed on each side of the plate along all the length. Two replaceable
plates differing by the form of the perforation for the injection of the additional air are
used in the experiment (Fig.1b). The first plate has the perforation of 78 circular holes
of the same diameter 0.3h. The holes are situated in 13 lines, by six holes in a line. The
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distance between the lines is 1.5h, and the distance between the holes in a line is 1h.
The total hole area is 0.92 of the nozzle exit area. The perforation on the second plate
consists of five rectangular slots parallel to the long side of the nozzle exit section. The
distance from the nozzle exit to the nearest slot is 1.5h, the distance between the neigh-
boring slots is 4.3h, and the slot width is 0.2h. The total perforation slots’ area on the
first plate is the same as on the second plate. The model structure allows to overlap par-
tially the various perforation areas, and thus to change theplace of the additional air
injection. The air through the perforations was input normal to the plate surface from the
input settling chamber, placed on top of the plate. The modeldesign was presented in
Ref. [2].

The experiments were carried out without external flow on thedifferential rig, equ-
ipped by two independent channels of the air input in order tocreate the main flow
through the nozzle and the supplementary one in order to control the flow (Fig. 2a). The
differential rig represents the vertical tube, fixed on the strain gauge balance, with the
settling chamber as a T-shaped branching at the end. The airflow passes through the
strain gauge balance, made in the form of a hollow cylinder, and further along the tube
to the settling chamber, from which it goes into two oppositely directed nozzles—the
test one and the balance compensated one. The balance nozzledevelops the thrust that
compensates the thrust of the model nozzle in the absence of the expansion wall. While
using this measurement method, even a small change of thrustof the tested nozzle,
being due to the influence of the expansion wall, can be measured to a high accuracy.
Used as the balance nozzle is the axisymmetric nozzle withM = 1.9 on the section. The
equality of the thrusts of the test nozzle and of the balance one in the absence of the
plate was verified experimentally at all the considered modes. The model was attached
to the settling chamber of the differential rig in such a way that the long side of the
nozzle section and the plate, simulating the aftbody surface of the vehicle, were situated
vertically. In addition, both measured thrust components,directed along and normal to
the nozzle, are situated in the horizontal plane. The positive direction of the longitudinal
component (forward along the vehicle) means an increase in the thrust of the test nozzle,
and the positive value of the transverse component corresponds to the positive lift acting
on the aftbody. Presented in Fig. 2b is the photo of the test model, installed on the settling
chamber of the differential rig.

While using this technology of the experimental investigation, the loads from the
supply channels are not transmitted to the strain gauge balance. However, in the system
tube bellows, the “bursting” force arises in the channel of the additional air input. In
spite of the fact that this force is directed normal to the plane of the measured forces, it
creates the moment in the vertical plane owing to the shift ofthe tube of the additional air
input. This moment influences the balance indications in measuring the longitudinal and
transverse forces. The arms, which are affected by this “bursting” force, are by one order
less than the arms of the measured longitudinal and transverse forces, but it is necessary
to introduce the corrections for its influence. While takinginto account the fact that the
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(a)

(b)
FIG. 2: (a) Scheme of differential rig and (b) photo of the model installed on the rig
settling chamber.

influence of the bursting force uniquely depends on the pressure in the channel of the
additional air input, the allowances were specified based onthe balance measurements,
performing during the air input through the perforation slots in the plate without the air
injection through the test and balance nozzles. The allowances were specified for all the
test modes.
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The measurements of the pressure distribution along the plate axis were performed
on the model along with the balance measurements. The pressure was measured by small
indicators, installed directly on the plate.

The experiments with the test model were carried out successively for a range of con-
stant values of the airflow through the main nozzle. At a givenairflow through the nozzle,
the pressure of the injection was changed discretely from a smaller value to a higher one
and the data registration was made at every mode by the measuring-calculating system
based on a personal computer.

3. RESULTS OF EXPERIMENTAL INVESTIGATIONS

While presenting the results of the experimental investigations, the following nomencla-
ture was accepted in this work:Px is the axial component of the total thrust in the layout
with the expansion wall,Py is the force acting on the aircraft layout in the vertical direc-
tion, andβ = arctg(Py/Px) is the angle of the thrust vector deflection. All the forces
were related to the thrust of the free nozzle without a platePn, which was obtained by
calculation by the 1D theory, and the flow of the air, input through the perforation, was
related to the flow through the nozzleGinp/Gn. The experiments were carried out at var-
ious nozzle pressure ratiosp0/pa, wherep0 is the total pressure in the settling chamber
of the nozzle, andpa is the ambient pressure. The results of the plate pressure measu-
rements are presented as the distribution of the relative pressure(p − pa)/pa along the
length of the plateL/h. The distanceL is counted off from the leading edge of the plate,
adjoining to the nozzle section. The values∆Px =Px−Pn, described the plate influence,
which are cited in this paper, are measured directly by the corresponding component of
the strain gauge balance. Cited further are the results, allowing us to estimate the oper-
ating efficiency of the nozzle with the expansion wall at various methods of additional
gas input to the expansion wall.

3.1. Gas Injection to the Expansion Wall with the Perforatio n of the Circular
Holes

The experiments, carried out on this model without the injection of an additional air to
the expansion wall, showed that the losses in the axial thrust componentPx could be
∼5% of the computational thrust of the isolated nozzle, the vertical component of the
effective thrustPy was negative and in magnitude could be∼24% of the computational
thrust, and the angle of the thrust vector deflectionβ came up to∼ (–14 deg) [2]. Such
behavior of the thrust components is associated with the appearance of a number of ar-
eas on the expansion wall, the pressure in which is less than the ambient pressure. The
last fact can be explained by the overexpansion of the jet, having a cell structure at the
considered modes. The longest area of negative pressure is situated directly behind the
nozzle exit. The length of the areaL depends on the nozzle pressure ratio and varies in
the considered range ofp0/pa asL/h ∼ (p0/pa)

0.7 (Fig. 3a). The attempt to boost the
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(a)

(b)
FIG. 3: Characteristics of the flow near the expansion wall without the injection of an
additional air and with a local injection: (a) length of the area of negative pressure on
the wall; (b) pressure distribution along the wall.

pressure in this area was made by local air injection throughthe four perforation lines,
which are the nearest to the nozzle. The area of the injectionholes in this case was
F/FΣ =0.3, whereFΣ is the area of the entire perforation. The local injection raised the
pressure in the area of negative pressure; however, it remained lower than the ambient
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pressure, and the length of the area itself increased due to the injection. The light points
in Fig.3a illustrate the change in the sizes of the area of negative pressure at local injec-
tion of the additional air through the four lines of the holes. The change in the pressure
profile along the plate at various injection characteristics can be followed up by the plot
in Fig.3b. The shadowed strips in the field of the plot indicate the length of the injection
boundary along the axisL. The notations, accepted in Fig.3b, correspond to the modes
pointed out in Table 1.

The most acceptable pressure profile from all the investigated variants of the injec-
tion is realized at the injection through the entire perforation. The fact that the injection
through the entire perforation is the most effective is confirmed also by the data of the
balance measurements. The values∆Px, Py,β, obtained based on the balance measure-
ments, at various modes of the perforation opening are shownin Fig.4a. (Notations of
the points in Fig.4a correspond to the first three columns of Table 1.) Shown in Fig.4b
are the same values, recorded at the full-open perforation,but at various nozzle pres-
sure ratios. In spite of the positive effect from the air injection to the expansion wall
through the circular perforation, the evident shortcomingof this method of the thrust
vector control is the necessity of the engagement of a large additional airflow.

3.2. Gas Injection Though the Circular Perforation to the Ex pansion Wall
with the Flap

For the purpose of the possible decrease of the additional airflow, an attempt was made
to separate the jet from the expansion wall by installing on it an additional element—the
flap. The flap is installed directly behind the nozzle exit section. (In Fig. 5 the flap is
highlighted by the dark filling.) The flap surface, adjoiningthe flow, is parallel to the
symmetry plane of the main nozzle flow. Used in the experimentare the flaps of length
l / h = 2.5 and 5. The transverse size of the flap is equal to the widthof the nozzle exit
section.

The experiments show that entire separation of the jet flow from the expansion wall
did not take place. The thrust losses in the absence of additional airflow through the
perforations can increase because of the base drag. However, the injection of additional

TABLE 1: Experimental data.

Mode
notation

Injection
lengthL/h

Relative perfora-
tion areaF/FΣ

Relative airflow of
the injectionGinj/Gn

Nozzle pressure
ratiop0/pa

0 — — — 7
1 6 0.3 0.21 7.2
2 12 0.6 0.2 7.6
3 19.54 1 0.21 6.5
4 9–12 0.23 0.39 7

Volume 40, Number 6, 2009



770 Zhirnikov, Kudin, & Nesterov

(a) (b)
FIG. 4: Characteristics of the nozzle with the expansion wall: (a) at various localization
of the injection; (b) at full-open perforation.

air through the perforations, remaining not overlapped by the flap, improves the char-
acteristics of the nozzle with the expansion wall. Presented in Fig. 5 are the data of the
characteristics of the nozzle with the expansion wall, on which the flaps of lengthl/h
= 2.5 and 5 are installed. It is seen from the comparison of these data with the data in
Fig. 4 that the characteristics of the nozzle with the flap areimproved considerably at the
equality of the injected airflows. The opportunity to decrease substantially undesirable
deviation of the thrust vector at the real flows of the injected air arises. The presence of
the flap removes the area of the pressure, being substantially lower than the atmospheric
one, on the expansion wall and replaces it by the surface, which does not increase the
componentPx, but contributes to the increase ofPy, which is associated with the flow
turn toward the horizontal symmetry plane of the nozzle.

4. USE OF THE SLOT PERFORATION IN ORDER TO INJECT THE
ADDITIONAL GAS TO THE EXPANSION WALL

Along with the circular perforations, the injection of additional air to the expansion
wall through the slot perforations was considered. On the whole, the injection through
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FIG. 5: Influence of the injection of an additional air to the expansion wall of the nozzle
with a flap.

the slot perforations is more effective than the injection through the circular ones. As
the absolute value of the angleβ decreases by the same value, the relative flow of the
injected air through the slots turns out to be lower than the flow through the circular
holes. However, one does not observe the total neutralization of the negative influence
of the expansion wall in this case. The data, obtained at the injection of additional air
through the slots, are presented in Fig. 6. The results of thebalance measurements are
almost the same for the various nozzle pressure ratios within the range ofp0/pa = 4÷7.

All the results for the circular and slot perforations mentioned above were obtained
at subsonic nozzle pressure ratio drops on the perforations.While going to the supersonic
nozzle pressure ratio, one can obtain more effective control.The abrupt increase of the
injection effect was obtained, while inputting all the additional flow through one slot,
being the closest to the nozzle exit section, at the supersonic nozzle pressure ratio on it
(see Fig. 6). The numbers near the points indicate the valuesof the nozzle pressure ratio
at which they were obtained. The increase of the injection effect is observed, starting
with the airflowGinj/Gn ≈ 0.1.
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FIG. 6: Characteristics of the nozzle with slot perforations of theexpansion wall.

As the measurements show, the pressure distribution along the expansion wall at
the injection through one slot equalized and approached theambient pressure. This fact
allows us to draw the conclusion that the propagation of the main flow takes place with
the flow separation from the wall. In addition, the positive∆Px, Py,β are explained by
the positive additions from the momentum of the jet, flowing out the slot. It should be
noted that any increase of thrust is desirable only for the axial thrust componentPx,
and the increase ofPy and, correspondingly, ofβ after their transition through zero will
result in the rise of a negative pitching moment. So, one needs to exactly control the
injected flow in order to avoid undesirable moments.

Thus, based on the data mentioned above, one can conclude that while using the noz-
zle with the external expansion wall, there is a possibilityof gas dynamic thrust vector
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control. Depending on the disposable flow of additional air,one can find an acceptable
method of such control.
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