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Preface

Research in two-phase flow and heat transfer with change of phase currently emphasizes the
dynamics of two-phase flows, flow boiling, and flow condensation. This work is motivated in large
part by the great need to understand better the physical phenomena taking place in various
conventional and nuclear energy conversion/production systems. This research is directed to
developing the capability to improve thermal efficiency and to optimize the design of such systems,
and more precisely evaluate the safety aspects of these systems. Major research programs are
being conducted in government, industry, and university laboratories in both Japan and the United
States. The Japanese work is characterized as rather fundamental whereas the U.S. workers have a

fendency to deal with more applied work.

The importance and value of a joint Japan-U.S. seminar was recognized in 1979 when the first
seminar on Two-Phase Flow Dynamics, cosponsored by the Japan Society for the Promotion of
Science and the U.S. National Science Foundation, was held at the University Seminar House in
Kansai. Five years later, the second seminar similarly cosponsored was held in Lake Placid, New
York. During these intensive interaction periods, a valuable exchange of information occurred in
the technology of multiphase dynamics. As a result of these seminars, considerable collaborative
research and much interchange between researchers in the two countries was initiated.

The research field on two-phase flow had grown in the four intervening years to the time when this
Third Japan-U.S. Seminar on Two-Phase Flow Dynamics was held in July of 1988 at Lake Biwa,
Japan. This seminar, too, was jointly sponsored by the JSPS and the USNSF. Emphasis had been
on developing a better understanding of the physics of the phenomena and improvements in
dynamic analysis of normal transient or accident situations. Therefore, the holding of this third
seminar was especially appropriate and beneficial to all parties. This volume, therefore, represents a
distillation of the research reported during this meeting.

The seminar featured a broad review of the status of research relating to two-phase flow dynamics
both with and without phase change. The papers fall into several categories which formed the
natural grouping for the seminar, and for this volume, These major groupings are:

-

Fundamental equations and closure laws;

Flow regime modeling and dynamics;

Phase separation and distribution phenomena;
Wave and shock phenomena and critical flows;

O k0w

Forced convective and post-dryout heat transfer.
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In the final analysis, the value of any gathering such as this can only be judged in relation to the
lasting effects as evidenced in the direction and quality of research which follows. The exchange of
information by these two active nations is expected to substantially enhance progress in many areas
of energy conversion including power plant efficiency, reliability, and safety. Ultimately, it is hoped
that the seminar will lead to an improved understanding of process and system behavior, which in
turn will lead to improved safety, longevity, and optimization of operational efficiencies of future

energy conversion systems which utilize multiphase flows.

Finally, the organizers of the Japan-U.S. Seminar on Two-Phase Flow Dynamics would be remiss if
they did not acknowledge the vision and foresight of Professor Arthur E. Bergles, Dean of
Engineering at Rensselaer Polytechnic Institute, and Professor Seikan Ishigai, Professor Emeritus
of Osaka University who jointly conceived and organized the first seminar a decade ago. It was
through their efforts that this has become a successful series of quadrennial events. The second
seminar in 1984 was jointly organized by Professor Koji Akagawa, Professor Emeritus of Kobe
University, and Professor Owen C. Jones of Rensselaer Polytechnic Institute. In addition, the
editors of this volume would also be negligent if they did not recognize the kind support of the
Japanese Society for the Promotion of Science and the United States National Science
Foundation, and for all institutions and companies which provided support for members of their
organizations to participate in the seminar. This support provides extremely high leverage for
continued collaboration and progress in the field.

In closing, the editors would like to express thanks to members of their respective organizations
who provided valuable assistance and support in the planning, preparation, and conduct of the
seminar. This support was the key to conducting a successful seminar and developing what we
hope will be a useful compendium of research papers in the field.

Owen C. Jones Itaru Michiyoshi
Troy, New York Kyoto, Japan
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DISCRETE MODELING CONSIDERATIONS IN
MULTIPHASE FLUID DYNAMICS*

V.H. Ransom and J.D. Ramshaw
ldaho National Engineering Laboratory
Idaho Falls, ID 83415, USA

ABSTRACT

A discussion is given of discrete modeling considerations in
multiphase fluid dynamics and related areas. By the term
"discrete modeling" we refer to a collection of ideas and
concepts which we hope will ultimately provide a
philosophical basis for a more systematic approach to the
solution of practical engineering problems using digital
computers. Our conception of discrete modeling is still
evolving and has not yet led to useful results; thus the
present paper is of the nature of a preliminary report on
work in progress, and its primary purpose is to stimulate
further thought and discussion. As presently constituted,
the main in?redients in our discrete mode1inﬁ Weltanschauung
are the following considerations: (1) Any physical model
must eventually be cast into discrete form in order to be
solved on a digital computer. (2% The usual approach of
formulating models in differential form and then discretizing
them is an indirect route to a discrete model. It is also
potentially hazardous: the length and time scales of the
discretization may not be compatible with those represented
in the model. It may therefore be preferable to formulate
the model in discrete terms from the outset. (3) Computer
time and storage constraints limit the resolution that can be
employed in practical calculations. These limits effectively
define the p gsica] phenomena, length scales, and_time scales
which cannot be directly represented in the calculation and
therefore must be modeled. This information should be
injected into the model formulation process at an early
stage. (4) Practical resolution limits are generally so
coarse that traditional convergence and truncation-error
analyses become irrelevant. (5) A discrete model constitutes
a reduced description of a physical system, from which
fine-scale details are eliminated. This elimination creates
a closure problem, which has an inherently statistical
character due to uncertainty about the missing details.

*Research supported by DOE Office of Basic Energy Sciences
under DOE Contract DOE-AC07-761D01570.



4 CLOSURE LAW

Methods from statistical physics may therefore be useful in
the formulation of discrete models. In the present paper we
e1ab0{ate on these themes and illustrate them with simple
examples.

INTRODUCTION

Multiphase flow plays a fundamental role in a wide variety of
technologically important processes, systems, and devices,
including nuclear reactors and other energy systems.
Consequently there is great interest in analytical models for
describing multiphase flow behavior. Just as in single phase
flow, there is a spectrum of modeling approaches that can be
taken dependin? upon the agp]icat1on. These include the
atomistic simulation of behavior at the molecular Tevel,
local instant continuum modeling, and averaged macroscale
mode]in?. It is pertinent to this discussion to note that
the evolution of these modeling approaches starts with a
particle formulation in terms of ordinary differential
equations at the atomistic level. Then, by averaging over
systems of particles, a local instant continuum model in the
form of partial differentia].equations.§PDEs) is obtained.
The macroscale model is obtained by still another averaging
of the local instant continuum model. These modeling
approaches applied to single phase fluid dynamics yield the
equations of molecular kinetics, the Navier-Stokes equations,
and the Reynolds averaged Navier-Stokes equations
respectively. The primary application that we address in
this paper 1s system modeling, and the only approach that is
numerically tractable for this case, considering the current
stgt$ of computer capability, is the averaged macroscale
model.

The Tocal instant or microscopic behavior of multiphase flow
is accurately modeled by the Navier-Stokes formulation with
the addition of interfaces across which appropriate jump
conditions hold. A particularly elegant formulation of this
?rob]em has been developed by Kataoka (1986) to obtain a
ocal instant formulation for multiphase flow analogous to
the Navier-Stokes formulation for single phase flow. The
Kataoka formulation can be solved in principle to obtain a
microscopic_description of a multiphase flow process.
Unfortunately, just as in the case of the_Navier-Stokes
formulation, the application to large-scale engineering
problems _is numerically intractable. Therefore, to obtain
macroscale solutions we must resort to further averaging and
seek solutions for the average values of the system dependent
variables. This second averaging operation introduces the
need for additional closure models, and the details of the
averaging methods have been the subject of debate.
Nevertheless, the multiphase system models in use today are
based on this approach and research efforts to improve these
models are continuing.

In spite of significant research efforts within the past
decade, existing macroscale multiphase flow models cannot yet
be regarded as satisfactory in terms of either accuracy or



MULTIPHASE FLUID DYNAMICS 5

predictive capability. They rely heavily on empiricism,
often of an ad hoc variety, important physical effects are
sometimes neglected altogether, and the 1nter?1ay between
model and numerical solution scheme is not well
characterized. This reflects, of course, the immense
complexity of multiphase flow, in which all of the
difficulties of single phase flow and turbulence occur in
conjunction with the additional complications of interfacial
d%namics, flow regime transitions, interphase transport,
phase transitions, and so on.

In view of the complexity of the problem, it would be
unrealistic to hope that a trul com?rehensive and predictive
macroscale multiphase flow model will emerge in the near
future, although incremental progress toward this goal can
and should be expected. Unfortunately, the rate_of such
progress seems to have slowed in recent years. The purpose
of the ﬁresent paper is to discuss a somewhat different
approach which we feel holds promise for further progress in
macroscale modeling.

At the Japan-U.S. Seminar on Two-Phase Flow Dynamics, Ransom
and Trapp_(1984) discussed the importance of well-posedness
and stability of two—?hase flow models with respect to
constructing numerical solutions. Tacit in that discussion
was the assumﬁtion that a multiphase flow model for the
macroscale behavior could be formulated as a system of PDEs.
That being the case, obtaining a well-posed model becomes
tantamount to including appropriate and sufficient physics in
differential form; numerical solutions could then be obtained
in a straightforward manner. In the present paper we examine
the basic premise of whether it is reasonable to expect that
a sufficiently complete PDE model exists for the macroscale
description and whether improved modeling can be achieved by
seeking missing differential terms representing additional
physics of the flow. In this context, even the well-posed
models that were discussed b% Ransom and Trapp (1984) were
not claimed to be complete p gsica] descriptions in the 1imit
of short-wavelength effects, but rather merely to have benign
behavior at short wavelengths. These models are not
equivalent to the local instant formulation, and it is not
clear that further refinement of the macroscale model within
the PDE framework would ever achieve such a result. We will
presently argue the premise that it may be more_ productive to
recognize practical modeling and computational limitations
from the outset and construct discrete models that are
compatibie with the inherently discrete numerical solution
process.

Our expository task is made more difficult by the fact that
our views are still evolving and have not yet resulted in a
specific model. Nevertheless, our contention is that
insufficient consideration has been given to certain serious
and fundamental difficulties with current approaches to
multiphase flow modeling and computation, and that an
alternative view and_approach_is perhaps better suited to the
construction of models suitable for implementation and
solution on digital computers. For want of a better term, we
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use "discrete modeling" to refer to the collection of ideas
and concepts of which our current view is comprised and which
constitute the subject of the present discussion.

The basic motivations for discrete modeling have_already been
summarized in the Abstract, and they will be amplified upon
and the approach outlined in the subsequent sections. It is
convenient to divide this discussion into four main parts.
First we discuss continuum formulations and attempt to
highlight some perspectives that are frequently lost sight
of. Next we discuss numerical considerations, and then we
outline the development of a discrete model. Finally,
statistical concepts are introduced. This subdivision is
somewhat artificial as there are numerous points of
interconnection between the different sections. We shall
a?tempt to call attention to these connections at appropriate
places.

CONTINUUM FORMULATIONS

Within the framework of classical mechanics, the basic
dynamical laws at the molecular level may be expressed as a
system of ordinary differential equations for the coordinates
and velocities of the molecules. A useful mathematical model
is obtained by formulating the average space-time behavior of
the system properties in terms of continuous functions. With
this approach the physical laws then ap?ear as PDEs_that
govern the behavior of the continuum. The dynamical
description then consists of the PDEs, a specified initial
state, and appro?riate boundary conditions. This ?ractice is
commonplace in fluid mechanics and results in high % useful
formulations. Only in extreme situations, such as highly
rarified gases, is it necessary to resort to more fundamental
particulate descriptions.

As a result of the averaging process used to obtain a
continuum a?proximation, macroscopic closure laws are
required. n the case of fluid mechanics, Newton's law of
viscosity, Fourier's law of conduction, and Fick's law of
diffusion are such closure laws for momentum, energy, and
mass.

Continuum Limitations

It is apparent that such partial differential formulations
are not exact; they are merely very useful approximations.
For example, Fourier's law of heat conduction is very
accurate for most applications, yet it predicts that thermal
signals propagate with infinite speed, which is clearly
unphysical. This is an illustration of the very general fact
that partial differential descriptions typically break down
at very short length and time scales. In particular, the
familiar Navier-Stokes equations, with which we all feel so
comfortable as a description of ordinary single-phase fluid
dynamics, become inaccurate at sufficiently short lengths and
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times; the ?oa1 of generalized hydrod%namics (Mountain, 1977;
Alder and Alley, 1984) is to remedy this deficiency.

In general, the length and time scales below which continuum
descriptions become inaccurate are on the order of the
characteristic lengths and times associated with the
microstructure of the medium. For example, the Navier-Stokes
equations break down, and generalized hydrodynamics is called
into play, when length and time scales approach those of a
molecular magnitude. Only for lengths and times much Targer
than characteristic molecular lengths and times do the
Navier-Stokes equations provide a quantitatively correct
description of fluid dynamical behavior. Fortunately, this
range of lengths and times is_very wide and encompasses
essentially all macroscopic fluid flow phenomena. That is to
say, the differential description is useful because there is
a wide separation of scales between the smallest macroscopic
scales of interest and the microscopic scales associated with
the internal structure of the fluid.

If the microscales were always of a molecular magnitude then
questions of scale separation would seldom arise. But in
many of the descriptions employed for engineering purposes,
the characteristic scales of the internal structure bein?
modeled are themselves macroscopic in nature. For example,
the microstructure in a porous medium consists of the
detailed geometry of the individual pores. Flow in porous
media is usually described by equations in which the effects
of this microstructure are modeled in terms of distributed
porosity, frictional dra? forces, etc. (Whitaker, 1986). The
resulting PDEs are clearly valid only on length scales much
greater_than a characteristic pore size, even_though they in
principle possess solutions on all length scales. In such
situations the desired separation between the calculated and
modeled scales is much less clear cut, and one must be
careful not to attribute quantitative significance to any
predicted solution features with scales comparable to the
internal microscales.

A word is in order about the nature of the inaccuracies that
occur when a continuum description is pushed too far; i.e.,
applied on scales too small. Ideally one hopes that such
inaccuracies, while necessarily quantitative, are not
qualitative or.catastro?hic. For example, the Navier-Stokes
equations predict profiles for strong shock waves which are
qualitatively reasonable even though quantitative]z
inaccurate. If, however, viscosity is neglected while
thermal conductivity is_retained, the profiles acquire a
qualitatively unphysical discontinuity (Zel'dovich and
Raizer, 1967{.

There are also situations in which the inaccuracies of a
continuum model are catastrophic in nature. 1In the present
context, the relevant example is the one-dimensional
two-phase flow eguations with both viscosity and surface
tension neglected, which constitute an improperly posed
problem characterized by violent and unbounded instabilities
at short wavelengths (Ramshaw and Trapp, 1978). These
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instabilities make it impossible to calculate even Tonger
wave1en?th components of the solution (unless they are
controlled by introducing artificial diffusion, as is often
done_in practice). Thus for a continuum model to be useful
at all, even over a restricted range of length and time
scales, it is necessary that its inaccuracies at smaller
scales be benign in nature, and that it exhibit at Teast
qualitatively reasonable behavior in spite of the
inaccuracies.

In nonlinear problems there may be even more stringent
requirements concerned w1th.the necessity to ?revent errors
at small scales from contaminating larger scales. The
obvious example is the rate of energy dissipation, which must
be correctly represented in both shock waves and turbulence
in s?ite of any other inaccuracies which may be present at
small scales. Both artificial shock viscosities of the Von
Neumann-Richtmyer type and subgrid scale (large eddy
simulation) eddy viscosities for turbulence, when implemented
conservatively, 8ossess this essential property (Von Neumann
and Richtmyer, 1950; Ramshaw, 1979). In both cases, the
effect of the artificial viscosity is to artific1a11y expand
the microscale on which the energy dissipation occurs until
it becomes Targe enough to resolve in the calculation. This
expansion is done in such a way as to preserve the rate at
which energy is dissipated. It seems likely that similar
considerations will ap?1y to discrete modeling in more
general contexts as well.

It should be emphasized that the breakdown in continuum
descriptions at small scales does not imﬁ1y that the various
continuous variables in the problem, such as velocities,
densities, etc., become in any sense ill-defined. The
implication is rather than when such variables vary too
rapidly in space and/or time they no longer satisfy PDEs of a
simple structure. The further implication is that it may not
in fact be useful to define and deal with_quantities which
cannot be calculated in any simple way. That is_to say,
continuous quantities may not be the most natural description
of the system at small length and time scales. The
statistical mechanics literature provides additional support
for this view. Statistical theories of continuous systems
frequently encounter short-wavelength divergences (sometimes
referred to as ultraviolet catastrophes by analogy to quantum
electrodynamics), particularly in the treatment of thermal
fluctuations of continuous quantities. These difficulties
are commonly circumvented by adopting some sort of
coarse—graining procedure such as dividing the system into
little cells é edeaux et al., 1982; Gunton and Droz, 1983;
Visscher, 1978, 1985), which is tantamount_to replacing a
continuum model by a discrete one. We shall presently argue
more generally that this is indeed the simplest and most
natural approach to avoid difficulties with continuum models
at short scales (cf. Visscher, 1978).

In this regard, it is interesting to note that there are
increasingly frequent speculations to the effect that the
fundamental laws of nature on the most basic Tevel, and
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perhaps even space and time themselves, may be discrete in
nature (Feynman, 1982; Namsrai, 1985; Lee, 1987). However,
we shall resist any temptation to draw support for our
discrete modeling ideas from this source, as our motivation
stems more from the scale separation considerations discussed
above and from the computational considerations discussed
below. For our purposes we are entirely content to accept
Newton's laws for molecular motion and the Navier-Stokes
equations for fine-scale fluid motion as starting points.

Multiphase Formulations

We now consider the implications of the above considerations
for multifluid descriptions of multiphase flow, in which each
phase is described by its own fluid dynamical variables and
equations coupled appropriately to those of the other phases
(Banerjee, 1986; Drew, 1983; Bedford and Drumheller, 1983;
Stewart and Wendroff, 1984; Drew and Wood, 1985; Ishii,
1975). The basic idea is that these variables and equations
refer to some sort of appropriate averages over the detailed
fine-scale structure of the multiphase flow. For example, in
a bubbly flow one may have a cloud of bubbles of various
sizes and shapes, each with its own position, orientation,
and velocity, and one seeks a reduced description in which
only a mean velocity, void fraction, and perhaps a few bubble
size distribution parameters are retained. The central ﬁoint
now is that the length and time scales associated with the
detailed flow structures are not always widely separated from
the macroscopic length and time scales on which one would
1ike to predict the average behavior. That is to say, the
desired separation of scales upon which the validity of a
continuum description depends rarely obtains in multiphase
flow, where the scales of the internal structures over which
we desire to average may be comparable to the macroscopic
scales over which the desired averaged quantities vary. This
is precisely the sort of situation in which a simple partial
differential description may be expected to break down. Thus
it is somewhat doubtful whether PDEs for the averaged flow
variables, however arrived at, can realistically be expected
to accurately predict the variations of those variables on
the Tength and time scales of interest.

A related concern emerges from a consideration of how these
types of averaged multiphase flow equations are usually
obtained. The usual ?rocedure is to apply space and/or time
averaging to the local instantaneous equations (Banerjee,
1986; Drew, 1983; Bedford and Drumheller, 1983; Stewart and
Wendroff, 1984; Drew and Wood, 1985; Ishii, 1975). These
types of averaging are subject to certain fundamental
objections, which will be discussed below, but this is not
the point at issue here. (A related concern is that when all
the dust settles the averaging scales seem frequently to have
disa?peared from the model, whereas the model must in fact
still depend on which scales have been modeled and which are
represented directly.) The point is rather that the
characteristic lengths and times over which these averages
are ﬁerformed clearly define_lower limits for the scales over
which the equations accurately represent differential
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variations. Yet this ﬁoint is often Tost sight of and it is
tacitly assumed that the continuous solutions of the
resulting equations are significant even at smaller scales.
Of course, the hope is that if the equations are properly
formulated they will not predict any structure at scales less
than the averaging scales; i.e., that the solutions wilT in
fact be smooth on those scales. Unfortunately, one has no
real assurance that this in the case. The converse danger
also exists, namely that the model will be solved with
resolution lengths and times that exceed the averaging
scales, so that the physical scales are insufficiently
represented in the model.

A simple illustration of these considerations is_provided by
the separated or stratified flow of two immiscible
incompressible fluids between Bara11e] plates (Ramshaw and
Trapp, 1978). Viscosity will be neglected so that potential
flow theory can be applied, while surface tension will be
retained to make the problem well posed. Attention is
further restricted to small perturbations about a uniform
steady-state solution, so that the problem may be
Tinearized. Within these restrictions the exact dispersion
relations for the two-dimensional problem are determined by
(Ramshaw and Trapp, 1978)

@1 02F (apkH) (Kup-©)2 + app1F (7KkH) (kup-0)2

- alaonk4 =0 (1)

where a;, pi, and uj (1=1,2} are respectively the volume
fraction, density, and velocity of phase i, o is the

surface tension, H is_the plate spacing, k is the wave
number, w is the angular frequency, and F(z) = z coth z.
This problem may also be described using the one-dimensional
area-averaged two-phase flow equations ?Ramshaw and Trapp,
1978), and in this description the dispersion relations are
determined by

@105 (Kup-0)2 + appy(kup-w)2 - aqemotkt = 0 (2)

Equations (1) and (2) are essentially equivalent provided
that kH << 1; i.e., that the wavelength of the disturbance is
Tong compared to the plate spacing. (In this 1imit F(ajkH)
and F(aokH) both tend to unity.) The plate spacing heré
plays the role of an internal characteristic length scale.
When the wavelength becomes comparable to the plate spacing,
the one-dimensional description becomes quantitatively
inaccurate, in spite of the fact that the equations may
possess solutions with structure on that scale. Because the
full problem is nonlinear, there is also a danger that these
inaccurate small-scale structures will feed back into and
contaminate the longer wavelength components of the

solution. Thus the mere fact that a differential formulation
is able to generate continuous solutions on all scales does
not imply that all scales are represented with equal
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fidelity, or indeed that inaccuracies on small scales will
not eventually contaminate the solution on larger scales as
well. The smallest length scales in the problem are
effectively determined by the value of the surface tension,
For physical values these length scales are much shorter than
the plate spacing. Thus we have a situation where the
solution does in fact contain components on length scales
below the internal scale, and these components are
inaccurate. This can be circumvented by artificially
increasing the surface tension (Ramshaw and Trapp, 1978), but
again one must be concerned with the effect this may have on
the accuracy of the longer wavelengths as well.

In summary, the absence in multiphase flow of a clear
separation between the scales associated with the
microstructure and the scales of macroscopic interest makes
it somewhat doubtful that the latter can be accurately
described by means of PDEs which implicitly assume that such
a separation exists. In such a situation it may be more
appropriate to formulate the model directly in discrete terms
based on the averaging scales that one wishes to employ,
e.g., by constructing control volumes of a given size and
considering their contents as the discrete variables in the
description. We will Tater elaborate on_this suggestion, and
argue that the size_of such volumes should be defined with
respect to the resolution employed in a practical numerical
calculation.

COMPUTATIONAL CONSIDERATIONS

A further and purely pragmatic argument for formu]atin?
models in discrete terms from the outset is that it will
eventually be necessary to cast or convert the models into
discrete form in any case so that they can be solved on
digital computers. From a practical point of view, what is
wanted is a discrete model corresponding to_the resolution
that_can be employed_in_practice for the solution of a given
problem, and one would 1ike this model to be as faithful as
possible to the physics within those constraints. .
Formulating a differential model and then discretizing it is
a rather indirect route to such a model, and it is fraught
with pitfalls. Perhaps the main danger is that the length
and time scales of the eventual discretization may not be
compatible with those implicit in the averaging procedure on
which the model was based. A further difficulty is that the
inevitable discretization errors are not taken into
consideration during the process of model formulation, which
might conceivably have been done_in such a way as to reduce
them. It therefore seems sensible to eliminate the continuum
middleman, so_to speak, and to attempt to formulate such
discrete models directly, in a single $te?, rather than by
discretizing a continuum model whose fidelity is questionable
even if it were solved exactly.

One might argue that discretization errors can be separately
analyzed and dealt with by conventional techniques for doing
so, such as convergence and truncation-error analyses
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(Roache, 1972). The problem is that these traditional
methods of assessing the size and effects of discretization
errors are largely irrelevant in practical calculations
because of the coarse resolution limits imposed by computer
time and storage constraints. Such analyses are based on the
Tow-order terms in Taylor series expansions in the space and
time increments, and when these increments are not small the
lTow-order terms bear Tittle or no relation to the overall
errors. Indeed, high-order difference schemes can yield
highly inaccurate solutions in problems with large gradients,
and conversely schemes that are formally of zeroth-order
accuracy (i.e., inconsistent schemes) can nevertheless yield
accurate results under certain conditions (Pike, 1987;
Levermore et al., 1987). In practice one 1s hardly ever in a
position to keep refining the resolution until the solution
no longer changes, and one must seek other means of obtaining
the most accurate results possible under the circumstances.
In any case, there is clearly no point in examining the
behavior of the sKstem in the Timit of infinite1¥ fine
resolution when the models themselves do not apply on scales
less than those over which the averaging is performed in
their derivations.

DISCRETE MODEL FORMULATION

Our research has not progressed to the point of a complete
formulation, let alone numerical experimentation. However,
based on the preceding discussion, we can now outline the
approach that is envisioned. A direct derivation, or perhaps
construction, of a discrete mode]l might proceed along the
following outline. Begin by dividing the system of interest
into a number of computational elements (possibly control
volumes), the number of which is to be determined by comguter
time and storage considerations. Let the discrete variables
in the description be appropriate integral parameters
associated with the computational elements (for example, the
total mass, momentum, and energy of each phase within each
control volume). Then postulate and/or derive a time
advancement procedure b{ which the values of these discrete
variables on each time Tevel ma¥ be calculated from those on
the ?revious time level. Ideally this procedure would be
developed on the basis of appropriate accuracy- or
error-pased criteria to attain the maximum accuracy possible
within the constraints of the discrete description adopted
and for a given level of algorithmic complexity. Statistical
methods might be employed for this purpose, as will be
discussed below. 1In practice a more heuristic approach will
usually be required, based on such considerations as
postulated fluxes of conserved quantities between
computational elements, the length scales of the various
physical processes and whether they are larger or smaller
than the resolution length, and so on. For example, in a
bubbly flow various interphase exchange effects can be
expressed in terms of the bubble size distribution, and the
portion of that distribution_corresponding to bubbie
diameters less than the resolution length would need to be
modeled while larger bubbles could be represented directly.
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Cascade phenomena (e.g., drop or bubble breakup%, in which
larger length scales evolve into scales too small to be
further resolved, would clearly require special
consideration. The effects of unresolved scales back on
resolved ones would also require consideration and
formulation. The way in which such effects are represented
will depend strongly on the physics; no general statements
appear possible. For example, coalescence of subgrid scale
drops or bubbles may produce drops or bubbles large enough to
be resolved directly, which would then need to be properly
introduced into the calculation. In other circumstances a
stochastic approach analogous to "eddy noise" in subgrid
scale turbulence modeling (Rose, 1977; Yakhot et al., 1985)
might be more a?propriate._ The general hope is that by
focusing directly on the discrete quantities that are
actually being computed, one can formulate models in which
the relevant physics is represented within the constraints of
the available resolution in a more harmonious manner.

It will be noted that this proposed approach bears more than
a passing resemblance to the control-volume approach to
deriving difference equations (Roache, 1972). Because of
this resemblance, the existing one-dimensional two-phase
thermal-hydraulic systems codes already possess something of
the character that we think should be associated with
discrete models, although many of the elements that such
models should possess are simply ignored or omitted. Some of
the mathematical manipulations will also bear a close
resemblance to those of the conventional volume-averaging
aﬁproach, in spite of the fact that there are irreconcilable
philosophical differences between the two a?proaches. One
essential difference is that in conventional volume
averaging, the control volume is not considered as a fixed
finite region correspondin? to a discretization element, but
rather as a sliding control volume which can be centered at
any point in the region. Another is that ensemble averaging
p]a{s an essential role in the approach proposed here, as
will be discussed in the next section.

The general philosophy underlying the approach proposed above
is very much in Tine with that of the subgrid scale or large
eddy simulation turbulence models (Ramshaw, 1979; Rose, 1977;
Yakhot et al., 1985; Ferziger, 1983), the basic idea of which
is that scales large enough to resolve are directly
calculated while scales below the resolution are necessarily
modeled. In this way minimum demands are placed upon the
model, and the less that we ask of it the more likely it is
to measure up to our expectations. The modeling process then
largely consists of formulating subgrid scale models for
physical processes occurring on scales below the resolution
scales, and coupling them to_ the computed scales in a
consistent and computationally efficient manner.
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STATISTICAL CONSIDERATIONS

Averaging

It is commonly recognized that most multiphase fluid flows
have a statistical character, and that the macroscopic
equations describing them should be based on some appropriate
averaging procedure. In spite of this, explicitly

statistical considerations have played almost no role in the
modeling of the various fluctuation terms that arise from the
averaging. This may be symptomatic of the fact that as a
general rule, there has been a tendency to become overly
preoccupied with formal manipulations while neglecting the
conceptual foundations of the averaging procedures
themselves. In particular, the usual running space and/or
time averaging procedures are not in our view well founded;
the ap?ropriate avera?ing procedure for general use is
ensemble averaging. o be sure, lip service is sometimes
paid to the idea that space and time averages are really only
substitutes for ensemble averaging, to which they are
hopefully equivalent by virtue of some ergodic theorem. But
any such equivalence is possible only for a system which is
statistically homogeneous and steady in time. In transient
inhomogeneous systems, the usual running space and time
averages over finite regions are not really averages at all,
as they are not superpositions or weighted combinations of
different realizations or possible outcomes. It is therefore
not really sensible to attempt to model the fluctuation terms
that thereby arise in_terms of the averaged variables, for
this presupposes a relation between quantities that are
inherently unrelated. The values of the fluctuation terms
clearly depend on information about the fine-scale details of
the flow. To model these terms as functions of the averaged
variables is to assume a closure where none can possibly
exist-—-there can be no closure within a single realization.
If closure occurs at all, it can occur onl{ "on the average;"
i.e., only after performing an a?propriate y weighted
ensemble average over all possible realizations of the flow.
Thus the various closure relationships which have been
proposed and studied become sensible only when an underlying
ensemble average is regarded as having been implicitly
performed. It then becomes questionable what the space
and/or time averaging originally adopted is contributing to
the desired final formulation, a question that has been
almost universally ignored.

Indeed, in contrast to the common view, it is not even
correct to think of the usual sliding space- and ]
t1me—averagin? operations as discarding any information about
the small-scale flow features. Such averages attenuate
short-wavelength and high-frequency components (i.e., the
amplitude of those components is reduced) but do not
eliminate them (see Appendix A). The situation is analogous
to early attempts to derive the Boltzmann equation from
statistical mechanics using a running time average, where it
was eventually recognized that the formal time smoothing
operation was not having the assumed and intended effect
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(Zwanzig, 1967). For an averaging operation to do its job
some information must be discarded, and this is not done by
sliding averages.

Yet the intent of the usual averaging procedures is basically
sound. The intent is to somehow lump_together the effects of
detailed dynamical processes taking place on Tength and time
scales too small to resolve, and this must surely be done in
any practical_multiphase flow model. Our contention here is
that the simplest and most direct way to do this is to
integrate over fixed nonsliding control volumes, and to let
the ensemble averages of the integrated contents of these
control volumes be the discrete variables of which the
description is comprised. In contrast to a running average,
an integration over fixed regions does discard information,
and the problem acquires a legitimately statistical character
because of uncertainty about the missing details. It is
these missing fine-scale details over which ensemble
averaging averages.

The Closure Problem

Once a conceptually well-founded averagin? procedure is
adopted one can confront the closure problem in a proper
setting. There are two fundamental aspects to the closure
problem. The first is to decide what variables are to be
included in the desired macroscopic description. For
example, suppose we have divided a two-phase system up into
control volumes of a size corresponding to the resolution we
wish to employ in_a practical calculation. Based on past
experience, we will probably want to include the mass,
momentum, energ{, and volume fraction of each phase within
each control volume in our set of macroscopic variables. But
this will rarely be sufficient; other parameters will be
necessary to specify information about the flow regime. In a
bubbly flow, for example, information equivalent to a number
density of bubbles will be required to determine whether a
given void fraction corresponds to many small bubbles or a
few large bubbles. Information about the distribution of
bubble sizes will probably also be required. Interfacial
area has been suggested as an additional variable (Ishii,
1975; Ishii et al., 1982), but while it is clearly a critical
parameter whose value must be known to predict interphase
transfer rates, it is not clear whether it is a fundamental
or a derived variable. The latter seems more 1ikely for
bubbly flow, where the bubble number density seems more
fundamental.

The difficulty in identifying a complete set of macroscopic
variables is forcefully illustrated by the observation that
such a set of variables would permit the prediction of_ flow
regime transitions, and this is clearly a very difficult
proposition. We are gsuall{ in the less satisfactory
position of dealing with a less complete set of variables
which suffices to describe a restricted class of flow
situations (e.g., bubbly flow). Unfortunately, to our
knowledge there is no general theoretical approach to the
determination of a complete set of macroscopic variables in
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any particular situation. This has been and remains a
question on which the present statistical theories are
silent, although certain insights and general ?u1de11nes have
evolved. As a practical matter, one must simply introduce
variables corresponding to one's conception of what is needed
to characterize the important physics on the small-scale
level and proceed to work out the consequences.

The second aspect of the closure problem is simpler to deal
with in principle, but in practice the compiications are so
great that the required procedure can rarely be explicitly
carried out. Once the macroscopic variables are identified,
it is necessary to derive or postulate a closed system of
equations which these variables satisfy. The usual approach
to this probiem has been the hierarchy approach (Les]ie,
1973), in which one systematically derives equations for the
moments of fluctuating quantities that appear in the
equations for the variables of interest. These equations
then contain unknown higher moments of the fluctuating
quantities, for which further equations can be derived, and
so on ad infinitum. This process must be truncated at a low
order to obtain equations sufficiently simple to be useful,
and this truncation has been an arbitrary and unsystematic
process.

An alternative and more systematic approach to this_aspect of
the closure problem is provided by a non-hierarchial closure
method based on information theory; i.e., the maximum entropy
formalism (Levine and Tribus, 1979; Rosenkrantz, 1983). This
formalism provides a very general way of assigning
probability distributions over microstates subject to
constraints embodying known macroscopic information (see
Appendix_B). This approach can in principle_be used to
derive closed reduced descriptions in a single step, without
the necessity of generating or truncating an -{infinite
hierarchy of moment equations. It has recently-been used to
give a formal derivation of closed nonlinear dissipative
evolution equatjons in Hamiltonian statistical mechanics
(Ramshaw, 1986a). However, further theoretical developments
are needed before this approach will be apE11cab1e to
multiphase flow phenomena. The Navier-Stokes equations are
dissipative rather than Hamiltonian in structure, and if they
are adopted as the starting point the theory will need to be
generalized to a non-Hamiltonian microscopic dynamics. This
will entail, among other things, addressing the well-known
ambiguity in defining the appropriate volume element in state
space (Ramshaw, 1986b,c). This difficulty can be
circumvented by adopting the Hamiltonian equations of motion
for the constituent molecules as the microscopic starting
point, but one has the feeling that it should not be
necessary to go all the way down to the molecular level to
find a sound foundation for the theory. And even if this
were done, it is not yet clear how to ﬁroper1y identify the
"Rarameter of slowness" appearing in the general theory in
the case of a spatially distributed system.

Work to overcome these theoretical obstacles is in progress.
Even if it is fully successful, however, there will be
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practical limitations to the use of the results. The
resulting closed descriﬁtions will contain complex formal
expressions involving the detailed microscopic_dynamics in a
rather intractable way; they will be essentially multiphase
analogs of the familiar Green-Kubo time-correlation function
expressions for molecular transport coefficients (Ramshaw,
1986a). Such expressions can yield valuable information
about the structure of the theory and what variables appear
in the constitutive relations, but the¥ will seldom be
amenable to quantitative evaluation. he situation is
analogous to that of the ordinary molecular transport
coefficients of a dense fluid, which can in principle be
calculated from the intermolecular force law by means of the
Green-Kubo expressions, but which in practice must be
measured_experimentally. Such theories will therefore never
completely eliminate the need for empirical data; their
proEer function is rather to provide a suitable framework
within which experimental data can be compiled, interpreted,
and utilized, and to provide a well-founded starting point
for approximations.

Stochastic Models

Qur discussion so far has centered on deterministic models
for the determination of ensemble averaged quantities. An
alternative approach is to formulate equivalent stochastic
models, in which only a single (hopefully representative)
realization of the ensemble is simulated. In this approach
the evolution equations for the macroscopic variables of
interest contain stochastic terms, which in the present
context would represent part or all of the effects of the
unresolved small-scale motions back on the resolved
larger-scale motions., The evolution equations then assume
the character of nonlinear Langevin equations, which may be
solved by stochastic simulation methods (Suzuki, 1981;
Murthy, 1983; Gerling, 1984; Tartaglia and Chen, 1984;
Heermann, 1986). The stochastic a??roach has the potential
major advantage that it automatically_accounts for
fluctuation-renormalization effects (Zwanzig, 1980; Rodriquez
and Pena-Auerbach, 1984) without the necessity for explicitly
including the nonlocal terms to which such effects typica]]i
give rise._ When fluctuations are large, as is frequently the
case in multiphase flow, the equivalent deterministic models
for ensemble averaged quantities may be expected to contain
terms which are nonlocal in both space and time, in the sense
that constitutive relations depend on information from an
entire region of space and a finite time interval rather than
just on information from the immediate neighborhood of the
space-time point in question (Zwanzig, 1980; Rodriquez and
Pena-Auerbach, 1984). Such nonlocal terms are very
inconvenient to deal with in practical calculations, and if
they turn out to be essential for accuracy then stochastic
models may well be preferable to deterministic models.
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CONCLUSION

As previously emphasized, our ideas on discrete modeling are
still in a formative stage, and the present discussion i1s not
intended to be the last word on the subject. We recognize
that the picture we have presented is still incomplete, as we
do not ¥et have a well-defined universal procedure that one
can follow to ﬁenerate models of the type we advocate.
Indeed, no such procedure may exist; it may always be
necessary to adopt different approaches tailored to different
physical circumstances. Needless to say, at this stage we do
not recommend that existing models be discarded, nor that
attempts to improve them b{ the conventional approaches be
terminated. Progress should proceed on a wide front by a
variety of approaches. What we do hope is to promote a
greater awareness of some of the difficulties with the
current approaches and with some of the issues we have
discussed, many of which do not seem to be very widely
appreciated. And while we do not expect to be joined on the
discrete modeling bandwagon by a mass exodus of passengers
from more conventional modes of transportation, we would be
pleased to hear from and interact with occasional more
adyen%urous travelers who might consider themselves kindred
spirits.

APPENDIX A
REMARKS ON SLIDING VOLUME AND TIME AVERAGES

Our purpose here is to call attention to some properties of
sliding volume and time averages that are sometimes lost
sight of. For brevity the mathematical development will be
restricted to volume averaging, but entirely analogous
results and statements hold for time averaging.

A general sliding volume average of an arbitrary function of
position f(r) may be defined by

f(r) = Jdr' W(r-r') f(r’) (A-1)

where W(r) is a weighting function. The function W(r)
is assuméd to be everywhere positive, to be localized
in the vicinity of r = 0 (and therefore to tend toward
zero for large [r|), to have a characteristic width on
the order of the desired spatial averaging length L,
and to satisfy

Jdr W(r) = 1 (A-2)

The latter property ensures that when f(r) is uniform
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its value is not changed by the averag1ng Frequently
W(r) is taken to have the simple box o ep
fuiiction form W(r) = (1/L%) B(x)B(y)B z) where B(s) is
unity for - L/2 %' s < L/2 and zero otherwise.

Since Eq. (A-1) is of convolution form, it may be Fourier
transformed to yield

Fk) = W0 F() (A-3)

A
where F(k) denotes the Fourier transform of F(r). As

is well known, W(k) will have a characteristic width
of order 1/L. Now even if W(r) is taken to have the
s1mp1e box form given above, its Fourier transform

W(g) will in general be nonzero for all finite values
of k, although it must of course tend to zero as |g(
tends to infinity. Equation (A 3) may therefore be solved

for f(k) from a knowledge of f(k), so that f(r)
may be determined from a knowledge of its spatial

average f(r) The sliding spatial averaging of

(A-1) therefore does not discard or suppress any
information contained in f(r). In particular, it does

not remove or destroy the short-wavelength components;

it merely attenuates them. The averaged function f(r)
contains exactly the same information as the unaveraged
function f(r). It therefore cannot be expected to satisfy
equations of any simpler structure than f(r), and moreover
it clearly cannot be assumed to be smooth on scales less
than the averaging length L unless the original function
f(r) was already smooth on those scales. For an averaging
procedure to have the desired effect it must discard some
information, and since the present procedure does not do so
it cannot be regarded as a satisfactory basis for multiphase
flow modeling.

Two remedies for this difficulty suggest themselves.
The first is to define W(r) in such a way that its Fourier
transform is a box functidn in k-space; e.g.,

W(k) (const. )D(kx)D(k )D(k,), where

D(s) is unity for - 2/L < s < 2/L and zero otherwise.
Equation (A-3) then shows that the short- wave]ength
components of f(r) are actually removed by t
averaging, and thiat f(r) can no longer be
reconstructed from a know]edge of its average f(r)
But now a new d1ff1culty appears; when the 1nverse

transform of this W(k) is taken it is found to have
2ega§1ve regions, so it is not acceptable as a weighting
unction
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The second remedy is to no longer permit the volumes over
which the averaging is performed to slide continuously
around, but rather to fix them in space; e.g., to identify
them with the cells in a fixed grid. The spatial averaging
then no longer has the convolution form of Eq. (A-1) and the
above objections no longer appl{. In particular,
integration over such fixed cells clearly discards
information about the fine-scale structure contained within
those cells, as we would like an averaging procedure to do.

Nevertheless, spatial averaging over fixed cells is still
not sufficient in itself for the reasons already discussed.
It is still not really an averaging in the sense that it is
applied only to a single realization of the flow_and is not
a weighted combination of different possible realizations or
outcomes. It is therefore more appropriate to think of it
as a Tumping procedure; i.e., an operational procedure for
generating integral variables corres?ondyng to the
continuous variables of the fine-scale differential
description. As discussed in the text, it is still
necessary to ensemble average these integral variables
before one can have any hope that they constitute a closed
macroscopic description of the system.

APPENDIX B
OUTLINE OF MAXIMUM ENTROPY CLOSURE

Here we wish to indicate how the maximum entropy formalism
(Levine and Tribus, 1979; Rosenkrantz, 1983) provides a very
simple _route to closure in terms of whatever macroscopic
variables are utilized to describe a physical system. We
consider a system whose microstate is denoted by X and whose

relevant macroscopic variables are A(X) = (A (X) A (X),...).
The ensemble average values of the variables A(X) are presumed

to be known and are denoted by a = (al,az,...). The maximum

entropy formalism supplies the least biased or maxima]]g
noncommittal (in the sense of information theory) probability
distribution in X consistent with the specified values of a.

This distribution is of the generalized canonical form
p(X;3) = Q1(2) g(X) exp [y(2)-A(X)] (B-1)
where the partition function Q(a) is given by

Q(a) = J dX g(X) exp [y(a)-A(X)] (B-2)

and the Lagrange multipliers y(a) are functions of a
implicitly determined by the requirement that

J X p(X;a) A(X) = a (B-3)
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Here g(X) is the probability distribution of complete

jgnorance (Levine and Tribus, 1979; Rosenkrantz, 1983); i.e.,
the distribution that would be assigned by an unbiased
observer with no knowledge whatever of X. It is not always
clear how to determine g?g), but in many cases it may be

found by group-invariance arguments (Levine and Tribus, 1979;
Rosenkrantz, 1983), the rough idea of which is that truly
complete ignorance should remain complete under changes of
viewpoint. The distribution of Eq. (B-1) maximizes the
information entropy

S = - [ dX p(X;a) In [p(X;32)/9(X)] (B-4)
subject to the constraints of Eq. (B-3).

Since p(X;a) depends parametrically on a, so will
any average evaluated using it; i.e.,

<F(X)> = [ dX p(Xsa) F(X) = f(a) (B-5)

The distribution p%&;q) therefore provides a method

of closure; i.e., for expressing the average f of an
desired microscopic quantit¥ F(X) as a function of the
relevant macroscopic variables a. Further, this
closure is effected in a single step, without the
necessity of forming an infinite hierarchy of moment
equations and arbitrarily truncating it.

This procedure is appealingly simple in concept, but it
is by no means a straightforward matter to apply it to
two-phase flow modeling. There is as _yet no satisfactory
general procedure for identifying g(X), and there are

mathematical difficulties in dealing with microstates
described in terms of continuous fields. Moreover, in
dynamical problems one does not strictly have the freedom to
apply the maximum entropy formalism at different times during
a transient (although it may nevertheless be a useful
approximation to do so), because the time evolution of the
probability distribution p(X) is governed by a Liouville
equation (Ramshaw, 1986a). The maximum entropy distribution
may be invoked only as an initial condition, following which
the evolution proceeds according to the microscopic dynamics
of the s%stem. This circumstance is in fact the essential
reason why nonequilibrium statistical mechanics is more
difficult than, and differs in structure from, equilibrium
statistical mechanics.

In spite of these highly nontrivial difficulties, the fact
that the maximum entropy formalism effects a systematic
non-hierarchial closure in a single step makes it an
appealing alternative to more traditional hierarchy
procedures. It therefore seems worthy of further
consideration in connection with multiphase flow modeling.
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macroscopic system variables
ensemble average of macrostate variables

box function in Fosition space

box function in Fourier transform space

z coth z, or arbitrary function

arbitrary function

probability distribution of complete ignorance

plate spacing

wave number

spatial averaging length
partition function
position variable

information entropy
dummy variable
velocity

weighting function

microscopic variables
spatial coordinate

spatial coordinate ) )
dummy variable, or spatial coordinate

volume fraction,
Lagrangian multipliers

density or probability distribution
surface tension
complex angular frequency

phase index: 1liquid=1, vapor=2
denotes components of wave vector

spatial average
Fourier transform

vector quantity

ensemble average over microstates
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POST-DRYOUT HEAT TRANSFER

channel diameters and flow directions. The effect of
the superheating on the heat transfer coefficient
becomes smaller with increasing channel diameters, and
the effect of quality becomes smaller with decreasing
channel diameter.

The heat transfer coefficient increases with increasing
liquid jet velocity only in horizontal flow, and the
effects of the flow rate on the heat transfer
coefficient are identical, regardless of different
channel diameters. However, changing the liquid jet
velocity has little influence on the heat transfer
coefficient in vertical flow.

The effects of flow rate, superheating and quality on
wall shear stress can be correlated for one channel
diameter with dimensionlesg vapor film thickness,
channel diameter and flow direction. The wall shear
stress increases with an increase in the dimensionless
thickness and with a decrease in the channel diameter.
The wall shear stress in inverted annular flow with a
gsmooth interface having a thin vapor film, is less than
that in liquid single-phase flow, but increases ag the
interface becomes wavy.

Assuming inverted annular flow in the same channel
diameter, the wall shear stress in vertical flow is
larger than that in horizontal flow, because of the
wavier interface.
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