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PREFACE 

Fossil-fuel utilization, primarily in the form of combustion transformations, has been the 
backbone of worldwide industrial development for about two centuries. The reliance on 
such fuels is not likely to change in the foreseeable future as the remaining supplies of 
coal, oil, gas, shale oil, tar sands, etc. appear to be adequate for decades. Another reason 
for this belief is that alternative technologies, including renewable systems, have not 
proven to be economically competitive in the past. In view of the anticipated continuing 
cost advantage of fossil-fuel-based combustion technologies, there are research, devel-
opment and design requirements for sustainable technological advances discussed in the 
paragraphs to follow. 

Numerous respected petroleum geologists have pointed out that worldwide discovery of 
oil peaked decades ago, and the only question is whether other fossil fuels (including 
hydrogen) will replace “cheap” oil in time for needs in propulsion, power generation, 
chemical goods, etc. which are made from petroleum, or will the world run “out of gas.” 
Goodstein* has recently argued that there is no “single magic bullet” in sight that will solve 
the world’s energy problems. To quote him, “There is no existing technology capable of 
replacing the oil we will soon be without, nor is there any on the horizon that we can depend 
on to replace the remaining fossil fuels when they are exhausted.” Somehow during the next 
several decades, new energy sources will have to be found that can produce sufficient, clean, 
and cheap energy on a sustainable basis. The best hope for the future of our civilization lies 
in new technologies based on scientific discoveries that have not yet been made. In the 
meantime, while the world will start running out of conventionally produced cheap oil and 
natural gas, the burden is on the combustion scientist/engineer to design and operate fossil-
fuel-fired combustion systems that are much more energy efficient and environment 
friendly. 

Combustion of fossil fuels is a polluting process, and in today’s environmental era (from 
about 1970 to the present) combustion research, process improvements, and new process 
developments are motivated mainly by the challenge of reducing pollutant emissions. 
Gaseous pollutants, such as oxides of sulfur and nitrogen, polycyclic aromatic compounds, 
greenhouse gases, and nitrogen oxides, as well as fine inorganic aerosols and soot, require 
special attention because of their wide-ranging effects on the environment. These pollutants 
contribute to reduction of atmospheric visibility, acid rain, production of tropospheric ozone, 
and to depletion of stratospheric ozone in the case of water. Increases in heat extraction 
efficiency from the flame or heat transfer from the flame to the bounding surfaces/load, and 
thereby eventual decreases and complete elimination of greenhouse gas emissions to the 
atmosphere, is a grand challenge for the 21st century. The goal of fossil combustion research 

                                                      
* D. Goodstein, Out of Gas, W.W. Norton & Co., New York (2004). 
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and development is to create high-efficiency and clean combustion technology options that 
can mitigate adverse atmosphere climate changes, reduce pollutant emissions, and simul-
taneously increase fossil fuel utilization efficiencies. 

Today’s combustion engineers and scientists are often confronted with complex 
combustion phenomena that depend on interrelated processes of thermodynamics, chemical 
kinetics, fluid mechanics, heat and mass transfer, and turbulence. Thermal radiation 
transport in combustion systems at high temperatures is an important process that has been 
receiving increased attention in the last few decades because of environmental, energy 
efficiency, and economic considerations. Understanding of fundamental radiative transfer 
concepts as they impact coupled processes in flames and combustion systems should 
provide engineers and scientists with the technical background and training to solve various 
current and future practical combustion problems. During the transition from present to 
indefinitely sustainable technologies, fossil-fuel utilization technologies may include hydro-
gen technologies coupled to renewable energy supplies in biomass forms (e.g., special crops, 
plant residues, etc.). Combustion of biomass is expected to be an important combustion 
technology that will require understanding and all of the necessary controls. 

Market demands and federal regulations on controlling combustion performance have 
led and continue to drive the development of more efficient combustion devices. Increased 
use of natural gas will continue in the U.S. largely due to its availability and price. Changes 
in Title IV of the Clean Air Act of 1990 have made natural gas a more desirable alternative 
fuel. However, global warming concerns may in the future restrict not only the use of a 
desirable fuel, such as natural gas, but other fossil fuels as well. Computational design tools 
will be needed for burner and combustion system designs to determine the effects of fuels, 
burner position and orientation, and geometry on combustion system performance. Hence, 
one of the main tasks of a research worker or a designer in the combustion field will be to 
develop and use computational methods that describe important phenomena in practical 
industrial systems that are expected to drive the combustion technology. 

Energy for high-temperature processes is usually derived directly from fossil fuel; 
therefore, combustion is an integral part of many “hot” systems. The rapidly developing 
discipline of Computational Fluid Dynamics (CFD) is being used to help understand, design, 
optimize, and operate high-temperature processes. These processes involve the transfer of 
heat, mass, species, and momentum in a very hostile environment. Combustion and heat 
transfer are closely linked disciplines and together they form the theme of this volume. At 
high temperature, radiation is either a very important or the dominant mode of heat transfer. 
Radiative transfer differs from conduction and convection in its fundamental laws and 
formulation and is a special focus in this volume because of its conceptual and 
computational difficulties. The emphasis in the book is on those combustion situations in 
which radiative transfer has been identified as an important or a dominant phenomenon 
influencing physicochemical processes and energy transport. 

The aim of the book is: 1) to lay the foundations of radiative transfer for inclusion of the 
process in modeling of combustion phenomena and in predicting radiation heat transfer in 
chemically reacting and combusting systems, 2) to collect relevant information on the effects 
of thermal radiation on chemical processes in combustion devices, and 3) to identify and 
discuss radiation and total heat transfer in important combustion applications. 

The book is basically organized in two parts. The first part (Chapters 1 through 7) deals 
with the fundamentals of radiative transfer (e.g., concepts, thermodynamics and physics of 
radiation, phenomenological description of radiative transfer, radiation characteristics of 



 

 

combustion gases, radiation characteristics of particulates, and methods for solving the 
radiative transfer equation and integrating over the spectrum). The second part (Chapters 8 
through 15) of the book deals with combustion phenomena that are affected by radiative 
transfer and discussion of combustion devices in which radiation transport plays a significant 
or major role and impacts the system performance. Specific applications include modeling of 
radiative transfer in isolated, individual flames and industrial combustion devices ranging 
from burners to industrial furnaces. The volume includes a chapter on wildland fires 
(Chapter 14) in which radiation plays a dominant role in the spread of fire and represents a 
hazard to humans as well as property. The book concludes with a chapter on premixed 
combustion in porous media (Chapter 15), a promising technology for reducing pollutant 
emissions and improving energy utilization efficiency for a variety of applications. 

Many textbooks have been written on combustion and on radiation heat transfer, but 
both types of books contain limited information on combination radiative transfer and how it 
impacts combustion processes and performance of combustion devices. The key difference 
between this book and others is that it examines each application from a somewhat narrow 
scope to learn how radiative transfer affects the combustion processes and on the 
performance of combustion systems. The basics of combustion are considered, but from a 
limited perspective as to how combustion is influenced by radiative transfer and how the 
performance of a combustion device or system is affected by radiation. There is very little 
discussion of combustion kinetics because this subject has been more than adequately 
covered in combustion books and because the kinetics of the chemical reactions have 
significant impact on radiative transfer only in special circumstances. Rather, the book 
attempts to narrowly discuss those topics in regard to how radiative transfer affects the flame 
structure (e.g., temperature and species concentrations), and how the temperature impacts 
physicochemical processes during combustion. 

As with any book on combustion and radiative transfer, there are many topics that are 
not covered and others that are treated only superficially. This work does not cover many 
topics relevant to radiative transfer in infrared radiating gases or in dispersed systems. The 
book also does not deal with applications of radiative transfer in many combustion systems, 
which are very important technologically in power and industrial steam generation (boilers, 
fluidized bed combustion, packed bed combustion), propulsion (internal combustion, gas 
turbines, rocket propulsion), industrial processing, and many other specialized combustion 
devices and applications, such as nonintrusive diagnostics in combustion systems. Some 
topics, such as combustion and heat transfer in furnaces, are discussed in a cursory manner; 
others, such as radiative transfer in gas turbine combustors, are discussed by way of 
example. The focus is on radiative transfer fundamentals and applications to simple 
combustion systems and devices. 

The book discusses how to construct, use, and interpret numerical results of combustion 
system simulations. Radiation transport must be a part of comprehensive models used in 
interpreting, analyzing, and optimizing combustion systems. Computer models can reduce 
the number of costly and time-consuming experiments in designing combustion devices. 
Modeling of radiation and its interaction with other processes (i.e., turbulence) needs to be 
treated for realistic description of chemical kinetics and computational procedures to 
quantify description of transport phenomena in combustion devices. 

I have liberally used the published literature. While I am indebted to these scholars and 
to those colleagues who shaped my thinking, I am of course responsible for errors and 
omissions in interpreting their work. Many individuals have contributed to the development 
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of this book. Sections of the volume were used for years as notes in a graduate-level 
radiation heat transfer course at Purdue University, and the comments of students are greatly 
appreciated, as are the comments of over 100 former graduate students and postdoctoral 
researchers who worked with me in the past and provided technical comments and critique. 
Of these, I would especially like to mention Professor M. Pinar Mengüç, University of 
Kentucky. I am indebted to my Purdue University colleagues Professor J.P. Gore, Professor 
F.P. Incropera, and Professor S. Ramadhyani for many enlightening discussions on radiative 
transfer and heat transfer in combustion systems. 

Finally, the book could not have been written without the expert typing of the 
manuscript by Francesca Beard and Lori Gardner. The figures were prepared by Michael 
Black and Charles Tseng. I am indebted to Peter and Donna Thompson for their editorial 
assistance in removing errors, inconsistencies, and ambiguities from the text. 

 
R. Viskanta 
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CHAPTER 1 

Introduction 

1.1 Combustion in Nature and Technology 
Fires fascinated prehistoric man, and unwanted wildland, building, urban, and large-scale 
industrial fires have preoccupied modern man for centuries [1]. Fossil-fuel utilization, pri-
marily in the form of combustion transformations, has been the focus of worldwide devel-
opments for about two centuries. The utilization of combustion systems for power genera-
tion, propulsion, process industry, materials processing and manufacturing, domestic use, 
and others have occupied man until present. During the pre-environmental era the objec-
tives were to complete combustion with a minimum of excess air and absence of carbon 
emissions. In the present environmental era (since about 1970) attention is being turned 
toward pollutant emission control technologies and reduction of CO2 emissions to mitigate 
their effects on global warming. During the last two decades several factors have emerged 
that continue to influence the development of combustion systems. As a result of the inter-
national greenhouse gas debate, emission control is gaining increased acceptance and is 
adding the task of raising the energy efficiency of systems to the existing demands for re-
duced pollutant and CO2 emissions. A number of technological fixes that have been pro-
posed to alleviate further global warming are discussed by Hoffert et al. [2]. 

The combustion systems of interest in this volume range from aerospace propulsion to 
wildland (forest) fires. At the high temperatures encountered in most of the applications of 
interest, the flow is turbulent and radiative transfer is, if not the dominant, at least an 
important, desirable or undesirable mode of energy transfer controlling the processes or 
performance of the system. For example, in combustion technologies related to power 
generation, radiation from the flame/combustion products to the tubes in the steam boiler is 
desirable [3]. Whereas radiation coupled to turbulent convection is often undesirable in an 
aerospace propulsion system using a solid propellant as a fuel. In a solid propellant engine 
high specific impulse is generally achieved by adding to the oxidant and to the polymeric 
binder a metal fuel, such as aluminum. Metal combustion increases the temperature and 
pressure inside the chamber. The high temperature and pressure combustion products (gases 
and particles) result in high radiant fluxes to the chamber walls, which require cooling [4]. 

In combustion systems, radiation is an important mode of energy transport for several 
reasons. First, high temperature combustion devices require consideration of heat transfer by 
diffusion, convection, and radiation, and energy losses from the reaction region govern 
processes, such as flame quenching, flame evolution near walls, and others. Second, the heat 
transfer rate from the reactants and/or postreaction combustion products to the load and/or 



 

containment walls of the chamber is determined 
by convection and radiation. Third, in com-
bustion systems, where the primary function of 
the process is to convert chemical energy to 
thermal energy of the products, there is a need 
to keep temperatures low so as to reduce 
pollutant emissions. Fourth, understanding of 
radiative transport in combustion devices is 
needed for development of versatile computa-
tional tools in which radiation is accounted for 
in predicting the combustion process and/or heat 
transfer to the load in the system. 

Figure 1.1 Schematic representation of the cur-
rent scientific method. 

The current scientific method in science and engineering is shown schematically in Fig. 
1.1. In addition to theory and experiment, simulation has emerged as the “third leg” of the 
method. Simulation is neither experimentation in the traditional sense of the word nor 
theoretical analysis. Theoretical studies are limited by analytical constraints and experiments 
are limited by the bounds of cost, hazard, measurement techniques, and time. With 
simulation, however, analysis can be extended by numerical calculations and experiments 
are augmented by simulations. Some parameters can now be more accurately simulated than 
they can be measured. Full-scale simulations are often feasible, whereas full-scale experi-
ments are usually too costly or too risky to perform. In summary, with the availability of 
computers today, the scope and extent of the scientific method is vastly enhanced. 

To facilitate simulation, a physical/mathematical model is needed. The model could be 
of the full-scale system, prototype, or component. As a concrete example, consider the first 
step in the construction of a mathematical model for an industrial combustion chamber. The 
analysis begins with the simplification of the physicochemical processes occurring in the 
system. Figure 1.2 shows a schematic of the processes and their interactions taking place in a 
combustion chamber with a diffusion flame. The relevance of radiative transfer in 
combustion systems has been recognized [5–8], but sufficiently detailed models for radiative 

Figure 1.2 Schematic of physical and chemical processes taking place in a diffusion flame in a combustion 
chamber. 
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transfer require complicated descriptions of the spectral radiation characteristics of the main 
chemical species and particles (if any), the solution of the radiative transfer equation, 
integration of the equation over the spectrum, and solution of the transport equations with a 
radiation term accounted for in the thermal energy equation. In the past, radiative transfer 
has been neglected in analyzing combustion phenomena and in calculating system 
performance. Currently, however, serious efforts are being made to account for radiation in 
practical combustion systems [9,10]. Radiation transport is a major scientific field in its own 
right and has received significant research attention and organization during the last century, 
with many books and treatises written on it. 
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In this chapter, important concepts and definitions are introduced to lay the foundation 
for the discussion of the physics and thermodynamics of radiation. The different concepts, 
together with the fundamental laws of modern physics, are then used in conjunction with the 
radiative transfer theory to construct models for the radiation characteristics of gases and 
particles and to develop analysis to simulate radiative transfer in flames and different 
combustion systems. 

1.2 Physical Nature of Radiation 

1.2.1 Duality of radiation phenomena 
Energy can be propagated either by moving matter or by a wave disturbance through a 
medium that does not move itself. One will immediately recall the rise in temperature 
that results from absorption of the sun’s rays, as well as other manifestations of energy 
due to the same cause. It is apparent that only two general theories are possible because 
energy can be transmitted from one place to another by only one of two means. In gen-
eral, since energy can be propagated either by moving matter or by a wave disturbance 
through a medium that does not itself move as a whole, two general (i.e., wave and cor-
puscular or quantum) theories have been formulated [11–13]. According to the electro-
magnetic wave theory, a disturbance travels from the source of radiation through the sur-
rounding medium; according to the corpuscular theory, radiation consists of a flight of 
invisible rapidly moving particles (photons) whose size varies with the wavelength emit-
ted from the radiation source [11]. One important difference between the two theories 
may be noted. In the wave theory, at all points on a surface through which an ordinary 
beam of radiation is passing, energy is uniformly and continuously distributed; whereas 
in the other, the energy distribution is discontinuous, being concentrated at points. Only 
when the beam of particles is so intense that it seems to be continuous must it in some 
way become equivalent to what is described as a light wave in classical physics. 

There exists a mutually complementary dualism between the wave and the corpuscular 
concept. Both theories are complementary and both models are valid. Which one is to be 
emphasized depends on occasion, although both may serve equally well for phenomena in 
which the wave nature is prominent as well as for phenomena in which the particle character 
is manifested [11]. 

A theory is satisfactory only in so far as it provides an explanation of physical facts. As 
it is impossible for most people to think of waves without a medium to carry the wave 
motion, and as matter is not necessary for propagation of radiation, a hypothetical ether was 
to be postulated although no such postulate is necessary in the corpuscular theory. For 
generations, the attention of physicists has been directed toward problems connected with 
the emission and absorption of light. This work has shown that there are many facts for 
which an adequate explanation cannot be given in terms of simple wave theory [11–13]. One 



 

of the most important of these facts was discovered by Hertz. He noted that light, when 
incident on a metal plate, may cause an emission of electrons that is independent of the 
intensity of the radiation. The simplest interpretation of this phenomenon is that light 
consists of particles that, because they are localized objects, can transfer all their energy to 
the photoelectrons during a collision. When the laws governing the photoelectrons were later 
discovered, it was found that the corpuscular or quantum theory, which postulates the 
emission of light discontinuously in isolated bundles of quanta, provided the explanation, 
whereas the continuous wave front of the wave theory failed to do so. Although the 
assumption that light is made up of localized particles enables us to explain the photoelectric 
effect in a very simple way, it cannot be made consistent with the extremely wide range of 
experiments leading to the conclusion that light is a form of wave motion. An example of the 
physical phenomenon that calls for wave interpretation is interference. Interference can be 
both qualitatively and quantitatively explained by the assumption that light is made of waves 
that can interfere either constructively or destructively so that under some circumstances the 
waves may cancel each other [13]. 
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There are certain phenomena, therefore, that can be interpreted only by thinking of 
radiation as having a corpuscular nature or a kind of atomicity, the fundamental unit 
possessing a quantum of energy. One must not forget, too, that other phenomena, such as 
interference and diffraction, find a complete and satisfactory explanation by an ordinary 
(classical) wave theory. The modern position, then, is that radiation has a dual aspect. 
Sometimes one must think in terms of waves, sometimes in terms of photons. Thus, these 
two points of view are complimentary. 

1.2.2 Identity of radiant energy and light 
It can be demonstrated experimentally that radiant energy and light obey identical laws 
and have identical properties [12,13]. So far as their physical properties are concerned, 
heat rays are identical with light rays of the same wavelength. The term “thermal radia-
tion” or more simply “radiation,” then, will be applied to all physical phenomena of the 
same nature as light rays. As a further consequence of this resemblance, one can mention 
here some of the fundamental optical processes that pertain to heat transfer by thermal 
radiation. They are emission, absorption, scattering, and transmission, and their discus-
sion is left for a later section. 

Fundamental laws of geometric optics theory are: 1) the law of the rectilinear 
propagation of light; 2) the law of the independence of the different portions of a beam of 
light; 3) the law of reflection; and 4) the law of refraction. The rectilinear propagation of 
light, for example, is shown by the shadow of an opaque body that a point light source casts 
upon a screen [13]. Physical optics is concerned with such phenomena as light diffraction, 
interference, polarization, and dispersion. Experiments show, for example, that under certain 
conditions two parallel or nearly parallel beams of light do not produce increased intensity 
when superposed, but rather disturb each other’s effects in such a way that darkness results 
[13]. This modification in intensity obtained by superposition of two or more beams of light 
is called interference. If the resultant intensity is zero or in general less than one expects 
from the separate intensities, we have destructive interference, while if it is greater we have 
constructive interference. 

The passage of radiation from one medium to another causes the change in wavelength 
in the same proportion as it does in velocity since the frequency of propagation is not altered. 
Inasmuch as the wave front represents a surface on which the phase of motion is constant, it 
should be clear that regardless of any changes in velocity two different wave fronts are 



 

0), and for highly scattering media when κ
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λ << σλ, the medium and the albedo approach 
unity (ωλ → 1). The single scattering albedo is an important characteristic scaling pa-
rameter in radiative transfer problems in the presence of scattering. 
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