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PREFACE 

This book presents an investigative account of Mathematical Principles of Heat Transfer. 
It is concerned with three aspects of heat transfer analysis: theoretical development of 
conservation equations, analytical and numerical techniques of the solution, and the 
physical processes involved in the three basic modes of heat transfer, namely, conduc-
tion, convection, and radiation. A concept of mathematical modeling is developed 
through the use of differential equations. In doing so, the well-posed boundary value 
problems are constructed and the solutions are attempted. 

The analytical solution techniques, such as separation of variables, Integral transforms, 
Green's function, and some approximate methods, e.g., the integral and variational methods, 
are described. The finite difference method for the partial differential equation is derived 
from the first principle. Convergence of the various difference schemes is established 
through solved examples. The stability and the compatibility of the difference schemes are 
discussed. For the sake of generality, one chapter is devoted to the similarity theory and the 
generalized variables; that enables presentation of the solution in the dimensionless form. 
The physical processes involved in the basic mode of heat transfer are described. The 
problems of steady and transient heat conduction are presented as boundary value problems 
and their solutions are obtained for a variety of geometrical shapes and boundary conditions. 
Also discussed is the process of heat conduction during melting or freezing. The funda-
mentals of convection are introduced and the equations for convective heat transfer are 
derived. With simplifications introduced by boundary layer approximations and considering 
the effects of turbulence, an attempt is made to model actual flow conditions. The process of 
free and forced convection is described and the problem of laminar free convection on a 
vertical surface is cast as a well-posed boundary value problem. The fundamental concept of 
radiative heat transfer is discussed and the method to find the radiative heat exchange 
between gray surfaces in an enclosure is outlined. 

The text material is organized in such a way as to both give an exposure of practical 
thermal problems to applied mathematicians and introduce advanced mathematical tech-
niques used in solving complex thermal problems to engineers. While emphasizing the 
formulation of the thermal problems and their solution procedures, the rigors of mathe-
matical abstraction are avoided. In this way, the book attempts to bridge the gap between 
mathematicians and engineers. Further, a review of the recent literature on each topic and the 
references provided therein will trigger the curiosity of the reader and advance his under-
standing of the subject. 

The book, designed for students and the research communities of engineering and 
applied mathematics, may also attract a wide range of readership from practicing mathema-
ticians and engineers in industry. 

It gives me great pleasure to acknowledge the help that I have received from a great 
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number of specialists in the field. I am indebted to Professor R.N. Pandey for introducing me 
to heat transfer research. I owe a special debt of gratitude to (late) Professor Thomas Irvine 
and (late) Professor Edgar Winter for their interest in my book proposal. I thank Professor 
Manfred Groll, University of Stuttgart, and Dr. Jurgen Blumenberg, University of Techno-
logy, Munich, for many fruitful discussions. I thank Dr. A.R. Acharya, Dr. V. Adimurthy, 
and Dr. R.C. Mehta for perusal of the manuscript, and Dr. V. Jones, K. P. Khosla, R.V. 
Ramanan, and Dr. S.B. Tiwari for their help in the preparation of the manuscript. I also 
thank the Alexander von Humboldt Foundation for providing me with a research fellowship 
at the University of Stuttgart and the University of Technology, Munich, during the 
preparation of the manuscript. I also thank the Director, VSSC, for permission to publish the 
book. 
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CHAPTER 1 

Basic Concepts of Heat Transfer 

This book presents a descriptive analysis of the mathematical development of heat trans-
fer. In any discussion on heat transfer, it is appropriate to recall the definition of heat. Up 
to the beginning of the nineteenth century, heat was considered an invisible elastic fluid, 
known as caloric, which could neither be created nor destroyed. Caloric was the first 
really useful tool for describing heat transfer processes. Later, Count Rumford (1753–
1814) concluded from his famous cannon-boring experiments that the source of heat gen-
erated by friction appeared evidently to be inexhaustible and cannot be a material sub-
stance. It was extremely difficult, if not impossible, to form any distinct idea of anything 
capable of being excited and communicated in those experiments, except that it was mo-
tion. While the caloric description of heat was widely accepted, James Clark Maxwell 
(1831–1879) provided a precise description of the mechanism of heat propagation in 
gases. By predicting how energy was passed from molecule to molecule during colli-
sions, he showed that heat was really a mode of motion. Thus, the movement of some-
thing from a hot body to a cold body can be called heat. An appropriate definition is: heat 
is that which is transferred between a system and its surroundings as a result of tempera-
ture difference only. 

1.1 Basic Modes of Heat Transfer 
Heat is transferred by three basic modes: conduction, convection, and radiation. In two of 
these modes, a medium is required to transfer heat from one point to the other, whereas in 
the third mode it is transmitted through empty space as well as through certain materials 
transparent to thermal radiation. In reality, temperature distribution in a medium is con-
trolled by the combined effects of these three basic modes of heat transfer, and it is diffi-
cult to entirely isolate one mode of heat transfer from interactions with the other two 
modes. However, one mode may be dominant with respect to the other modes and, for 
simplicity, one can isolate this mode for analysis while neglecting the influence of the 
other two modes. Before giving a brief qualitative description of these three basic modes, 
we will introduce the concepts of temperature and its gradient. 

1.1.1 Temperature Field 
Temperature is a measurement of the energy level within a molecule. A point in a body at 
a higher temperature with respect to another point in that body means that the former is at 
a higher energy level in comparison to the latter. Thus, the physical phenomenon associ-



 

ated with the energy transfer is described by a change of its physical properties with re-
spect to space and time. The temperature at a point in a body is thus described as  

T = T (x,y,z,t) (1.1) 

Equation (1.1) is the mathematical description of the temperature field of a body that de-
fines the temperature at a point (x,y,z) at any instant of time t. 

The scale of measurement of temperature is based on the triple point of water (at which 
solid, liquid, and vapor can coexist in equilibrium under its own vapor pressure), which is 
used to establish the size of a degree on an absolute temperature scale. This temperature is 
defined to be 273.16 on the Kelvin temperature scale. The more familiar Celsius (previously 
known as centigrade) and Fahrenheit temperature scales were defined in terms of the ice 
point of water, the temperature at which melting or fusion takes place under a total pressure 
of one atmosphere. This temperature is 0°C or 32°F and is known to be 0.01 K below the 
triple point. 

1.1.2 Temperature Gradient 
If we join all of the points of a body with the same temperature, we obtain a surface of 
equal temperature. This surface is known as an isothermal surface. Thus, an isothermal 
surface on a body represents the locus of the points having the same temperature field. 
Figure 1.1 shows the isothermal surfaces for the temperature fields T – ΔT, T, and T + ΔT, 
respectively. These isothermal surfaces cannot intersect each other because no one point 
on the body will be at two different temperatures at a time. Intersection of isothermal sur-
faces by a plane gives a family of isotherms on this plane. The family of isotherms pos-
sesses the following properties: The isothermal surfaces do not intersect each other, they 
are continuous, and they originate or end at the surfaces or within the body. 

Temperature in a body varies only in directions crossing isothermal surfaces. The 
temperature difference per unit length is a maximum in the direction normal to the 
isothermal surfaces. An increase in the temperature difference in this direction is 
characterized by the temperature gradient. The temperature gradient is a vector normal to the 

 

 
 
 

Figure 1.1 Isotherms representation 
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isothermal surface and is positive in the direction of increasing temperature. It is 
mathematically described as 

grad T = n∂T/∂n  (1.2) 

where n is the unit vector normal to the isothermal surface and positive in the direction of 
increasing temperature and ∂T/∂n is the temperature derivative along the normal n. The 
magnitude of ∂T/∂n is negative in the direction of decreasing temperature. 

1.2 Conduction 
Conduction is the mode of heat transfer in which thermal energy is transmitted by direct 
molecular communication, without appreciable displacement of the molecules. A com-
mon example of heat conduction is when one touches one end of an iron rod that is 
heated at the other end. Conduction occurs through solids, liquids, and gases, and from 
one body to another when they are in physical contact with each other. In the conduction 
mode of heat transfer, the flow of heat takes place from the region of high temperature to 
the region of low temperature. The law of heat conduction originates from the experimen-
tal observation of Joseph Biot (1774–1862), but it was French mathematician, Joseph 
Fourier (1768–1830), who formulated the laws governing the flow of heat in solids and it 
is attributed to him as Fourier’s law of heat conduction. As per Fourier, the rate of heat 
conduction through a solid material is proportional to the temperature gradient across the 
material and to the area perpendicular to the heat flow. The rate of heat transfer through a 
unit area of an isothermal surface is determined by the relation 

2, (W/m )T
n

∂
= − λ

∂
q n  (1.3) 

where a vector quantity q represents the rate of heat flow or heat flux and acts in the di-
rection normal to the isothermal surface. The proportionality constant λ is called the 
thermal conductivity of the material and is always positive. The minus sign in the right-
hand side of Eq. (1.3) ensures that q is positive because heat always flows from the 
higher temperature level to a lower temperature level. 

The proportionality law between the flux (heat) and the force (temperature gradient) has 
analogues in electrical conduction, mass diffusion, and fluid flow. For example, Ohm’s law 
of electrical conduction states that the electric current is directly proportional to the potential 
difference, Fick’s law of diffusion in a binary system states that the mass flux of either 
component is directly proportional to the concentration gradient and, similarly, Newton’s 
law for fluid motion states that stress is directly proportional to the velocity gradient. 

1.3 Thermal Conductivity 
Thermal conductivity λ, which is analogous to electrical conductivity, is a property of the 
material. It is defined as an equivalent to the rate of heat transfer between opposite faces 
of a unit cube of the material that are maintained at temperatures differing by one degree. 
In the international system of units (SI), which is also referred to as the MKSA system, λ 
is expressed as (W/m K). It is determined from the relation 

T
λ =

∇
q

 (1.4) 

 3



 

These basic units measure quantities that could vary considerably in magnitude. To avoid 
awkwardly large or small figures, common prefixes representing multiples of 10 are 
given in Table 1.7 for SI units. 
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