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INTRODUCTION

The trends in the activities of the base departments of the Faculty of
Aerophysics and Space Investigations (FASI) of the Moscow Engineering-
Physics Institute are connected with theoretical and experimental investiga-
tions of the phenomena of external and internal gas dynamics and
hydrodynamics. Among them are the problems of entry of space appara-
tuses into dense atmospheric layers, design and creation of rocket engines,
gas-dynamic lasers, electrophysical systems, and other technical facilities
that use a gas, liquid, or plasma as the working medium. Fundamental in-
vestigations carried out at the base departments of FASI are related to the
study of the phenomena occurring in the atmosphere, ocean, and other
geospheres with respect to the physics of combustion and explosion.

The above trends constitute the subject matter of the faculty cycle,
"Physical Mechanics." The faculty cycle for training students includes
courses of lectures, seminars, and laboratory work on aerophysics, applied
gas dynamics, hydrodynamics, and physical mechanics for the training of
bachelor of science candidates on "applied mathematics and physics" in
the second, third, and fourth years of education.

The fundamental education in the field of continuum mechanics, hy-
drodynamics of media with different rheologies, and nonequilibrium sys-
tems is unthinkable if the skills of an experimental work have not been
acquired, if students have not become familiar with the methods of creat-
ing dynamic media and their diagnostics. Despite the long history of the
development of experimental methods, recent years have witnessed qualita-
tive changes in this area due to the appearance of new types of probes
based on a new elementary base and wide introduction of computation en-
gineering in the methods of the processing of measurements.

The laboratory work at FASI on continuum mechanics and physical
mechanics is intended for both getting acquainted with the methods of



measurements and carrying out laboratory works closely approximating up-
to-date scientific experiments.

The general orientation of the cycle is associated with the investiga-
tion of the thermophysical properties of gases and plasma that include the
thermodynamic properties of ideal and nonideal gases and plasma, chemi-
cal reactions, including dissociation and ionization, elementary processes in
gases and plasma, and the optical properties of gases. Studied in the cycle
are the hydrodynamics of motion of high-temperature gases and plasma, as
well as radiative transfer. Considered in the cycle are the most general
principles of hydrodynamic description with allowance for chemical reac-
tions, self-consistent electromagnetic fields, and of translational, rotational,
and vibrational nonequilibrium states; hydrodynamic, thermal, and plasma
instabilities at linear and nonlinear stages; and transition from laminar
modes of flow to turbulent ones. Most hydrodynamic flows are turbulent;
therefore, attention is specially paid to practical methods of visualization
and calculation of turbulent flows. It should be noted that the up-to-date
methods of describing turbulent flows with combustion are based on the
method of probability density functions that have been studied first in the
world experimentally at the department of physical mechanics.

The laboratory work at the second year of education acquaints stu-
dents with gas-dynamic flows; that at the third year deals with more com-
plex types of laminar and turbulent flows of air and gases with internal
degrees of freedom; that at the fourth year deals with investigation of pre-
sent-day complex flows, as well as electrophysical and thermophysical
phenomena, often at the level of modern scientific investigations. Experi-
mental works are accompanied by numerical simulation on personal com-
puters with visualization of the processes.

The work on compilation of the laboratory manual was begun at
FASI at the end of 1960 by V. M. Ievlev, T. V. Kondranin, A. S. Koro-
teev, A. T. Onufriev, A. A. Paveliev, Yu. G. Rakogon, I. N. Rei, R. A.
Safarov, V. A. Sechenov, A. A. Serebrov, Yu. A. Shcherbina, E. S.
Shchetinkov, E. A. Son, B. K. Tkachenko, V. P. Vakatov, M. N. Vasiliev,
V. A. Volkov, E. N. Voznesenskii, and by many other teachers. At the
present time, this laboratory manual is being modified in an effort to up-
date it, make it adequate for the needs of the FASI Department, and to re-
flect promising trends in high technologies in the field of continuum
mechanics and physics.ii
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WORK 1

MEASUREMENT OF FLAME TEMPERATURE
BY THE SPECTRAL-LINE REVERSAL METHOD

V. P. Vakatov and A. P. Zuev

1.1. Introduction

The urgent problems of science and technology require measurements of
the temperature of emitting bodies and radiative heat fluxes from them.
Conventional contact methods are of limited utility because of the simulta-
neously arising complex problem of convective heat transfer. Optical meth-
ods of measurement have been placed in the forefront. The major advan-
tages of these methods are that they do not need direct contact with a
measured object and do not distort its parameters.

In the present laboratory work, the temperature of heated bodies is
measured by two techniques: (i) a pyrometric one, with the aid of which
the temperature of glowing metals is determined (the description of a py-
rometer is given in Section 1.6) and (i) the spectral-line reversal method,
with the aid of which the temperature of the flame of a propane burner is
determined. Section 1.2 presents the theory of radiation on which the pro-
posed methods of measurements are based. Section 1.3 introduces the read-
ers to the characteristic features of the radiative properties of real media.

The main content of this laboratory work can be extended by study-
ing the processes of heat exchange between the flame of a propane burner
and a metal plate inserted into the flame. The reference sources needed for
processing experimental data on heat transfer are given in Sec. 1.7.

At the end of Work 1 the literature is cited that may be needed for
further study of optical methods and radiation theory. The majority of il-
lustrative experimental results given have been borrowed from Refs. [1–3].



The presentation employs the International System of Units (SI). The
sole exception is the use of the following units: 1 μm = 10–6 m to meas-
ure the radiation wavelength and 1 kPa = 103 Pa to measure pressure.

1.2. Some Information on Radiation

Emission and absorption of thermal radiation. Kirchhoff’s law. Blackbody
and Planck distribution function. The Stefan–Boltzmann law.

A material medium at any temperature is capable of emitting electro-
magnetic radiation due to the fluctuation of charges caused by thermal mo-
tion. Such a medium is also capable of absorbing outer radiation incident
on it, and in this case the energy of electromagnetic waves may again be
converted into thermal energy. Electromagnetic waves, being the carriers
of thermal energy, differ from waves that correspond to other modes of ra-
diation only by wavelength; it is precisely the wavelength on which the
action of radiation depends when the latter is incident on a substance.

The spectrum of emitted radiation embraces a wide range of frequen-
cies; this is attributed to a large number of the degrees of freedom of par-
ticles that form such media, to their thermal motion, and to the forces of
interaction between them. Consequently, for the theoretical study of ther-
mal radiation, it is necessary to apply statistical methods. The theory of ra-
diation can be presented most sequentially from the standpoints of
quantum mechanics or electromagnetic wave theory. However, for many
practically important cases, one may adhere to a phenomenological ap-
proach, which has been favored by us.

We introduce the concept of spectral radiation intensity, IλdSdtdλdΩ,
as the quantity of energy transferred by radiation through an element of
unit area, the normal to which coincides with the direction of radiation
propagation in unit time, in the unit spectral wavelength interval, and in
the unit solid angle. In what follows, the differentials dSdtdλdΩ are not
written but they should be kept in mind. If the normal of the selected area

2 MEASUREMENT OF FLAME TEMPERATURE

Figure 1.1. Toward the notion of radiation intensity.



dS makes an angle ϕ with the direction of radiation and dΩ, the energy
transmitted through this inclined element of area in time dt will be

 dU  =  Iλ cos (ϕ) dλ dS dΩ dt . (1.1)

If we consider that the selected area dS is located on the surface of
an emitting medium (the temperature of which is T), the intensity of emis-
sion from this surface is called the emissive capacity of the body surface
or the spectral surface density of radiation in the direction of the normal,
and it is designated by Eλ(T).

In the case of isotropic or, as it is said, diffuse radiation from the
surface dS, the energy emitted in the time dt inside the solid angle dΩ
within the interval of wavelengths dλ is equal to

dU  =  Eλ (T) cos (ϕ) dλ dS dΩ dt , (1.2)

which is Lambert’s law.
In order to calculate the total amount of energy emitted by the ele-

ment of diffuse surface dS in the wavelength interval dλ, it is necessary to
integrate expression (1.2) over the solid angle dΩ over the hemisphere. If
in integration we make use of spherical coordinates, as shown in Fig. 1.2,
we obtain

dΩ  =  
dS

r2   =  sin (ϕ) dϕ dψ , (1.3)

PHYSICAL MECHANICS 3

Figure 1.2. Determination of the solid angle from the elemental area dS ′.



U
dt

  =  Kλ (T) dS dλ  =  Eλ (T) dS dλ

×  ∫ 
0

2π

 dψ  ∫ 
0

π ⁄ 2

 sin (ϕ) cos (ϕ) dϕ  =  πEλ (T) dS dλ . (1.4)

The quantity Kλ(T) is sometimes called the hemispherical spectral radiant
flux surface density. Relation (1.4) is very important in measurements of
radiation; it shows that the total energy emitted by the surface element dS
into a semispace is π times greater than the energy emitted by it in the di-
rection of the normal to the surface within the limits of a unit solid angle.

When some radiation Iλ
0 is incident on the body, one can consider

several processes shown in Fig. 1.3. Part of the incident radiation Iλ
0 may

penetrate to the interior of the body and part of it, Iλ
R, be reflected from it.

Moreover, part of the radiation that penetrates inside a body can be
absorbed, Iλ

A (and converted into a new form of energy, e.g., thermal), and
part of it will pass through the body intact, Iλ

D. From the energy conserva-
tion law it is clear that

Iλ
 0  =  Iλ

 R  +  Iλ
 A  +  Iλ

 D . (1.5)

We introduce the following notions:

• Rλ = Iλ
R  ⁄ Iλ

0 — spectral reflectivity,
• Aλ = Iλ

A  ⁄ Iλ
0 — spectral absorptivity,

• Dλ = Iλ
D  ⁄ Iλ

0 — spectral transmissivity.

From these definitions and from equality (1.5), it follows that
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Figure 1.3. Various processes connected with radiation.



Rλ  +  Aλ  +  Dλ  =  1 . (1.6)

The properties of media can be different, and two of these quantities
separately or both quantities simultaneously can be equal to zero. We will
consider in more detail the case Aλ = 1. The body that at any temperature
completely absorbs the radiation of arbitrary frequency incident on it is
called the blackbody. There are no such bodies in nature; soot and plati-
num black seem to be black only in the visible region of the spectrum.
The properties of the blackbody are best reproduced by a small hole in a
closed cavity whose walls are made of an absorbing material. The radia-
tion that penetrates through the hole S into the cavity will be absorbed al-
most entirely there (see Fig. 1.4). Consequently, the cross-sectional area of
the hole is the absorbing surface of the blackbody. If the hole is taken to
be rather small, it practically will not influence the radiation inside the
cavity. Moreover, if the cavity walls are made of a homogeneous sub-
stance and are kept at temperature T, then in the course of time an equi-
librium must set in between the radiation emitted and absorbed by the
walls

Eλ (T)  +  RλIλ (T)  =  Iλ (T) . (1.7)

The equilibrium radiation set inside the cavity is homogeneous and
isotropic and may be characterized by a single quantity — the spectral
blackbody radiation intensity Bλ(T). Thus, it follows from the previous
equality that

Eλ (T)  =  (1  −  Rλ) Bλ (T)  =  AλBλ (T) , (1.8)
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Figure 1.4. Toward the concept of blackbody.



whence

Eλ (T)
Aλ

  =  Bλ (T) , (1.9)

which is Kirchhoff’s law. This law shows that the ratio between the emis-
sivity and absorptivity is the same for all substances and is equal to the
spectral blackbody intensity; a body that strongly absorbs any radiation
emits the same radiation strongly in the case of thermal radiation.

Since in the case depicted in Fig. 1.3 Aλ = 1, then from Kirchhoff’s
law we obtain

Eλ (T)  =  Bλ (T) ; (1.10)

that is, the blackbody radiation intensity (the radiation that will be emitted
from the cavity through the hole S) is equal to the intensity of thermal
equilibrium radiation at the same temperature.
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Figure 1.5. Spectral hemispheric blackbody radiation density πBλ(T, λ) versus the wave-
length for several values of temperatures.



The function Bλ(T) is the same for all the substances and it can be
found theoretically. This was done by Planck in 1905 as follows:

Bλ (T)  =  
2hc2

λ5 ⎛⎝e
 hc ⁄ λkT  −  1⎞⎠

 , (1.11)

where c is the speed of light in vacuum, c = 3.0⋅108 m/s, h is the Planck
constant, h = 6.63⋅10–34 J⋅s, and k is the Boltzmann constant, k = 1.38⋅10–

23 J/K.
In the literature, use is more often made of the hemispherical spectral

surface blackbody radiation density, which, according to Eq. (1.4), is equal
to π⋅Bλ(T). Figure 1.5 depicts the graphs of the function π⋅Bλ(T) for sev-
eral values of temperatures. For the convenience of computations we give
the expression for the hemispherical spectral surface blackbody radiation
density in terms of the constants C1 and C2 as follows:

Kλ
 p (T)  =  πBλ (T)  =  

C1

λ5 ⎛⎝e
 C2

 ⁄ λT  −  1⎞⎠
 , (1.12)

where C1 = 2πhc2 = 3.74⋅10–16 W⋅m2, C2 = hc/R = 1.44⋅10–2 K.
Knowing the Planck distribution law, it is not difficult to determine

the total energy emitted by one side of the unit surface into the hemi-
sphere in the entire spectral interval (from 0 to ∞),

NS (T)  =  ∫  Kλ
 p (T) dλ  =  ∫ 

0

∞

 πBλ (T) dλ  =  σsT
 4 , (1.13)

which is the Stefan–Boltzmann law, where σs is the Stefan–Boltzmann
constant.

σS  =  
12π5k4

15c2h3  =  5.67 × 10 −8   W ⁄ m2 ⋅K4 .

Expression (1.13) for NS(T), in contrast to (1.12), can be called the
hemispherical integral blackbody radiation intensity. (In what follows, the
term integral will mean that radiation corresponds to all wavelengths.)
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λmax T  =  2.66 × 10−3   m K . (1.41)

From this equation it follows that at radiator temperatures not exceed-
ing 700 K, the maximum of the energy distribution curve is at a wave-
length longer than 4 μm. And, consequently, for temperatures above 700
K the influence of the electromagnetic theory should be considered with
caution. A comparison between experimental and calculated values of the
integral emissivity shows satisfactory agreement. In some cases, for exam-
ple, for platinum, relation (1.39) is unexpectedly satisfied at very high
temperatures when a considerable portion of radiation is in the region of
short wavelengths. For a more accurate determination of a radiant flux
from heated metals, one should use experimental values of emissivity in-
stead of relation (1.39).
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Table 1.2. Specific resistance and thermal conductivity of some metals at T = 273 K

ρ⋅108 Ω⋅m λ, W/m⋅K

copper 1.6 380

aluminum 2.5 210

tungsten 5.1 170

nickel 7.6 83

steel 10.0 50
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