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Preface

The current volume of the "Thermal Physics" series is concerned with tube vibra-
tions in heat exchangers. Causes of the vibrations are ascertained. Possibilities of
allowing for them are considered, and scientifically grounded recommendations
for suppressing them to an admissible level are given. A large body of informa-
tion on studying unsteady hydrodynamic processes and forces acting on the ele-
ments of structures in a flow is presented.

The first unified data on the flow-induced tube vibrations were reported in
the monographs "Convective Transfer in Heat Exchangers" (1982) by A. Z uka-
uskgs and "Fluid Dynamics and Vibrations of Tube Bundles in Flow" (1984) by
A. Z ukauskas, R. Ulinskas and V. Katinas. The reviews of these publications
indicated that the presented data on the flow-induced tube vibrations enjoy a
wide application and are of interest for many designers of heat exchangers, as
well as for researchers dealing with the problems of fluid dynamics and heat
transfer in industrial power plants.

In recent years the Institute has accumulated new extensive data on the flow-
induced tube vibrations that were published in various literature sources. There-
fove, we set out to revise the available material, complete it with the latest data
and document in the plan of scientific advances. Similarity correlations for pre-
dicting stability of tube arrays in the flows of heat-transfer agents were derived
and reported.

The first chapter of the book treats structural features of the tube arrays of
heat-transfer constructions of the heat exchangers, gives a general information on
the fluid dynamics and flow-induced tube vibrations and techniques of taking into

b.4



account the intensity of tube vibrations proceeding from the material strength.

The second chapter describes experimental facilities, operation principles of
the measuring elements and investigation methods.

The third chapter is devoted to data on the unsteady fluid-dynamic processes
occurring in a detached flow past the tubes and on fluid-dynaniic forces acting on
the tubes.

The fourth, fifth and sixth chapters provide theoreticai results and experi-
mental data for the flow-induced vibrations in various tube arrays, viz bundles of
parallel tubes in a cross flow, radial tubes, inclined tubes, tube bundles turned rel-
ative to the flow direction, and also on individual tubes and in their systems. The
studies employed smooth, finned as well as uniformly and nonuniformly placed
circular and plane-oval tubes. Measures for averting the flow-induced tube vibra-
tions were explored.

The seventh chapter covers a technique of predicting the flow-induced tube
vibrations and methods of suppressing an acoustic resonance originating in heat
exchangers. Indications are given on the selection of the range of operating
velocities of the heat-transfer agent with consideration of stability of the heat-
transfer constructions in its flows.

The book has come to light owing to the financial support of the Lithuanian
State Department of Science, Engineering and Technologies.

The authors wish to express their gratitude to scientific workers E. Perednis,
A. Marcevitius, A. Tumosa, V. S uksteris, R. Bakas et al., who part1c1pated in
tbe experimental studies and data processing, and also to J. Zlugzda L. Burkoj
and to all those, who assisted in preparing the book manuscript for publication.

xi



Nomenclature

A, Ax, Ay - rms amplitudes of tube vibrations in any, longitudinal and trans-
verse directions relative to the direction of an incident flow, m;

a - relative transverse pitch (s,/d), thermal diffusivity, m?/s;

b - relative longitudinal pitch (s,/d);

A - relative diagonal pitch of the staggered bundle (s, /d);

cp - total drag (Pp/ (0.5dIpi®)) ;

s - friction drag (P, / (0.5dlpi’)) ;

c, - pressure drag (P, / (0.5dIpi?)) ;

Cp 6, - coefficients of the longitudinal and transverse nonstationary fluid-

dynamic forces (P,/ (0.5dIpi,)) , (P,/ (0.5dIpu®)) ;

d - diameter, m;

e - nondimensional displacement of the tubes relative to the symmetric
position (y/(s, — d));

e - relative spacing between the tube bundle and the wall (k/(s, — d));

) - tube length, m;

1 - correlation length, m;

Al - distance between two measurement points, m;

F - force, N;

f - frequency, Hz;

J, - frequency of vortex shedding, Hz;

f, - natural frequency of tube vibrations, Hz;



h - channel height; minimal flow section between the end tube of the
bundle and the channel wall, m;
m - design mass of the tube per unit length (m, + m, + m,), kg/m;

m,m,m - tube mass, additional fluid mass and fluid mass in the tube, respec-
tively, kg/m;

Py - resultant drag force (P;+ P), N;

PP P " - resultant of the frictional forces and resultant of the pressure forces,
respectively, N;

P, Py - longitudinal and transverse stationary fluid-dynamic forces, N;

)/ - pressure, Pa;

Ap - pressure drop, Pa;

7 - pressure coefficient (1 - Ap/ (0.5pﬁ2) )

A - spectral density of the tube vibration amplitude and of the flow
velocity fluctuations, respectively, s;

S 8y - transverse and longitudinal pitches between the bundle tubes, m;

5 - diagonal pitch of the staggered tube bundle, m;

Tu - turbulence degree, »/;/ u

t - time, §;

At - time interval, s;

U, - velocity of the incident flow, m/s;

w - velocity in the narrow cross section of the bundle (Uyal(a— 1)), mfs;

u,v,w - components of the flow velocity, m/s;

u', v', w - fluctuating components of the flow velocity, m/s;

XY - drag and lift forces, respectively, N;

X, 0z - Cartesian coordinates, m;

o - angle of the bundle turn relative to the flow direction, deg.; thermal

conductivity, W/(m2K);
- angle of the tube inclination to the flow direction, deg.;
- logarithmic decrement;
- dynamic viscosity, Pa-s;
- kinematic viscosity m?/s;
- fluid density, kg/m3;
- stress, N/m?;
- angle, deg.;
- angular frequency (2mf), 1/s;
- Prandtl number (v/a);

VES QAU =RTE O

-

xili



Re - Reynolds number (ud/v);

Sh - Strouhal numbser (f,d/u);
Sh, - nondimensional vibration frequency of the tubes (fd/u ).
Subscripts:
£,0 - in the undisturbed flow;
- at the wall;
() - averaging;
() - fluctuating components.

The remaining nomenclature is given in the text.
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Introduction

1.1 General Information

The development of power engineering, chemical and oil-refining industries,
vehicle construction and other areas of engineering is characterized by a signifi-
cant enhancement of the processes of heat and mass transfer, by a reduction of
the specific amount of metal and by an increase in the energy stress of heat
exchangers. These areas [1] widely apply tube recuperative heat exchangers
(Fig.1.1) in which both heat-transfer agents (working fluids) simultaneously flow
over a heat-transfer surface and the heat is transferred from the primary to the
secondary heat-transfer agent through a wall dividing them. Such a way of heat
transfer allows the creation of a heat exchanger that meets all imposed require-
ments. The structures of heat exchangers are diverse and predominated by param-
eters of the working fluids.

Much used in practice are shell-and-tube heat exchangers (Fig. 1.2) assem-
bled from different-curvature tubes, viz. straight, U-shaped, coil, helical and oth-
ers. A tube surface can be smooth, finned and other, whereas a cross section can
be circular, plane-oval, elliptical, etc. A spatial orientation of the heat-transfer
surface in the apparatus (Figs. 1.1 and 1.2) can be vertical, horizontal and
inclined.
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Fig. 1.] Schematic of a recuperative heat exchanger: 1 —frame; 2 — heat-transfer surface; 3 — partitions
(spacing grids); 4, 5 — inlets and outlets of the primary (I) and the secondary (II) heat-transfer agents;
6 - tube grid (board).

A great problem is presented by a thermal extension of the recuperative heat
exchangers. Rigid-structure heat exchangers and those with the extension com-
pensation by elastic elements are manufactured. First, (Fig. 1.2 a) straight heat-
transfer tubes in the shell are connected rigidly to tube grids and second, the
tubes and the shell can shift relative to each other. In these cases, U-shaped tubes
(Fig. 1.2 b), moving floating tube grids and curved tube sections (Fig. 1.2 c, d),
compensating for the thermal extension, are frequently applied. The thermal
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Fig. 1.2 Schematic diagrams of tube arrangements in the shell-and-tube heat exchangers
with straight (a), U-shaped (b), coil (c) and helical (d) tubes.
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stresses change vibromechanical characteristics of the heat-transfer tubes. There-
fore, the questions of thermal deformations have to be solved at the stage of
designing heat exchangers.

Circulation of the heat-transfer agent in the heat exchanger can be natural,
forced or due to gravity. The heat exchanger shell can be box-like, tubular or of a
different shape.

Depending on the designated purpose, various processes occur in heat
exchangers, viz. heating, cooling, boiling, condensation, freezing-out, rectifica-
tion, etc. Therefore, heat exchangers are subdivided into heaters, coolers, evapo-
rators, steam generators, condensers, etc.

As the heat-transfer agents, use is often made of liquids, viz. water, various
oils, liquid metals (sodium), organic substances (glycerin and others) or of gases,
viz. air, hydrogen, helium, carbon dioxide and others. With rising temperature,
liquid heat-transfer agents change to gaseous, and the higher is a pressure of the
working fluid, the higher are temperatures at which this change occurs. At high
pressures gaseous heat-transfer agents can transform into liquid.

In identical conditions and modes of the flow past tubes (Fig. 1.3) which are

o, w
,m2~K

4000 S }J -
\ /-
3200

2400
/)

70

30

0 40 80 120 ¢, deg

Fig. 1.3 Variation in the heat transfer coefficient round the perimeter of a circular tube at Re = 5104
in air (1) and water (2) flows.
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Fig. 1.4 Variation in the drag of the tubes of circular and elliptic cross sections: 1 — with a flow past
a major axis of the elliptical tube with an axes ratio of 1:2; 2 — with a flow past the circular tube;
3 — with a flow past a minor axis of the same elliptical tube.

characterized by a Reynolds number, the beat-transfer coefficient [2] in a water
flow is generally by one or two orders of magnitude greater than that in an air
flow. However, the better is streamlining of the tubes and the lower is the drag
(Fig. 1.4), the worse is the heat transfer (Fig. 1.5).

Various circulation schemes of the working fluids are employed in designing
heat exchangers, viz. gas-gas, liquid-liquid, gas-liquid, steam-steam, steam-gas
and steam-liquid schemes. With operation by the first scheme, the beat transfer
coefficient of gas [2] is not high (Fig. 1.3), therefore, the overall dimensions of
heat exchangers are large. With operation by the second scheme, the specific
amount of metal of the heat exchanger decreases appreciably. In the case of the

b o’ \3/
[ 3,,>]<\\ < 7
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Fig. 1.5 Variation in the heat transfer coefficient round the perimeter of the tubes of elfiptical and
circular cross sections at Re = 2-104 in the flow of transformer oil (see designation 1-3 in Fig. 1.4).
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third operational scheme, it should be borne in mind that the heat transfer coeffi-
cient of gas is markedly smaller than that of liquid. To attain equal heat transfer
from both sides of the tubes, finned tubes [3] that allow about a 20-fold enlarge-
ment of the area of heat transfer from gas are much used instead of smooth. With
the steam-liquid scheme, smooth tubes are applied because a great heat quantity
is removed in the steam condensation. Many problems associated with heating,
cooling and condensation of the working fluids are solved using developed heat-
transfer surfaces. Having balanced the heat-transfer coefficient it is possible to
reduce the specific amount of metal, overall dimensions and cost of the heat
exchanger.

Reliability and durability of the heat exchanger are largely governed by the
intensity of the vibrations of heat-transfer elements induced by the flows of heat-
transfer agents. Particular requirements of stability of the heat-transfer tubes in
the flows of heat-transfer agents are specified for heat exchangers utilized in
nuclear engineering and in other special cases, when every possibility of the
working fluid flow from one loop to another is ruled out, since this may cause
emergency in the reactor. Therefore, in designing the state-of-the-art heat
exchange equipment a complex problem needs to be solved that encompasses the
questions of heat transfer, fluid dynamics and stability of tubes in the flows of
heat-transfer agents, as well as of heat transfer enhancement.

Methods for enhancing a convective heat transfer [4-9], which determine an
energy efficiency of the heat exchangers, can be separated into passive, active and
complex.

Among passive methods is the use of finning of the tubes and of other devel-
oped surfaces from the side of the heat-transfer agent with a low heat- transfer
coefficient, of agitating networks, swirlers, rough surfaces and also of facilities
that break down the boundary layer and increase the heat transfer.

Active methods necessitate the use of an extra external energy, e.g. of ultra-
sound, tube vibrations, rotation of the heat-transfer surfaces, electric field, etc.

Complex methods are those with which not more than two types of enhance-
ment of the convective heat transfer are applied simultaneously. A case in point
may be the heat-transfer surfaces fabricated from finned tubes with insertions for
flow swirling. Here the convective heat transfer from the inner and the outer sides
of the heat-transfer element is enhanced.

It should be remembered that the heat transfer enhancement entails an
increase in the energy consumption on pumping of the heat-transfer agent and a
change of the fluid dynamic forces acting on the tubes. Heat transfer, fluid
dynamics as well as strength and stability of the tubes in the flows of heat-trans-
fer agents are predicted with consideration of this fact. The tube stability is spec-
ified by a level of the vibrations of heat-transfer structures excited by the flows of
heat-transfer agents past them. Up till recently little attention has been afforded
to the flow-induced tube vibrations, however, in updating the heat exchangers
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this problem has become one of the primary for carrying out thermohydraulic
predictions.

Studying the vibrations of heat-transfer elements in the flows of heat-transfer
agents involves the investigation of steady and unsteady fluid dynamic processes
brought about by the streamline flow. The flow past tubes can be longitudinal,
cross and oblique. In the first case, the tubes are streamlined without a fluid sepa-
ration from their surface and in the second, with a fluid separation. The fluid flow
near the tube surface is characterized by instantaneous fluid-dynamic processes
of local and integral effect. The flow-induced vibrations are determined by a
character of the flow past tubes, by an interaction with the streamlined structure,
by a fluid flow through the tube arrays, by an additional fluid mass, by parame-
ters of the incident fluid and by surface characteristics of the heat-transfer tubes.

Two basic problems are differentiated in the investigations of the vibrations
of heat-transfer elements, one of them related to the flow past tubes and the other
to their vibrations. The flow-induced tube vibrations are determined by a vortex
shedding from the tubes, turbulence of the incident flow, nonstationary forces
acting on the tubes, etc. The consideration of the vibrations of flow-excited tubes
involves the identification of excitation types, of statistical characteristics, of an
interaction between the vibrations of individual tubes of a bundle, of a vibration
effect on the streamline flov and of many other factors. Such a comprehensive
investigation makes it possible to ascertain an actual pattern and causes of the
vibrations of tube systems in the flows of heat-transfer agents and to find scientif-
ically justified control measures.

Obtaining optimal technical and economic characteristics of the heat
exchangers requires a correct choice of their structural model, materials, dimen-
sions of the elements of the surface heat transfer, as well as of the type and veloc-
ities of the working fluids. The structural models of heat exchangers should be
selected proceeding from minimal capital outlays and service costs.

The book presents results of the experimental and theoretical study of
unsteady fluid dynamic processes and forces acting on the tubes in a detached
flow and of flow-induced tube vibrations. Consideration is given to the arrays of
tubes of circular and plane-oval cross sections. Based on the investigations con-
ducted in the Institute for Physical and Technical Problems of Power Engineering
(at present the Lithuanian Energy Institute) the data, acquired in scientific centers
of other countries over the past 20 years, are generalized. A good deal of atten-
tion is given to elucidating a physical essence of the origination of the vibrations
of beat-transfer elements excited by the flows of gas and liquid heat-transfer
agents. Mathematical models and methods for predicting the vibration parame-
ters of tube and rod arrays, employed in heat exchangers, are refined. The regu-
larities of the flow action on heat-transfer elements and the unsteady fluid-
dynamic processes occurring in the detached flow past tubes are treated. The
problems of a flow past tubes and of flow-induced tube vibrations, as well as the
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interrelationships among the tube parameters and vibrations and the flow past
tubes are considered in detail in studies [10, 11]. Recently the above-stated Insti-
tute has conducted additional investigations and obtained new data of theoretical
and applied significance. The current study unified this material and put forward
scientific and practical indications on preventing hazardous vibrations of the tube
systems of heat exchangers.

The study of the probem of vibrations of the heat exchanger heat-transfer
elements in a flow includes three stages:

- a discussion and a qualitative description of the processes of fluid dynam-
ics and tube vibrations induced by the flow;

— a construction or a refinement of the mathematical description of these
processes which contains a number of experimental coefficients or constants; and

— a determination of the values of the above coefficients or constants charac-
terizing a force action of the flow on the tubes and vibration parameters of the
heat exchanger structures in a flow.

The third stage requires a perfomance of numerous experiments covering the
entire range of geometric characteristics of the tube arrays of heat exchangers as
well as of conditions of the gas and liquid flows past them. In assessing the con-
ditions of instability arising from the flow-induced tube vibrations it is necesary
to carefully take into account variations in the conditions of the flow past tubes
on models and in in-frame structures of the heat exchangers. Any changes in the
conditions of the flow past tubes markedly alter their vibration characteristics.
All these aspects are considered using the models of tube arrays under various
conditions of the flow past tubes. Theoretical evaluations of the hydrodynami-
cally induced vibrations caused by fluid dynamic forces from the side of flow are
developed based on differential equations for rod vibrations with a view to the
type of the tube excitation by the flow and on a mathematical description of the
flow action on the tubes. Predictions are compared with measurement results for
vibration parameters of the tube of real heat exchangers or of the models of their
elements. Plausibility of the obtained data and correction factors for the predic-
tions are determined. Rules and analytic relations for selecting the ranges of
operating velocities of the heat-transfer agents with allowance for the tube vibro-
stability are presented.

1.2 In-Frame Arrangement of Tube Heat Exchangers

To improve the heat-transfer efficiency in shell-and-tube heat exchangers various
structural elements are employed that ensure a high-rate heat exchange by vortex
structures between the boundary layers and the flow core both in tubular and
intertubolar spaces.

The main heat-transfer elements of the heat-transfer surfaces (Fig. 1.1) are
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