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Author's Preface

This publication is the translation of the 6th edition (1987, Nauka Press, Moscow) of my
monographical textbook "Mechanics of Liquids and Gases" which was extensively revised
and augmented as compared with the 2nd edition (1957, Nauka Press, Moscow) translated
into English and published by Pergamon Press in 1966. The 6th edition incorporates signifi-
cant advances towards the solution of the problems of the boundary layer theory, dynamics of
viscous fluids and theory of turbulence. Moreover, this English edition is augmented with the
16th Chapter on computational hydrogasdynamics written by my colleagues at the Depart-
ment of Hydroaerodynamics of the Leningrad Polytechnic Institute: Prof. Yu. P. Golovachev
and Ass. Prof. S. B. Koleshko to whom, taking this opportunity, I wish to express my grati-
tude. I also wish to thank the Joint Soviet-American Enterprize "TEMPO" in the persons of
its founders Mr. W. Begell and Corresponding Member of the Byelorussian Academy of Sci-
ences 0. G. Martynenko and also staff-members of the USSR Editorial Office of the Interna-
tional Journal of Heat and Mass Transfer G. R. Malyavskaya and N. K. Shveyeva who has
taken the trouble to translate my book into English.

The textbook is intended for students, postgraduate students, engineers, and research
workers specializing in the field of mechanics.
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Preface to the 6th Edition

The present edition is the outcome of an extensive revision made, on the one hand, to bring its
content closer to that of a textbook and, on the other, to update it by adding some new
present-day problems.

Since it was impossible to extend any further so bulky a book as it was, some special sec-
tions dealing with the mechanics of liquids and gases but not fulfilling the objectives of the
present general consideration had to be sacrificed. Thus, the problem of motion of multiphase
media was dropped from the dynamics of inhomogeneous fluids, and only the derivation of
the equations for multicomponent gas flows was retained as being closely associated with the
description of the phenomena of dissociation and ionization of molecules in supersonic gas
flows. Also omitted was the section dealing with the macroscopic approach to calculations of
dust-laden gas flows which gave way to the methods of the kinetic theory of molecular
motions. This was also the reason for dropping the section which discussed the shock wave
from the viewpoint of continuum mechanics as well as some other problems dealt with in the
previous edition of the book.

As distinct from previous editions where only vector and tensor calculus formulae were
given, the present one provides a short background discussion on this area of mathematics.
The section on the elements of similarity theory is supplemented with a presentation of
dimensionality theory and with the proof of the main theorem in this theory.

Newly written are three sections dealing with some general methods for numerical inte-
gration of differential equations and their application to Navier-Stokes viscous fluid dynam-
ics equations. Extensive revision of the chapter on turbulence culminated in the appearance of
a new chapter dealing specially with the techniques for calculating turbulent boundary layers.
Methodological blunders noticed in many places throughout the book have been eliminated.

Professor G. Yu. Stepanov, Dr. Sc. (Physics and Mathematics) read the manuscript with
an exceptional accuracy and made a great number of scientific and methodological comments
important for the quality of the book.

Professor Yu. V. Lapin, Dr. Sc. (Physics and Mathematics) read the manuscript of Chap-
ter XIV and made a number of useful comments. An invaluable help in the work on the
manuscript and in proof-reading was lent by Assistant Professor at the Chair of Hydroaerody-
namics of Leningrad Polytechnic Institute S. B. Koleshko who not only undertook the scien-
tific editing of the manuscript and made many useful remarks, but also wrote three sections
(102-104) concerned with numerical solution of viscous fluid dynamics problems. The
author regards it his duty to acknowledge cordially their assistance for this.
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Preface to the English Edition

Many of us who study and teach “fluid mechanics” have come to think of it as some sort
of counterpart, or alternative, to “solid mechanics.” Indeed, western university curricula
typically address the two subjects with specialized faculty using texts that do little to
reveal their common ground. Fluid mechanics to Loitsyanskiy, as his title proclaims,
springs naturally from the vast realm of mechanics itself. Thus his technique is to use,
over and over again, the general formulations of mechanics as the foundation of theories
describing the behaviors of fluids--viscous and inviscid, liquids and gases.

The result may be somewhat daunting to the pragmatic student of fluid mechanics,
for the practical results are often achieved by Loitsyanskiy only after substantial
mathematics gyrations of the most general kind. Readers should take heart, however,
because if the material seems abstract there are often repeated explanations with very
helpful nuances. For the fluid mechanics devotee (especially non-Russian readers, I sus-
pect) Loitsyanskiy offers words that are exquisitely chosen; and many new ways of
looking at the wonderful world of fluids are waiting for those who persevere. As one of
many examples, I recall how airfoil theory is almost completely expounded by Loitsyan-
skiy without even defining the famous Joukowsky transformation.

As the editor of the translation, I must compliment the translators whose work
makes it clear that they have been alert to the significance of the document and the dan-
ger of losing even the smallest part of its “personality” in translation. I, also, have done
my best not to interfere. Occasionally, I have even left some “fuzzy” passages in their as
translated form for fear of losing the beauty of the narrative for the sake of technical
precision. In these instances, readers will have to reach their own conclusions.

To be asked to edit the English translation of Mechanics of Liquids and Gases was,
to me, like being invited to a private viewing prior to the unveiling of a great master-
piece. The Mechanics of Liquids and Gases is huge--in coverage and in quality--and its
availability in English is a great new learning opportunity.

Robert H. Nunn, Ph.D.
formerly with the US Naval Postgraduate School
Monterey, California



INTRODUCTION  xiii

the mechanics of fluids and ensuing general integrals or theorems. In order application of
these equations may be fully definitive, it is necessary that the following additional phenome-
nological laws be taken into account: state equation, Newton's law for viscosity, Fourier's law
for heat conduction, Fick's law for diffusion, etc.

2. Some Information on the Molecular Structure of Substance

Depending on the quantitative relationship between the kinetic energy of the motion of mole-
cules and potential energy of intermolecular dynamic interaction, there originate different
molecular structures and types of internal motion of molecules. ‘

Essential in solid bodies is the molecular energy of the interaction of molecules due to
which the latter are arranged in regular crystal lattices with stable equilibrium positions at lat-
tice nodes. Thermal motions in a solid body consist of small vibrations of molecules about
lattice nodes with a high frequency (of order 1012 Hz) and amplitude proportional to spac-
ings between these nodes. Both "short-range” and "long-range" orders are effected in the
molecular structure of a solid body. To solid bodies also belong substances in amorphous
state which do not have crystalline structure but which possess "short-range" order closely
resembling that in liquids (see below). Amorphous states are not very stable and change gas-
ily to crystalline states. '

In contrast to a solid body, both "short-range” and "long-range" orders are absent in
gases. The molecules of a gas move in a random motion, with their interaction being reduced
only to collisions. The interaction of molecules in the intervals between collisions is
neglected, and this corresponds to the smallness of the potential energy of the dynamic inter-
action of molecules as compared with the kinetic energy of their random motion. The mean
distance between two consecutive collisions of molecules determines the "free path length”.
The "free path" velocity of molecules is commensurable with the speed of propagation of
small disturbances (speed of sound) in this state of gas.

As to their molecular structure and thermal motion, liquid bodies occupy an intermediate
position between solid and gaseous bodies. According to the current views, a certain mole-
cule, acting as a central one, collects around itself a group of neighboring molecules that
slightly vibrate with a frequency close to that mentioned earlier for vibrations of solid body
molecules in a lattice and with an amplitude of the order of mean distance between mole-
cules. The central molecule either remains stationary (in a liquid at rest), or migrates at a
speed coinciding in magnitude and direction with the local mean velocity of the macroscopic
motion of liquid. In the molecular structure of a liquid the potential energy of molecular inter-
action is comparable in order with the kinetic energy of their thermal motion, with the "short-
range” order being present and the "long-range” order not. The evidence for the vibrations of
molecules in liquids is provided by the well-known "Brownian motion" of tiny solid particles
introduced into liquid. Vibrations of these particles can be easily seen under a microscope and
may be looked upon as the result of collision of solid particles with the molecules of liquid.

The difference between molecular structures and thermal motions of solid, liquid and
gaseous bodies reveals itself clearly in the phenomenon of diffusion consisting in the propa-
gation of one substance (inclusion) into the other (carrier). Diffusion of one gas in another
(for example, the propagation of odor in air) due to intensive molecular motion leads to rapid
penetration of odor into the farthest corners in a room. Conversely, the diffusion of a liquid in
a liquid occurs much more slowly because of weak migration of central molecules with
groups of molecules bound around them. The best example is provided by the historical
experiment of Reynolds who introduced a thin jet of dye into a (laminar) water flow slowly
moving through a cylindrical pipe. The jet remained nearly the same in thickness over almost
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neglected, and this corresponds to the smallness of the potential energy of the dynamic inter-
action of molecules as compared with the kinetic energy of their random motion. The mean
distance between two consecutive collisions of molecules determines the "free path length".
The "free path" velocity of molecules is commensurable with the speed of propagation of
small disturbances (speed of sound) in this state of gas.

As to their molecular structure and thermal motion, liquid bodies occupy an intermediate
position between solid and gaseous bodies. According to the current views, a certain mole-
cule, acting as a central one, collects around itself a group of neighboring molecules that
slightly vibrate with a frequency close to that mentioned earlier for vibrations of solid body
molecules in a lattice and with an amplitude of the order of mean distance between mole-
cules. The central molecule either remains stationary (in a liquid at rest), or migrates at a
speed coinciding in magnitude and direction with the local mean velocity of the macroscopic
motion of liquid. In the molecular structure of a liquid the potential energy of molecular inter-
action is comparable in order with the kinetic energy of their thermal motion, with the "short-
range" order being present and the "long-range” order not. The evidence for the vibrations of
molecules in liquids is provided by the well-known "Brownian motion" of tiny solid particles
introduced into liquid. Vibrations of these particles can be easily seen under d microscope and
may be looked upon as the result of collision of solid particles with the molecules of liquid.

The difference between molecular structures and thermal motions of solid, liquid and
gaseous bodies reveals itself clearly in the phenomenon of diffusion consisting in the propa-
gation of one substance (inclusion) into the other (carrier). Diffusion of one gas in another
(for example, the propagation of odor in air) due to intensive molecular motion leads to rapid
penetration of odor into the farthest corners in a room. Conversely, the diffusion of a liquid in
a liquid occurs much more slowly because of weak migration of central molecules with
groups of molecules bound around them. The best example is provided by the historical
experiment of Reynolds who introduced a thin jet of dye into a (laminar) water flow slowly
moving through a cylindrical pipe. The jet remained nearly the same in thickness over almost
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the entire working section of the pipe, thus testifying to a slow molecular diffusion typical of
laminar motion of water. On transition to a turbulent mode of flow, when the molecular
mechanism of diffusion gives place to turbulent mixing of finite macrovolumes of liquid,
there arises an intensive turbulent diffusion and the dye rapidly fills the entire flow.

It should be noted that the phenomenon of diffusion is also observed in solid bodies,
although it is much weaker here than in liquids. Mutual penetration of molecules can be seen
in two specimens of different metals tightly fitted to each other after the lapse of a long
period.

The problems of astrophysics associated with the study of ionosphere, "star clouds” and
other astronomical objects and especially various physico-technical problems connected with
the design of thermonuclear reactors and magnetohydrodynamic generators for direct conver-
sion of thermal into electrical energy spurred a considerable upsurge of interest in the dynam-
ics of ionized gases (plasmas).

In contrast to ordinary electrically neutral gases in which randomly moving molecules
display dynamic interaction only ion only on their mutual collision, much more substantial
Coulomb interactions originate in plasma due to a high concentration of charged particles.
This imparts specific properties to plasma, as e.g. higher electrical conductivity, showing up
most vividly on exposure of plasma flows external electrical and magnetic fields.

The exceptional, in their physical importance and applied possibilities, and at the same
time very specific properties of plasmas suggested the idea of the fourth (after solid, liquid
and gaseous) aggregated state of matter.!

1A detailed survey of the properties of plasma and phenomena occurring in it can be found in the paper by
B. B. Kadomtsev "Plasma” (Physical Encyclopedic Dictionary, Vol. 4, Moscow, Sov. Entsiklopediya Press, 1965,
pp. 15-24) and also in Sects. 1.3-1.4 of the book by Lukiyanov G. A. Sverkhzvukovye strui plagmy (Supersonic
Plasma Jets). Leningrad, Mashinostroeniye Press, 1985, pp. 13-21 and the list of references in it.
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The Field of a Physical Quantity and Conditions
for the Physical Objectivity of Quantities Specified
Analytically: Basic Operations of the Field

1. Scalar and Vector Fields: Conditions for the Physical Objectivity
of Scalar and Vector Quantities Specified Analytically

The field of a physical quantity (velocity, acceleration, pressure, density, temperature, etc.) is
the name given to a set of the values of this quantity unambiguously determined at each point
in some part of space. There may exist scalar, vector, and, as seen later, tensor fields, depend-
ing on the kind of the quantity, the distribution of which is prescribed by the field.

If scalar, vector, or tensor quantities have the same values at all the points of the field, the
field is called uniform; otherwise they are nonuniform. The fields of physical quantities may
show no variation with time, i.e., they may be stationary, and may vary with time, i.e., be
nonstationary.

The field of the scalar quantity ¢ (e.g., temperature, pressure, density) is specified ana-
lytically as a function of the coordinates of field points and time (r is the instantaneous
radius-vector of the point M of space)

¢ =0y =M1 =01 1)

Here, time is considered to be a parameter that denotes separate instants. The fields per-
tain to these when they are nonstationary and can be omitted when the fields are stationary.

The field of the vector quantity @ (velocity, acceleration, force, etc.) is prescribed by the
vector function of the coordinates of points M and time

a=a(xyzt) =a(lM;t) =a(r;?) )]

or by three projections of the vector
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a, =a,(x,y21) a, =a,(xyz1 a, = a,(x,y,z1) 3)

To shorten the amount of formulation, letter indexing of coordinates and vector projec-
tions is often replaced by numerical indexing assuming that

X=X Y=X, Z=1 a=a a,=a, a,=da,
and Equation 3 will be replaced by
a; = a; (X, Xy, X35 1) (i=1,2,3)

Furthermore, proceeding as advised by Einstein, omit the summation sign Z in front of
monomials being summed up if the index, over which the summation is performed, appears
twice in the monomial. Thus, for example,

3
o= Daby = aby (k=1,23)
=1

3 3
fP‘I = z z aplquclm = aplquclm (p,g=1,273)

l=1lm=1

The indices that appear twice and over which summation is carried out are called "dummy
indices"; they can be denoted arbitrarily in the process of calculations:

¢, = aby, =a,b,,, (k=12,3)

The rest of the indices (as, for example, & in the previous formula) remain unchanged in each
given process of calculation and are called "free indices”.

Let us recall the analytical geometry formulas, which will be needed later, having
expressed them in the notation just adopted.

Consider two systems of rectangular Cartesian coordinates: Ox,x,¥; and Ox x,x; (Fig-
ure 1), which have the common origin at point O, but which are rotated arbitrarily with respect
to one another. We shall denote the cosines of the angles between "new” (primed) and "old"
axes by o, according to the matrix

. D

In each coordinate system we refer to its set of unit vectors directed along the coordinate
axes as the basis of the coordinate system. In the present case there are two such bases: i,
i,, i; and i, ié , i3 . The radius-vector r of the point M can be expressed in terms of these
bases as

Fo= X4 Xy iy Xy = X+ Xy + X5 4
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Fig. 1

Form the scalar product of both sides of this equality successively with i, i,, {; and i'l ,
iy, iy by recalling that

- 1 k=1
i =i i =9,= (5)
=kl ki {2 k%l
and noting that according to the matrix (I) above:
B iy = 0y (6)

Thus, we shall obtain the following formulas for transforming the "old" coordinates x, , Xg,
x; into "new" coordinates x; , X5, X3 :

Xp = O Xy + O Xo + 0axs = 0y x;  (k=1,2,3) @)
and vice versa:
X, = O X F O Xy +0 X = 0x,  (k=1,2,3) (8)

Taking into account that the projections of the vector @ on the coordinate axes a,, a,,
a, or ay, a,, a; are given by the differences between the coordinates that locate the end
and beginning of the segment that represents the vector, it can be concluded that the formulas
for the vector projections in conversion from one coordinate system to the other will be anal-
ogous in form

a;, = o,q a, =oua  (k=1,2,3) )

Note that Equation 9 is valid only in orthogonal coordinate systems that will be employed
below almost without exception.

Let us agree that physically objective will be the name given to those quantities which,
by virtue of their physical essence, are independent of the choice of the coordinate system in
which they are represented analytically. Thus, for example, the physical scalar (temperature,
pressure, density, etc.) prescribed by its field, i.e., by the function of the coordinates ¢(x,,
X5, X3), should be an invariant which satisfies the equality

O (X, %5 x3) = Q(x],xy,x3) = inv
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where it is presumed that the sets of "old” and "new" coordinates correspond to the same
point of space.

Analogously, a vector prescribed by its three projections a,(xy, %y, x3) (k=1,2,3), or,
in another coordinate system, by the projections a;, (x;, X5, x5 ) (k= 1, 2, 3) should be inde-
pendent of the coordinate axes for it to be capable of representing a physical quantity.

In order to find the conditions for the physical objectivity of the vector function a, we
shall first prove that the scalar product @ - b = a, b, , where a, and b, satisfy the conversion
formulas of Equation 9, is independent of the directions chosen for the coordinate axes, in
which these multiplies were determined (i.e., where it is an invariant).

According to Equation 9, we have (k is a dummy index)

ab, = oy a0,,b, = o,0,,0,b, (10)

To conform with the well-known theorems of analytical geometry, the cofactor o0, on
the right side of Equation 10 is the expression of the cosine of the angle between the axes Ox;
and Ox,, in terms of the cosines of the angles between these axes and those of the system
Ox,x,x; . In compliance with the orthogonality property of the coordinate axes

1 when m=1
0 when m#1l

an

I
cos (x,,x,) = o0 =

Analogously, expressing the cosine of the angle between the axes Ox; and Ox,, in terms of
the cosines of the angles about the axes of the system 0x;x,x, , we shall obtain

1 when m=1 (12)

(/\ ) {
cos (x,x,) = 0,00, =
bm K km 0 when m# !

Taking into account Equation 11, we shall obtain the equality that proves the invariance
of the scalar product a - b ,

a;b, = a;b; = inv (13)

Assuming that in this equality b = a, we may note the invariance of the sum of the squared
projections

a,a, = a,a; = inv (14)

i.e., squared length (absolute value) of the vector and, consequently, of the very length (abso-
lute value) of the vector. Bearing in mind that

AN
ab, =a-b = abcos(a,b)

where @ and b are invariants, and specifying different vectors b, we shall also note the invari-
ance of the location of the vector a relative to the points of space.

The role of Equation 9 as conditions for the physical objectivity in the analytical deter-
mination of the vector is clear. As regards the formulas of conversion from one coordinate
system to the other (Equation 7 and 8), they constitute the specific case of Equation 9 in
application to the radius-vector r of point M and, consequently, they establish the physical
objectivity, in analytical determination of the radius-vector of the point, with the aid of its
coordinates.
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Calling attention to the identity of the formulas of conversion from one coordinate sys-
tem to the other for the Cartesian coordinates themselves (Equations 7 and &) and for vector
projections (Equation 9), we can formulate the conditions for the physical objectivity in the
analytical representation of vectors: In converting from one rectangular Cartesian coordinate
system to the other, the projections of a physical vector must be transformed in the same way
as the coordinates.

2. A Second-Rank Tensor: Conditions for the Physical Objectivity
of Its Analytical Specification - A Dyad and a Retation Tensor

Along with scalar quantities, the field of which is determined by one numerical function, and
vector quantities with the field specified by three numerical functions (vector projections onto
the coordinate axes), the mechanics of continua also employ more mathematically complex
physical quantities, i.e., second-rank tensors.!

The second-rank tensor can be defined by two independent techniques leading to identi-
cal results.

Generalizing the notions of the scalar and vector and the conditions for their physical
objectivity, we shall determine the second-rank tensor T at each point of a three-dimensional
space as a set of nine quantities Tp q (»,q =1, 2,3) which are the tensor components specified
in a certain rectangular Cartesian coordinate system and which, when converting to another
coordinate system, are transformed by the formulas (r and s are dummy indices)

TI;q = o'pro'qurs qu = arpu‘qu;s (p’ q= 1’2’ 3) (15)

These equalities can be interpreted as the formulae of transition from one rectangular
Cartesian coordinate system to the other from the product of two coordinates. In fact,

XpXy = 0, X 0, X = 0, 0 X X

xpxq = (x,px,(xsqxs = a,pasqx,xs

in agreement with Equations 15.

Thus, according to the first definition, the second-rank tensor represents the set of nine
quantities (tensor components) which are transformed as a product of two coordinates when
converting from one coordinate system to the other. The second definition of the tensor is
based on the concepts of linear vector-function or linear transformation of the vector. Both
are expressed analytically as the equalities (/is a dummy index, k is a free index)

b, =Tya, (k=1,2,3) (16)

where a; and b; are the coordinates of the vectors @ and b; T, are the coefficients of the lin-
ear vector-function or of linear transformation.

The second definition of the second-rank tensor states: if in the linear transformation
(linear vector-function; Equation 16) to the physical vector a, the physical vector b also corre-
sponds, then the set of the transformation coefficients T, (k, I = 1, 2, 3) represents a physi-
cally objective quantity, i.e., the second-rank tensor.

ISometimes "order" rather than "rank" is used in this Context, i.e., "second-order tensor”.
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da, da,

Tpe = —~ al+§x—28x2 |BC| = - al+§x—28x2 28x;
a, da,

Tep = —| ay a7, dx, ||CD| = — az—a—xIle 28x,
da, da,

Tpa al—éx—Zsz |DA| = al—a—x-z-sz 203x,
The summation \;vill yield
da, 9da,
FABCD = a—xl-—gx-; 48x18x2 = I'Ot3(186 (117)

where 86 denotes the area of the rectangle ABCD 86 = 28x, - 28x, = 48x,9x, . Equality
{117) shows that the circulation of the vector @ along the contour of the rectangle is equal to
the flux of the vector rot @ through the rectangle area. This formula can be applied to any ele-
ment 86 of the surface G in the form

oI' = rot,adc (118)

Summing up both sides of Equation 118 over all the elements of the surface 6, note that
circulations along the common sides of adjacent cells cancel out and only circulations along
those sides of the cells remain that constitute the contour C. We shall obtain in the limit

Ysr = §8r = §>a-8r
C C

The sum of the right sides in Equation 118 will be reduced to the total flux of the vector rot a
through the surface 6. This proves the validity of Stokes, theorem.

The basic concepts and formulas of vector and tensor analysis that have been given in
this chapter will suffice for understanding standing the subject matter of the book as a whole.
For a more extensive account of the foundations of vector and tensor calculus, reference may
be made to the following special textbooks:

1. Kochin, N. Ye., Vektornoye ischisieniye i nachala tenzornogo ischisleniya (Vector Calcu-
lus and the Laws of Tensor Calculus), Nauka Press, Moscow, 19635.

2. Sedov, L. 1., Mekhanika sploshnoi sredy (Mechanics of a Continuous Medium), Part 1,
Nauka Press, Moscow, 1983; A Course in Continuum Mechanics, Vol. 1 to 4, Wolters-
Nordhoff Publishing, Amsterdam, 1971 to 1972.

3. Luriye, A. L., Teoriya uprugosti (The Elasticity Theory), Nauka Press, Moscow, 1970
(Appendices I, IL, III, pp. 799 to 870).

4. Mase, G. E,, Teoriya i zadachi mekhaniki sploshnykh sred (The Theory and Problems of
the Mechanics of Continua), Mir Press, Moscow, 1974,

The previous (5th) edition (Nauka Press, Moscow, 1978) of the present book contains the |
summary of the most popular formulas in the vector and tensor calculi.





