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Microsystems technology is gaining more and more interest in the scientific and industrial 

communities. Recently published articles concerning possible future applications of micro 
technologies predict a big commercial impact on nearly all branches of industry. 

Generally, given the multliple fields of applications of microsystems, it is quite difficult to 
obtain a straightforward definition of such a system. Perhaps the simplest way is to define the field 
with respect to the dimensions of the system components as shown in Fig. 1, where the scale of 
objects is represented in meters. Thus, a microsystem can be defined as a device that is 
characterised by a microstructure where the geometry size of at least one functional component is 
below 100 µm and where this component produces physical/chemical effects that cannot be 
achieved, without loss of performance, if the critical dimensions are significantly higher than 100 
µm without loss of performance. 

The main users of microsystems are industries in the field of microelectronics, chemical, 
pharmaceutical, and medical technology, included the automotive and aerospace companies. 
Typical microdevices are cardiac pacemakers, pressure sensors, accelerometers, inkjet heads, 
components for telecommunications and components for microelectronics. Generally, these 
components are characterised by reduced dimensions and increasing power generation. Therefore, 
the need to transfer high heat fluxes in relatively small surfaces and volumes brings new 
challenges in heat removal and cooling techniques. 

In the present context, a new generation of micro thermal devices are developed and are 
gaining importance. These micro thermal devices range from compact heat exchangers for air 
conditioning and refrigeration systems, to cooling elements for electronic components, portable 
telephones and computers, and aerospace avionics. Heat removal enhancement is obtained through 
the increase of heat transfer coefficient and of the heat exchange surface with decreasing channel 
hydraulic diameter. In particular, the hydraulic diameter in these micro thermal devices ranges 
from 1 µm up to 2 mm, significantly smaller than acroscale channels that are on the order of 5.0 to 
50 mm. 

Generally, the classical thermal and fluid dynamic theories developed for “macro systems” are not 
applicable to fluids in microscale structures. Thermo-fluid-dynamic phenomena that are generally not 
noticeable in macro systems, may play a dominant role in microsystems with the consequence that a lot 
of open questions exist and the few experimental results available in literature reveal that there are still 
important differences in the conclusions. Therefore, conventional macroscale methods are generally 
not satisfactory for thermal design of micro thermal devices in single-phase and two-phase flows. 
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Figure 1.1  Given the multliple fields of applications of microsystems, it is quite difficult to obtain a 
straightforward definition. May be the simplest way is to define the field with respect to the dimensions of the 
components. 
 

The purpose of Section 2.13 of HEDH is to provide a comprehensive overview of recent 
research results of fluid dynamics and heat transfer in single-phase and two-phase flow in 
microchannels and confined geometries. The presentation is divided into sections dedicated  to  
different  aspects  of  fluid  flow  and  heat transfer in microgeometries. Thus, Section 2.13.2 
reviews the results of single phase fluid flow of liquid and gases in microchannels. Disagreements 
reported in literature on deviations from classical theory are discussed and analysed. Section 
2.13.3 is a summary of single phase convective heat transfer in laminar and turbulent flow.  

Sections 2.13.4 to 2.13.6 and 2.13.8 deal with microchannel systems in which the flow is two-
phase in nature. Section 2.13.4 introduces the research on boiling and evaporation in 
microgeometries. The topics covered include flow patterns observations, flow boiling heat transfer 
and the description of heat transfer model developed for microgeometries. Section 2.13.5 is 
dedicated to the researches on multiphase flow in microchannels. Multiphase flow regimes, flow 
pattern maps, and pattern transitions are presented and their deviations from those observed macro 
systems are discussed. Section 2.13.6 is a summary of research trends in condensation in 
microchannels. Flow pattern maps, heat transfer correlations are presented. Section 2.13.8 deals 
with micro heat pipes and their applications. The section contains a review of recent research 
results on micro heat pipes including pulsating heat pipes. 

At the very small scale, channel dimensions approach molecular dimensions and the fluid can 
no longer be treated using the classical continuum mechanics approaches. In this situation 
modelling of the detailed molecular motions (“molecular dynamics”) becomes an important tool. 
Section 2.13.7 introduces molecular dynamics and its applications.  
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A. INTRODUCTION 
 

In recent years, research in the field of thermal-hydraulics at microscale level has been 
increasing constantly due to the rapid growth of applications which require the transfer of high 
heat rates and fluid flows in relatively small space and volume. Such applications range from 
compact heat exchangers to cooling systems for computer CPU’s, to microfluidic devices.  
Additionally, flow in microgeometries is required in the application of microelectromechanical 
systems (MEMS), and micro-energy and chemical systems (MECS).  

Generally, the classical thermal and fluid dynamic theories developed for “macro systems” are 
not always applicable to fluids in microscale structures with the consequence that standard design 
correlations are not appropriate at the microscale level.  

The relatively few works available in literature in the field of microscale thermal-hydraulics 
reveal contradictory results and there are still important discrepancies between the results obtained 
by different researchers. 

In what follows in Section 2.13.2B, we deal first with the problem of deviations from 
conventional equations for friction factor in the case of incompressible flow in microchannels. 
Various causes for such deviations are discussed. We then review (in Section 2.13.2C) the related 
matter of the laminar-to-turbulent transitions in microchannels. Finally, in Section 2.13.2D, we 
review work on compressible flows; compressibility effects are often very significant in 
microchannels because of the large pressure gradients occurring. 

 
 

B. FRICTION FACTORS IN INCOMPRESSIBLE FLOWS IN 
     MICROCHANNELS 
 
(a)  Background 
 
Flow resistances are commonly expressed in terms of the friction factor* (f) which can be 
calculated from the Darcy equation: 

                                                           
* Note that the friction factor used in this Section is defined as 8τo/ρu2 where τo is the wall shear stress, ρ the 
fluid density and u the fluid velocity. This friction factor is 4 times the Fanning friction factor. 
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Subscripts 
 
c capillary 
crit critical  
e evaporator 
eff effective 
h  hydraulic 
ir  irreducible 
l  liquid 
max maximum 
min minimum 
v vapor 
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