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Preface

Turbulence plays a major role in convective heat and mass transfer. Yet an in-depth cov-
erage of topics on turbulence structure and interactions, specifically related to their effects
on transfer of heat and species, has seldom been the subject of specialized monographs or
conferences proceedings.

This monograph provides recent achievements in the turbulence theory, experiments and
computations, relevant to heat and mass transfer. It has been prepared in recognition of a
growing interest both in fundamental issues and applications of turbulence related transport
phenomena in fluids. The monograph emerged from the papers presented at the International
Symposium on Turbulence, Heat and Mass Transfer, held in August, 1994, in Lisbon, under
the sponsorship of the International Centre for Heat and Mass Transfer and Instituto Superior
Tecnico {Technical University of Lisbon). The event was envisaged as a follow-up of the
Joint ICHMT/IUTAM Symposium on Structure of Turbulence, Heat and Mass Transfer,
held in Dubrovnik twelve years earlier;;in 1982. Since then, many new developments and
advances have been made, particularly related to the new experimental techniques, numerical
simulation and modelling, as well as in the theory of turbulence, opening new prospects for
understanding and resolving problems of turbulence controlled momentum, heat and mass
transfer.

The volume contains 92 contributions, selected from among more than 145 papers presented
at the symposium. They were chosen on the basis of originality, novelty of approach and
topical relevance. All papers were reviewed and revised and many of them were completely
rewriten.

The monograph covers a broad range of topics. It begins with reviews of recent advances
in some key areas of current activities: similarity analysis, direct numerical and large eddy
simulations, and turbulence modelling. This is followed by a series of chapters, covering spe-
cific topics. The first provides fresh experimental information on mechanical and thermal
turbulence, their structures and interactions in some classic, and more exotic flow situations,
as well as a few interesting analytical contributions. Recent advances in turbulence closure
modelling, particularly in thermal problems.are discussed in the next chapter. Subsequent
sections deal with specific issues, such as impingment, separation and reattachment, turbu-
lence related to bulk flow unsteadiness, thermal buoyancy, chemical reactions and combustion,
multiphase fluids, heat-and mass transfer augmentation, and applications in turbomachinery.
The last chapter gives a selection of numerical computations in a variety of complex situations
relevant to industrial and environmental heat and mass transfer problems.

The editors believe that the monograph will serve many readers as a source of valuable
information and reference, as well as an inspiration for new advancements in the field of
turbulence and related problems of heat and mass transport.

We wish to express our thanks and appreciation to the members of the Advisory Committee
and Organizing Committee of the Symposium who helped in reviewing and selecting the
papers. We also acknowledge the invaluable technical contribution of Ms. Sharmila Sewmar,
who skillfully assisted in preparing and editing this monograph.

FEditors:
K. Hanjalié

. J.C.F. Pereira
1v
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MICROSCALES OF TURBULENCE, MASS
TRANSFER CORRELATIONS

V.S. Arpaci

MEAM Department, University of Michigan,
Ann Arbor, Michigan 48109-2125, US.A.

ABSTRACT

For buoyancy driven flows, a fundamental dimensionless
number involving a combination of Prandtl and Rayleigh

numbers,

Ra
~ T3Pt
and a thermal Kolmogorov scale,

Iy

mo ~ (1+Pr)1a(a¥P;) M,

are reviewed. Here a and P, respectively denote the thermal
diffusivity and the buoyant production of thermal energy.

In terms of Iy ,
; ~ 1/
Mgl £~ 1'[114,

{ being an integral scale. A two-layer turbulence model based

on I ,
_ Sublayer  Tp va

Nu ~ T Core 1 - oy ¥

for internal energy generated buoyancy driven turbulent flow
between two horizontal plates correlates well with the

experimental data.

For pool fires, a similar dimensionless number involving a

combination of flame Prandtl and flame Rayleigh numbers,
Rag

T 1+ Pl

and a flame Kolmogorov scale,

g

g ~ (1 + Prﬁ) 4 (D?,/B) 14

are reviewed. Here D; and B respectively denote the flame
diffusivity and the broyant production of Schvab-Zeldovich

energy. In terms of Ilg,
ﬂﬁ/‘é - H,f-‘l_ 1/3 ,

£ being an integral scale. For fuel consumption in turbulent

pool fires, a sublayer turbulence model based on Il4.

m' 13
pD po

p, D and B respectively being density, diffusivity and transfer
number, correlates well with the experimental data.
KEYWORDS

Turbulence, microscales, buoyancy, flame, fire, combustion

INTRODUCTION

Eliminating the time-dependence between two kinematic
concepts, the dissipation of the rate of mean kinetic energy per

unit mass of turbulent fluctuations

[e] = LT3 |
and the kinematic viscosity

[1] = L¥T ,

Kolmogorov (1941) introduced about five decades ago, the

-

now called the microscale of isotropic turbulent flows. About

length scale

one decade later, extension of this idea to a thermal scale by

Oboukhov (1949) and Corrsin (1951),

03 /4
1c = < , Pr =0

a being thermal diffusivity and Pr Prandtl number, and about



another decade later, extension of the same idea to another
thermal scale by Batchelor (1959),

ua2 1/4
TR = | — , Pr —oc

\ €

followed similar intuitive arguments. Although these scales
have been extensively used in the development of some energy
and entropy spectra, their extension to the scales of complex
{buoyancy driven, reacting, pulsating, etc.) flows, as well as
their relevance to turbulent heat and mass transfer correlations
have been apparently overlooked except for the recent studies
by Arpaci (1986a,b,1990,1992), and Arpaci and co-workers
(1991,1993). The objectives of this lecture are two-fold: first, a
general approach by which the microscales of complex flows are
constructed; second, an interpretation of heat and mass
transfer correlations (the latter also including reacting flows) in

terms of these scales.

A DIMENSIONLESS NUMBER

As is well-known, the independent dimensionless numbers
characterizing buoyancy driven flows are the Rayleigh and
Prandtl numbers, Ra and Pr, respectively. A dimensionless
number recently proposed by Arpaci (1986,1990) explicitly
describes these flows by a combination of Ra and Pr. A review
of this dimensionless number is needed for the microscales of

buoyancy driven fiows.
Let the buoyancy driven momentum balance be
Fg ~ F; + Fy, (¢}

where Fg, F; and Fy denoting respectively the buoyant, inertial

and viscous forces. Also, let the thermal energy balance be
Qu ~ Qx (2)

where Qy and Qg denoting respectively the enthalpy flow and
conduction. Then, from Egq.(1),

Fp _ _FelFy
F{ + Py FyFy + 1’

(3
and from Eq.(2),

Qu/Qx » (4)
the numeral 1 in Eq.(3) implying order of magnitude.
Although the force ratios of Eq.(3) and the energy ratio of
Eq.(4) are dimensionless, they are usually expressed in terms
of velocity which is a dependent variable in buoyancy driven

flows:
Fp _ganf Fi_ Ve Qu  peVe

)]
FV [L\’ ’ Fv H QK k

where { is a characteristic length, and the rest of the notation
is conventional. Now, combine Eqs. (3) and (4) for a result

independent of velocity:
(Fg/Fvy) (Qu/Qx)

N~ F/Fy) @QuQe) + 1°

6
or,
Ra _ PrRa

T ~ 1+ Pr-17 1+Pr

(7

which is the appropriate dimensionless number for buoyancy

driven flows. Here,

c=Pr=% Ra=£(—A-’—]>€3

a P
respectively denote the Prandtl and Rayleigh numbers. The
two limits of Eq.(7) are

lim Iy — Pr Ra = Pey ,
Pr—0

Pey being a Peclet number. and

lim Iy — Ra .

Pr—eo

For a specified temperature difference, the definition of the

coefficient of isobaric expansion,

_1(2
? e (31‘ >P ’
gives
A,
—F~paT
and Ty now depends on the usual form of
o 3
Ra = 3& (8)
va

Although the existence of Iy has never been directly shown,
the integral solution for the laminar natural convection near a
vertical plate given by Squire (1938) in terms of the Grashof

number leads for heat transfer to

Nu = 0.508 Pr¥2 (Pr + 20/21)" V4 Gri/4

which can be rearranged in terms of Iy,

Nu = 0.508 ¥4,
where Nu is the Nusselt number, and

Ra

IN = Gos2+Pr=1

Since then the explicit role of IIy in studies on buoyancy

driven flows is usually ignored.

Computational literature (see, for example, Bertin and Ozoe

1986 and Lage, Bejan and Georgiadis 1991) recognize the

dependence of the Benard transition on the Prandtl number,
(Ray); = f(Pr)

without realizing the fact that

lim Iy — [Ray(co)];

Pr—oo



which yields

(Rapr = [ Rag(co)]y <1+ %) ‘

where C is a constant.

Experimental literature (see, for example, Krishnamurti 1975 )
does not recognize the dependence of the Benard transition on
Pr « 1. However, it demonstrates the Pr-dependence of
higher transitions. Any two successive transitions, iliustrated
here in terms of the first two, can be qualitatively related by a

simple model depending on Iy,

(& Ra )R
(Ragy = (Ray); + TPt
or
(RaJy = Ragy + (A Ty)ft
where
(amgp = R ®
and

Pr— oo .

(8 Rao)F = Ragy ~ (Rapy,
For liguid metals, Pr € 1 and Eq.(9) is reduced to

(A m)f — (5 Re, JfPr .

For viscous oils, 102 < Pr < oo, and Eq.(9) is reduced to

(41 = (s 5t

which is independent of Pr because of the negligible inertial
effect.

The analytical literature, as well, overlooks the significance of
Iy. Beginning with Malkus and Veronis (1958) for free
boundaries, and continuing with Schluter, Lortz and Busse
(1965), Gough, Spiegel and Toomre (1975) and Busse (1985) for
rigid boundaries, a first order inertial effect is incorporated

intc heat transfer by an expansion in powers of Pr—1,

—lell—ftlac = (Cy + CyPr=? + C3Pr=2 + )
which can be rearranged, in view of
1— Prl+Prr2-Pr 3+ =1+PrH? |
as
Nu—1 Ra—Ra,
v 1+Pr?

or,

Nu-1 ~ Al
Some of the empirical correlations show the dependence of Nu
on Pr, as well as on Ra, but continue to overlook the
significance of IIy. For example, Catton (1978) suggests for a

vertical rectangular cavity,

Pr 0.29
Nu = 0.18 (m Ra)

which can be rearranged as

Nu = 0.18 (—R-a— 029
1+ 02P) °
or,

Nu = 0.18 n%? .

For a specified energy generation, the energy balance

AT "t
k 72— ~u »
rearranged in ferms of
@ = u"/ Sy ,
yields
AT ~ & f%g

>

and Ily, now identified with II;, depends on

gp& e

Ra; =
1 )

(10)

The next section is devoted to the development of microscales

for buoyancy driven turbulent flows in terms of ;.

MICROSCALES

Following the usual practice, decompose the instantaneous
velocity and temperature of a buoyancy driven turbulent flow
into a temporal mean (denoted by capital letters) and
fluctuations

4; = U;+uy; and. 6 = 0+4
and let U; and © be statistically steady. Then, the balance of

the mean kinetic energy of velocity fluctuations

K =

uju;

DN

vields (see, for example, Tennekes and Lumley 1972)

&K oD,
U —=-2-P,+P~¢ (11)
I B o P
where

1 1 — -—
Dj = Epuj + -2‘11i11iu5 - 2uuisij

is the transport,

Py = —gu; 8/ O 12)

is the buoyant production, g being vector acceleration of

gravity and @, a characteristic temperature for isobaric

ambient,

is the inertial production, and

c= 2v S—U;l; (14)
is the viscous dissipation of turbulent energy.

Also, the balance of the root mean square of temperature

fluctuations

Ky==9

Il e

gives



8, ., [P
Uj '0-1\;\ I\g) = _Ex_i(pg)j""pg_ € > (15)
where
=lgg % 1lm
(D) = 5 6 g “6:5-(26)
is the thermal transport ,
— 80 .
P€= —Uj 8 &— (16)

= A an

is the thermal dissipation.

For a homogeneous pure shear flow (in which all averaged
quantities except U; and © are independent of position and in
60

which Sij and . are constant), Egs. (11) and (15) reduce to
j

Py=P +(~ o (18)
and

Py =¢. (19)

Eq.(18) states that the buoyant production is partly converted
into inertial production and partly into viscous dissipation.

On dimensional grounds, assuming Sﬁ ~u/{ and ae/axj ~ /¢,

Egs. (18) and (19) may be written as

3 2
u u
P,@~ '£—+ Vi3, (20)
and
62 62
g 21
U a/\g , 21)

where u and 9 respectively denote the rms values of velocity
and temperature fluctuations, £ is an integral scale, A and A
are Taylor scales (1935). Egs. (20) and (21) imply isotropic
mechanical and thermal dissipations. Note that the isotropic
dissipation is usually a good approximation for any turbulent

flow (see for example, Tennekes and Lumley 1972).
To proceed further, invoke the Squire postulate and let
A=Ay (22)

in Eq.(20). This is an often misinterpreted pivotal assumption.
It postulates the secondary importance of A® X, for heat
transfer rather than suggesting equal thickness for these scales.
Now, elimination of velocity between Eqgs. (20) and (21) results

in a thermal Taylor scale arranged relative to viscous

N6 {va2\ 16
A, ~ gU3 = =
o~ ¢ (1 + 0) (%) , (23)

or, arranged relative to inertial production,

dissipation

3\ 1/6
X~ 43 (1 + o)V (“— ) (24)
0 ( ) Ps }

where Eq.(23) explicitly includes the limit for ¢ — oo and is

convenient for fluids with o = 1, and Eq.(24) explicitly includes

the limit for ¢ — 0 and is convenient for fluids with ¢ < 1.

For the isotropic flow, replacing both ¢ and ), with one scale,

8
D

Egs. (23) and (24) are respectively reduced to a thermal
1

say 7g

Kolmogorov scale for buoyancy driven flows,

1/4 2\ 1/4
o ~ (1 + 1) (%) , (26)
o, B

or
a3\ 14
ng~ (1 + o)¥4 | = 27
Ps
For o > 1, Eq.(27) is reduced to
i va2\ 14
i (5 =
Also,
lim P—0 (29
and, in view of Eq.(18),
P~ €, (30)
Eq. (28) becomes the scale introduced by Batchelor (1959),
a2\ 14
lim 7y —ng ~ ~ . (81)
For ¢ < 1, Eq.(26) is reduced to
( a3) 14 32)
lim 5y — | % . 32
o—0 ¢ Pﬂ
Also
lim e— 0 (33)
o—0
and, in view of Eq.(18),
Then, in a viscous layer order of magnitude thinner than g,
P - €. (35)

Now, the inner limit of Eq.(34) matched to the outer limit of
Eq.(35) leads to Eq.(30), and Eq.(32) becomes the scale
proposed by Oboukhov (1949) and Corrsin (1951),
a3\ 14

limp— 9 ~ |—) . (36)

o0 €
Finally, for o ~1, because of (an order of magnitude)
equipartition of the buoyant production into inertial production

and viscous dissipation, Eq.(18) becomes

Py ~ 2¢€ , 37

and, Egs. (26) and (27) are reduced to the scale originated by
Kolmogorov (1941),

. A\ 14
lim 5, =19 ~ (?) . (38)
o1

1The first numeral 1 in the right hand side of Egs. (23), (24),
(26) and (27) is related to the numeral 1 of Eq.(3) and implies
order of magnitude.




The relation between the thermal microscales and the integral
scale may now be obtained by eliminating the factor (1 + 1/0)
(va®/Pg) between Egs. (23) and (26). This readily yields

2
Mo\ _ g
(-2

Egs. (24) and (27) lead to the same relation, as expected. The
foregoing scales are utilized in the next section on the
development of a heat transfer correlation for buoyancy driven
fiows. Before this development, however, the relations between
these scales and the dimensionless number I (recall Eq. 10),

need to be shown.

Note that P; usually depends on velocity, and Eq.(26) or (27)
expressed in terms of velocity cannot be ultimate forms of the
Kolmogorov scale for buoyancy driven flows. To eliminate any
velocity dependence,

reconsider Egq.(12). On dimensional

grounds,
Pg~gub/o,. (40)
Noting
&'~ 8,
B being the coefficient of thermal expansion, rearrange Eq.(40)

as

Ps~gpud, (41)
or, with the isotropic velocity

u-~aln (42)
obtained from Egs. (21) and (25), as

Py~gaBo/ng. (43)

Now, assume § across 7, of volume (7, #2) be a result of the rate

of internal energy u” generated per unit of £3 volume,

k Sinp B~ 63 (44)
7o

6~ <17£_‘) ' (45)
) a

where ®=u""/p ¢, Elimination of 6§ between Eqgs. {(43) and (45)

which gives

yields
P~ gl L. (46)

Then,Eaqs. (26) and (27) respectively lead to

2
e (1+ 1)1/4 ( va )1/4 @)

2 \gBd¢L
and
mg~(1+ oM (—g—;%)”", 48
or,
’7_[0 ~ T (49)
where

RaI Pr RaI

T TPl 60

T 1+Pr "~

and
@ ¢2 g 5
RaI = g_ﬁ<__)g3 = Eiq.z_l; (10)

va a va
is the Rayleigh number based on &.

The thermal intermittency given by Eq.(39) continues to hold.
Then, from Eqs. (47) and (48),
A
Loy, (51)
)4
In the next section a heat transfer model based on the

foregoing microscales is proposed for buoyancy driven turbulent

flows.

A HEAT TRANSFER MODEL

Consider a buoyant flow driven by internal energy generated
between two horizontal plates. Assume large enough energy
generation resulting in fully developed turbulent conditions.
This is an ideal problem for a test on the proposed microscales
because of the availability of some experimental and analytical
literature. In a manner similar to the Prandtl-Taylor two-layer
turbulence model for forced convection, let the buoyancy driven
turbulent flow be described by a sublayer next to each plate
and a core between these layers. Assume each sublayer be
characterized by the Kolmogorov scale, and the diffusion in the

core by the Taylor scale.
The mean heat flux in the sublayer, in view of the assumed

isotropy (recall Eq. 42), is

8
f~k—~pc,ub 9
7 P (52)

which shows the same order of magnitude contributions from

conduction and convection. The mean heat fiux in the core is

9. ~ k i—co+p Cp U b, (53)
which, in view of Eq.(21), or,
S w
may be rearranged as
d. ~ pC <1+i;> u, b, (55)

and, in view of A/¢ < 1, is reduced to

qC ~p cp“c ec » (56)

where the subscript ¢ indicates to the core. At the interface

between the sublayer and core
a~ qc. (57)

There is conclusive evidence about a temperature reversal in



the core of the turbulent Benard problem demonstrated
experimentally by Thomas and Townsend (1957), Gille (1967),
Chu and Goldstein (1973), and numerically by Herring
(1963) and Elder (1969) (Fig. 1). Some of the Kulacki and
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Fig.1 Core temperature reversal. Chu and Goldstein (1973)

Emara (1977) data on electrolytically heated water indicates

also to a similar trend for the present case. Accordingly, let
86— 6.~ AT | {(58)

where AT is the

temperature difference

across the
plates. Inserting 6 of Eq.(52) and 6, of Eq. (56) into Eq.(58),
noting Eq.(58),

q(1l — aluegy ~ k AT /5y (59

which may be rearranged in terms of the Nusselt number,

— q
YT kg €0
as
Ly
N~ T ey 1 ®D

where the numerator shows the contribution of the sublayer

and the denominator shows that of the core on heat transfer.

To express Eq.(61) in terms of the length scales alone,

reconsider Eq.(21) for velocity of the core,
£
U ~ ¢ ':\g , (62)

which may be rearranged as

u, ¢ / £ \2 -
3 (Ae ~ (©3
In terms of this relation, Eq.(61) becomes
£ing
~— v 84)
N~ T @2 (

which, in view of Egs. (49) and (51), yields a model for any

Prandt]l number

H%/‘i
The two limits of this result,
(Pr Rap'4
i 1 ~ ———————5 6
Jm N ~ T Ry ©6)
and
R 1/4
lim Nu ~ '1—_%'13 s 87
Pr—oo ag

are identical to the models already proposed by Cheung (1980).

Thus, the present review generalizes, via microscales

appropriate for buoyancy driven flows, two Cheung
correlations into Eq.(65) which is valid for fluids of any Prandtl
number. Now, Eq.(65) may be written as an equality in terms
of three constants

c, m Pr
Nu=t—c,mm. m= (g e R 68

Eq.(68) provides a heat transfer correlation for turbulent

natural convection driven by internal energy generation
between two parallel plates. Although the values of C,, C,
and C, must be determined from experimental data, they are

expected to be numerical constants.

The experimental literature on the buoyant turbulent flow
driven by volumetric internal energy generation is confined to
the studies of Tritton and Zarraga (1967), Fiedler and Wille
(1971), Kulacki and Goldstein (1972), Kulacki and Nagle
(1975), and Kulacki and Emara (1977). These studies employ
electrolytically heated water for which Pr remains within the
narrow range of 6~7. If one assumes C; « 1 indicating to a
small inertial effect (see Arpaci 1990), the numerical value of
Pr 14
()
can be very closely approximated by unity. Then
Iy —»Ra; , Pr>1

and Nu given by Eq.(68) is reduced to

Nu = C; Raf"

=1= C, Ray 712
Cheung employs the data of Kulacki and Emara and proposes

(69)

2 1/4
Ng = _0:206 Raf

=1 70
1 — 0.847 Raj V12 (70



Figure 2 taken from Cheung shows the correlation of the
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Fig.2 In Nu vs. In Ra,. , Eq.(70); O, Kulacki-Emara (1977)

experimental data by Eq.(70). A correlation for any Prandtl
number involving the numerical values of Cy and C, in Eq.(68)
needs data for another Prandtl range (preferably for ligquid
metals) which is not presently available. However, for buoyant
turbulent fiows between two horizontal plates kept at different
temperatures, there is extensive data for a variety of fluids
(including liquid metals, gases, water and viscous oils). A
recently praposed model by Arpaci (1990},

0.0471 T§® Ra

Nu =T ™ ™ = Tro0aa o

correlates this data over the range of 106 — 101! .| The rest of
the review is on mass transfer illustrated in terms of laminar,

buoyancy-driven diffusion flames and turbulent pool fires.

LAMINAR DIFFUSION FLAME

A brief dimensional review of laminar flames will prove

convenient for the next  section on turbulent
flames. Accordingly, reconsider the pioneering work of Spalding

(1954).

The balance of momentum integrated over the boundary layer

thickness § is

f;fo‘puzdy + (u%)w = gﬁ(pm—p) dy, (71)

where p is the density, u the longitudinal velocity, p the
dynamic viscosity, and subscripts w and oo denote wall (fuel
surface) and ambient conditions. Also, the balance of the first
Schvab-Zeldovich (heat+oxidizer) property integrated over the
boundary layer thickness &5 is

d [ _ &
E%‘ puby, —b)dy — By = (pDa—y>w , (12)

where v,, is the velocity normal to the fuel surface; Le=ao/D=1,
o and D being thermal and mass diffusivities, respectively; b

and the transfer number B (Busemann 1933) are defined as,

b= (YoQuoMo + b) /by, (13)
and
B =b, — by, (74)
or, in terms of Eq.(73), explicitly,
B = (Yo.QvoMo ~ by ) /. (75)

Here, Yq is the mass fraction of the oxidizer; Yoo its ambient
value; Q is the heat released according to single global chemical
reaction

vp (Fuel) + yo (Oxidant) — Products + Q (heat) , (76)
where

- (3 (39
VOMO VFMF Volﬂo

Q/vpMy being the lower heating value (heat released per kg of

an

fuel), vpMyp/rgMg the stoichiometric fuel to oxidant ratio (kg
fuel’kg oxidant); vg, vg, and My and Mg being the fuel and
oxidant stoichiometric coefficients and molecular weights,
respectively; h the specific enthalpy relative to ambient
temperature; h,=c,(Ty-Ty), ¢, the specific heat, T, and T
fuel surface and ambient temperatures, respectively; hg, the

heat of evaporation.

On dimensional grounds, Eq.(71) yields

U%5+1/H~ (‘Zﬁ)&,

B P (78)

U being a characteristic longitudinal velocity, and £ a length

scale characterizing the direction of flow. Similarly, Eq.(72)

vields
B B
UZ&% - vwB~Dg. (19)
In terms of the surface mass balance,
B N
vy ~ pD 5 (803
B
Eq.(79) may be rearranged as
vBipa+mi, (81)
Z &

and, in terms of the Squire postulate for buoyancy-driven flows,

5§~ b5, (82)
Eq.(78) becomes
U U Ap
+ o=~ =
U 7t 6?, ( P ) (83)



The Squire postulate has been well-tested in natural convection
even for &/é, differing considerably from unity. Also, because of
the same b-gradient involved with Egs. (79) and (80), the
factor (1+B) is independent of the dimensional arguments

leading to Eq.(81). For notational convenience, let

Dy;=D(1+ B). (84)
Then, Eq.(81) is reduced to
B B
-~ . (85)
U 7 Dy %

Clearly, Eqgs. (83) and (85) can be directly obtained from the
corresponding differential formulations, provided Dy is assumed

for diffusivity in the latter.

A dimensionless number that describes buoyancy-driven
diffusion flames may now be obtained by coupling Eqgs. (83) and
(85). Since velocity is a dependent variable for any buoyancy-

driven flow, its elimination yields

£ D) _ 8 (&)
% (1 + 7) 2D, \p (886)

which, in terms of a flame Schmidt number,
14

op ~ = 87
B D B
and a flame Rayieigh number,
= _8 [Br)
Ra, VDﬁ(p)f, (88)
may be rearranged as
‘ .
=~ 113/4 , (89)
8
where
IL % )R (90
87 \T+o,) 90)

is a fundamental dimensionless number for diffusion flames.
Actually, the numeral one in Eq.(90) is an unknown constant
because of the dimensional nature of the foregoing arguments.

Eq.(87) reflects this fact by its proportionality sign. Also, in

view of
- Ty —T
Do Po— Pr_ f N ©1)
r 143 Too
the Rayleigh number may be more appropriately written as
_ g (T Ty) £
8= D, T ©2)
Now, in terms of a (fuel) mass transfer coefficient hg
hyt ?
=B 2L 9
Shg D 5 (93)
Shg being a flame Sherwood number. Then, the fuel
consumption in a laminar diffusion flame of size ¢,
m' m“ ¢ 3
—_— = = ~ B— 94
> D oD Sh, B 5’ (94)

(m:\. being the fuel consumption per unit area) may be written

in terms of Eq.(89) as

]

m 4 \
oD~ B, (95
or, explicitly,
' 1/4
m % 14
oD B (1 s Uﬁ) Rag”, (96)
or, in terms of the usual Rayleigh number for mass transfer,
Ra = £ (ﬂ) o, ©7
va \ p
as
. 14 4
m 93 D
~ = )
,DRav ~ B (1 ¥ aﬁ) (D[,) ' ©8)
Now, introduce the definition of the usual Schmidt number,
o = 1%’ (99)
and combine Eqgs. (84) and (87) for
.0 __1

Then, noting the proportionality and equality relations of

Eq.(100), an equality replacing Eq.(98) may be written as

m C,B
pD Ral/4 - (Co + B)1/4(1 + B)1/4 >

(101)

where C, and C; remain to be determined from a computer/
laboratory experiment, or, from an analytical solution. Arpaci
and Selamet (1991) evaluates Cy and C; by the numerical work
of Kim, deRis and Kroesser (1971). The foregoing dimensional

arguments are extended in the next section to turbulent flames.

TURBULENT DIFFUSION FLAME. POOL FIRE

Following the usual practice, decompose the instantaneous
velocity and the first Schvab-Zeldovich (heat+ oxidizer)
property of a buoyancy—driven, turbulent diffusion flarne into a

temporal mean (denoted by capital letters) and fluctuations
4 =Uj+y and b=B + b.

For a homogeneous pure shear flow (in which all averaged
except U; and B are independent of position and in which S;; is
a constant), the mean kinetic energy of velocity fluctuations

and the root mean square of the first Schvab-Zeldovich

property vield

B = P+ (-6 (102)
and
Ps = €5, (103)
where
B= —gud/o, (104)
is the buoyant production (imposed),
P = - uu S (105)
is the inertial production (induced),
€= 28 (106)



is the dissipation of turbulent energy, and

— 8B
P = —ub— (107)
B i axi
and
EXWED
€ = Dy (a) (a) (108)

are the production and dissipation of the first Schvab-Zeldovich
property, respectively. Note that the incorporation of the
boundary mass transfer into the b-balance is taken into account
by considering the b-dissipation in terms of Dg. For buoyancy-

driven flows, kinetic dissipation retains its usual form.

On dimensional grounds, Eqs. (102) and (103) lead to

3 2
B~ “7 + u%, (109)
and
b2 bz
Ug—F =~ D vk (110)
‘ P33

where A and )g are the Taylor microscales associated with

momentum and the first Schvab-Zeldovich property.

Now, for a buoyancy-driven turbulent diffusion flame, following

the Squire postulate, assume
u~ug, A~ Ag. (111)

Then, elimination of the velocity between Eqs. (109) and (110).

gives
D3\ ve
~ g3 + 16 [ 8
Mg~ 8 (1 + o) (B) . 112)
Under conditions of isotropic flow,
A
(zﬂ) - g, (113)

and, Eq.(112) leads to a Kolmogorov microscaie

3\ 14
5 ~ (1 + og)it (%) , (119
where, on dimensional grounds,
B~gud/e@, (115)

©®, being the temperature of isobaric ambient. The foregoing
microscale is identical in form to Eq.(27) introduced earlier.
Furthermore, for o5 — 0, Eq.(114) is reduced in form to the

microscale discovered by Oboukhov and Corrsin,

D.’g 1/4
w- (&)

Also, for o5 — oo, Eq.(114) is reduced in form to the scale

(116)

discovered by Batchelor,

_ g D?; 14 _ VD% 1/4
18 B = B .

(117

Now, assume

¢ ~ AT, (118)

AT being the imposed temperature difference, and note, for
gaseous media,
e t=4.

(119)

Then, Eq.(115) becomes
B~gpBuAT, (120)

or, in view of Eq.(110),
B~gpDgt AT/ )5, (121

Insertion of Eq.(121) into Eq.(112) leads to a Taylor microscale
in terms of the buoyant force rather than buoyant energy,

D2 1/4
g ~ £V (1 + Uﬂ)m (__ﬁ_) 7

26 AT (122)

or, under the isotropy stated by Eq.(113), to a Kolmogorov

microscale,

D2 13
- 13 i
np~ (1 + o) <.___g E AT) : (123)

Now, the Taylor and Kolmogorov scales for any &ﬁ may be
rearranged in terms of Il as

by

7" ~ mp (124)
and

’—’f ~ mYe. (125)

Let the turbulent diffusion flame near a vertical fuel or the pool
fire over a horizontal fuel be controlled by a turbulent sublayer.
Assume the thickness of this layer be characterized by 7.

Then, the averaged fuel consumption is found to be
m’ 4

— =B~— ~BI}, (126)
pD g ?
or, explicitly,
m' o\ 1
;3 ~ B 1 + Uﬁ R85 . (127)
or, in terms of the usual Rayleigh number,
' \ 173 1/3
m - ag D
;DRa?s P (1 + a[,) (Dﬁ) : (128)
Now, rearranging Eq.(128) in terms of Egs. (84) and (87),
m' Cl B
= 9
p DRal/B (co + B)I/S(l + B)1/3 ? (129)

where C, and C; are to be determined from the experimental
literature. The 1/3-power law of the Rayleigh number in pool
fires is supported experimentally (Kanury 1975, Lockwood and
Corlett 1987, Alpert 1977).

Now, in a manner similar to the three regimes of laminar
flames (see Arpaci and Selamet 1991), the regimes of turbulent
flames may be identified. For small values of B,

(130

Km (—#m' ) - B
Bl—-vO P D Ra13 ’



For B>>1, inertial effects are negligible and Eq.(129) is reduced

to
pl)%g — B3, (131)
For B»1,
-
Bli_x}; W) — B3, (132)

The experimental data on small fires (see Corlett (1968,1970),
de Ris and Orloff (1972) , Burgess et al. 1961) appears to
correlate well with Eq.(129) as shown in Fig. 3. The original
figure is taken from de Ris and Orloff who rearranged Fig. 11
of Corlett (1970) for ethane-nitrogen flames burning above a
10.16 ¢cm diameter burner and compared with their model.
The open symbols in the original figure for pure ethane are
deleted here since they include a small radiative heat transfer

component towards the burner surface. Remaining data from

Corlett represents the dominant convective component of the
surface heat transfer. Half-filled symbols indicate increasing
heat transfer with increasing velocity of gases leaving the
burner surface. Also included in Fig. 3 are two data points
from Burgess e al. for liguid methanol and liquid butane as
shown by open symbols. The low B-range is in the vicinity of

extinction of the flames.

Arpaci (1990) has recently demonstrated, with a correlation on
natural convection, the sensitivity of C,; to experimental data.
A preliminary attempt for the evaluation of C; and C, by a
least-square fitting of Eq.(129) to Corlett’s data demonstrates a
similar sensitivity. Here, following the approach taken in the
of

C,/C¥® = 0.16 is taken from the recent data of Fujii and

preceding section on laminar flames, the value

Imura (1972). Then, at B=5, 1/C, = 0.05 is evaluated by
fitting Eq.(129) to Corlett’s data. With these values,

m 0.16 B
pDRal® {1 + 0.05B)17 (1 + B)I3

(133)

which agrees very well with the correlation already given by de

Ris and Orloff (1972)

: fm (1 + B2 )
p%Ralg = 0.16 B [—“—LB—)] (134)

obtained from the stagnant film theory coupled with the
empirically assumed 2/3-power law. The maximum difference
between the two correlations remains less than 1.8% for the
entire B-range. This agreement, despite the fact that they are
developed by following quite different arguments, is
remarkable. Both models predict only the region B = 1 beyond

bifurcation (Arpaci and Selamet 1991).
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So far, the proposed models for laminar and turbulent flames
and fires exclude any effect of radiation. Because of different
intrinsic nature of radiation and conduction (or any diffusion),
the Schvab-Zeldovich transformation used in the present review
no longer applies to radiation-affected flames. On intuitive
grounds, the emission of radiation (hotness of flame) has been
already incorporated into the heat of combustion and the latent

heat of evaporation by fractional lowering (sayv ~ and ¥ of

10—y ———ry -
L 4 Turbulent Model, Eq.(133) ’ ]
" Burgess et al, (1961) T
0.4 15cm (diameter) deRis 1
[ O CHyOH Q7 and Oriofl, 1
2 02l OCdy Q Eq134) |
elea
&\&
¢ 0.1 Corlett's data(1270) |
10.16 cm (diametér) ]
Mole fractions 3
0® 1.00C,H;-Q° 1
004 R 0.71 C;Hg/0.20N, - Q° ]
- A A 0.57 C,Hg/0.43N, - Q°
O ® 0.43C,H /0.57N, - Q° |
0.02 NSNS : PP | .

4.0 10 20 30

Fig.3 Correlation of turbulent data
these properties (see Kanury 1975). However, because cf the
lack of experimental data on the absorption effect (optical
thickness), no attempt is made here to demonstrate its

influence on 4 and .
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