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Preface

The present monograph summarizes the results of many years of research on numerical
simulation of transonic, supersonic, and hypersonic viscous perfect gas flows based on the
continuum mechanics equations for the problems of external aerodynamics. These results
were obtained by the authors and their colleagues and have been published in different
Russian journals.

The monograph is split into two sections. Steady and unsteady two-dimensional prob-
lems are considered in the first section. Three-dimensional steady problems are the sub-
ject of the second section. Specifically, steady-state uniform flow over a body of relatively
simple configuration, which surface is given analytically, is studied.

Each part begins with the mathematical problem statement and the description of its
numerical solution method, followed by a detailed discussion of the numerical data for
several aerodynamic problems. The results are obtained within a certain range of the key
similarity parameters. The considered aerodynamic problems are divided into two groups.

The problems of the first group are aimed at theoretical study of the flow field near a
body, of the body local and integral aerodynamic characteristics and of the effect of the
key similarity parameters on these characteristics. This requires numerical data within a
wide range of variation of the key similarity parameters. Such investigations are usually
performed by the example of the flow over bodies of simple configuration, with much at-
tention being paid to verification of the numerical method and to validation of the numer-
ical data. Typical bodies are considered in the present monograph: circular and elliptical
cylinders, a sphere, and sharp circular and elliptical cones.

The problems of the second group follow the aerodynamic experiment in different
supersonic and hypersonic wind tunnels at TsAGI. In this case calculations are performed
for a body of interest as applied to the experimental conditions. The calculations involve
estimation of the flow field along the whole wind tunnel duct, i.e., the working fluid flow
is computed in the nozzle and in the test section of the wind tunnel both with and without a
model in it. Numerical data are compared with the experimental results. This monograph
describes mostly blunt axisymmetric bodies like American and European prototypes of
Martian probes.

This monograph is of interest for specialists in the area of computational and applied
aerodynamics as well as for graduate students, whose research is related to applied aero-
dynamics.
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Introduction

A complex flow-field pattern is observed in case of the body motion in incompressible
and compressible fluid or in the case of incompressible and compressible fluid flow in
different engineering devices. Furthermore, in most cases the continuum fluid flow is
followed by the flow separation and reattachment, which have a significant effect on the
aerodynamic characteristics of a moving body or an engineering device. The phenomena
of flow separation and reattachment are of complex nature and depend on many factors.
One of the most important fundamental tasks of current aero- and hydrodynamics is to
study the principles of evolution of these phenomena.

There are two ways to study these complicated fundamental problems: experimental
and theoretical.

The experimental approach for investigation of the fluid motion laws appeared at the
origin of mankind and evolved significantly together with the human society. First it was
a full-scale experiment; later, special aerohydrodynamic plants and the corresponding
measuring equipment were created. With advances in technology and larger fluid veloci-
ties, experimental facilities become more complex and the cost of the experimental data
increases; therefore each measurement becomes more expensive.

The theoretical science-based approach originated in the 17th century, when the main
laws of mechanics were stated due to the work of Galileo, Newton, and other scientists.

In the 18th century Leonhard Euler (1755) derived the equations of ideal incom-
pressible and compressible fluid dynamics within the framework of continuum mechan-
ics, which are referred to as Euler equations. Equations of viscous incompressible and
compressible fluid dynamics were derived in the 19th century in the works of Navier
(1826), Poisson (1831), Saint-Venant (1843), and Stokes (1847). These equations are
called Navier–Stokes equations. At the end of the 19th century Osborne Reynolds proved
experimentally the existence of the turbulent flows (1883) and suggested an approach for
studying these complex flows (1895) based on the decomposition of hydrodynamic vari-
ables into average and pulsation components. He derived the equations that describe the
averaged flow referred to as Reynolds equations.

However, these equations turned out to be too complicated for the application prob-
lems and first of all for the fundamental problems of aerohydrodynamics, namely the
problems of lift and drag.

An essential breakthrough in the solution of these problems was made in the begin-
ning of the 20th century, when Nikolay Zhukovsky proved a theorem (1906) that relates
lift to circulation, and Ludwig Prandtl showed (1904) that at large Reynolds numbers the
viscous forces should be taken into account only in a thin near-wall layer, where the vis-
cous fluid flow is described by the boundary layer equations (Prandtl equations). These
equations being simpler as compared to the Navier–Stokes and Reynolds equations made
it possible to study the principles of viscous flow over a body at large Reynolds num-
bers. As computational tools improved, a class of problems that could be solved with the
boundary layer equations extended.

xi
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However, the boundary layer equations are effective only in the area of unseparated
flow; in the vicinity of the flow separation they are invalid. Therefore, full Navier–Stokes
and Reynolds equations should be used for computation of separated flows.

With recent advance in computational aerodynamics and computer technology, ef-
ficient software packages have been developed for numerical analysis of unsteady two-
dimensional and three-dimensional Navier–Stokes and Reynolds equations at an accept-
able cost. These software packages are used both for parametric computations of different
problems of external and internal aerodynamics, and for solving the modeling problems
as applied to the experimental conditions in the wind tunnels. The latter is an important
division of computational aerodynamics.

Both experimental and theoretical approaches are the basis of our understanding of
the principles of fluid flow and peculiarities of heat transfer. Used together they are a
powerful tool for solving various application problems.

First, the aerodynamic experiment provides very important but limited data on the dis-
tribution of gasdynamic variables along the model surfaces (primarily pressure and heat
transfer coefficients) and in some flow-field cross sections (for example, total pressure
distribution in the exit section of a duct or a nozzle). Some information on the flow-
field visualization (for example, Schlieren images, spectra of limiting streamlines) is also
obtained in the aerodynamic experiment. This information gives general idea of the flow-
field pattern. However, it is often not enough for the complete identification of a com-
plex flow-field pattern associated with the fields of gasdynamic variables. Computational
aerodynamics provides such information, thus completing experimental data analysis and
understanding of the flow aerodynamics.

Second, the aerodynamic experiment reconstructs partially the full-scale conditions,
primarily according to Mach and Reynolds numbers. Other free-stream parameters are not
simulated. For example, such an important parameter as turbulence level, which affects
significantly the position of laminar–turbulent transition, and therefore, the flow-field pat-
tern and the body aerodynamic characteristics, is not simulated in the aerodynamic exper-
iment. This inability of the aerodynamic experiment to faithfully reconstruct the full-scale
free-stream parameters causes the problem when transforming the experimental wind tun-
nel data into the full-scale conditions. Computational aerodynamics in turn helps to an-
alyze the influence of parameters that cannot be simulated in the experiment and to use
efficiently the wind tunnel data under the full-scale conditions.

Third, in most of the cases the aerodynamic experiment does not capture the onset of
a steady-state flow mode. Even with this moment being short, it is important for under-
standing of the start-up process associated with the reconfiguration of the flow field and
redistribution of gasdynamic variables. Computational aerodynamics makes it possible to
simulate this process and to examine all the aerodynamic characteristics of this unsteady
flow.

Fourth, some mathematical model with a number of parameters is used for simula-
tion of the flow of interest using the tools of computational aerodynamics. Sufficiency of
the applied model is checked by comparing numerical and experimental data. A notice-
able disagreement between numerical and experimental data (if observed) is analyzed to
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result in corrected parameters of the mathematical model and in an improved experimen-
tal setup.

Fifth, an estimate of the expected experimental data obtained by the methods of com-
putational aerodynamics is helpful in choosing more appropriate geometric parameters of
the model and experimental conditions. It reduces the possibility of failure of the experi-
ment and contributes to reduction of its cost.

Therefore, the implementation of the aerodynamic experiment should be followed
by the numerical solution of the corresponding modeling problem at all the stages—
from setting up the experiment and up to the analysis of the results. This is a mutually
complementary process, which validates the resulting data and enriches our knowledge
in the area of external and internal aerodynamics.

An effective numerical technique for two-dimensional and three-dimensional aerody-
namic problems based on unsteady Navier–Stokes and Reynolds equations has been de-
veloped at TsAGI and presented in the following works: Bashkin et al., 1993, 2002, 2001,
2003. This technique has been used successfully and is still being applied for parametric
computations of various problems of external and internal aerodynamics. This approach
has also been applied as a numerical supplement of a number of wind tunnel tests.

The goal of the present monograph is to describe the problem statement for super-
sonic viscous gas flow over two-dimensional and three-dimensional bodies, to explain
the numerical simulation approach based on unsteady Navier–Stokes and Reynolds equa-
tions, to illustrate the approach efficiency by the example of several problems of external
aerodynamics associated with transonic, supersonic, and hypersonic viscous perfect gas
flow in the presence of closed separation zones, and to analyze evolution of the separated
flow and heat transfer on the streamlines surfaces.

The monograph is organized as follows. It is divided into two sections according to
the dimension of the considered aerodynamic problems.

The first section of the book consists of seven chapters. It reviews two-dimensional
problems. The problem statement and the numerical method are described in the first
chapter. The other chapters comprise discussion of the results of the following problems:
transonic and supersonic cross flow over a circular cylinder (Chapter 2 and Chapter 3);
supersonic cross flow over an elliptic cylinder (Chapter 4); a sphere in supersonic flow
(Chapter 5); a flat plate and models of Martian probes with a thin groove on the frontal
surface in supersonic and hypersonic flow (Chapter 6); models of Martian probes at zero
angle of attack in supersonic and hypersonic flow (Chapter 7).

The second section consists of five chapters. It considers three-dimensional aerody-
namic problems. Chapter 8 outlines the problem statement and the numerical simulation
method. Verification of the numerical scheme follows in Chapter 9. The other chapters
deal with the results for the following problems: sharp thin circular and elliptic cones in
supersonic and hypersonic flow (Chapter 10 and Chapter 11); models of Martian probes
at small, moderate, and large angles of attack in supersonic and hypersonic flow (Chap-
ter 12).





SECTION 1. NUMERICAL SIMULATION OF
TWO-DIMENSIONAL PROBLEMS OF

EXTERNAL AERODYNAMICS

The computational aerodynamics methods are being developed actively nowadays and
are being used successfully to solve various problems of external and internal aerody-
namics. Many different approaches for numerical simulation of the viscous gas dynam-
ics equations have been created within the framework of this direction. Among others
is a method based on the implicit Beam-Warming finite-difference scheme (Beam and
Warming, 1978), and its further modification (Steger, 1978; Hollanders and Devezeaux
de Lavergne, 1987).

Newton approach to implicit finite difference schemes with subsequent linearization
and solution of a system of algebraic equations is considered to be the most complete
mathematically (Egorov and Zaitsev, 1991). This approach has been developed for nu-
merical integration of unsteady two-dimensional Navier-Stokes equations (Bashkin, et
al., 1993) and Reynolds equations (Bashkin, et al., 2000a) under Boussinesq assump-
tion about Reynolds stresses using two-parameter turbulence model (Huang and Coakley,
1993). This approach has been implemented numerically in a code that can be run on a
personal computer. It has been used successfully for solution of a number of supersonic
problems of external and internal aerodynamics: a circular cylinder, a sphere, flat and ax-
isymmetric channels (Bashkin, et al., 1998), a basic flat hypersonic air inlet (Bashkin, et
al., 1996, 1997ab, 1999ab, 2001).

This approach is described in the first chapter as applied to two-dimensional perfect
gas flow and some results of parametric computations for supersonic separated flow are
discussed. The results of numerical simulation of a number of two-dimensional problems
of external aerodynamics concerning transonic, supersonic, and hypersonic perfect gas
flow over flat and axisymmetric bodies are analyzed in the next chapters.

1





CHAPTER 1

Mathematical Problem Statement and Numerical
Analysis

1.1 PROBLEM STATEMENT

1.1.1 Differential Navier-Stokes Equations

Viscous gas flow is described by a system of equations, which express the laws of con-
servation of mass, momentum, and energy. Hereinafter, these equations are referred to as
Navier-Stokes equations. In case of the two-dimensional problem (plane flow and axisym-
metric flow) solved in an arbitrary curvilinear reference frameξ, η, wherex = x (ξ,η),
y = y (ξ,η) are Cartesian coordinates, Navier-Stokes equations are written in the diver-
gent form as

∂ Q
∂ t

+
∂ E
∂ ξ

+
∂ G
∂ η

= B. (1.1)

HereQ is a vector of conservative dependent variables of the problem,E andG are
flux vectors in curvilinear reference frame, andB is a source vector. VectorsQ, E, G are
related to the corresponding vectorsQc, Ec, andGc in Cartesian reference frame by the
formulae

Q = JQc, E = J

(
Ec

∂ξ

∂x
+ Gc

∂ξ

∂y

)
, G = J

(
Ec

∂η

∂x
+ Gc

∂η

∂y

)
,

whereJ = ∂(x, y)/∂(ξ, η) is transformation Jacobian.
Cartesian components of vectorsQc, Ec, andGc for two-dimensional Navier-Stokes

equations are written as follows

Qc =

∥∥∥∥∥∥∥∥

ρ

ρu
ρv
e

∥∥∥∥∥∥∥∥
, Ec =

∥∥∥∥∥∥∥∥∥

ρu
ρu2 + p− τxx

ρuv − τxy

ρuH − uτxx − vτxy − λ
∂T

∂x

∥∥∥∥∥∥∥∥∥
,

Gc =

∥∥∥∥∥∥∥∥∥∥

ρv
ρuv − τxy

ρv2 + p− τyy

ρvH − uτxy − vτyy − λ
∂T

∂y

∥∥∥∥∥∥∥∥∥∥

,

whereρ is density,u, v are Cartesian components of the velocity vector,p is pressure,
e = ρ

(
cvT +

(
u2 + v2

)
/2

)
is total energy per unit volume,H = cpT +

(
u2 + v2

)
/2

3
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is total enthalpy,cp andcv are specific heats at constant pressure and volume,λ is heat
conductivity coefficient,µ is dynamic viscosity coefficient,τ is viscous stress tensor with
components

τxx = µ

(
−2

3
divV + 2

∂u

∂x

)

τxy = τyx = µ

(
∂u

∂y
+

∂v

∂x

)

τyy = µ

(
−2

3
divV + 2

∂v

∂y

)
.

The source termB in Eq. (1.1) for plane (ν = 0) and axisymmetric (ν = 1) cases is
written as

B = J

(
0, 0, ν

(
p + µ

(
2
3

divV − 2
v

r

))
, 0

)T

,

wherer is the distance from the symmetry axis.
System of equations (1.1) for perfect gas is closed by the state equation

p = ρRgT/M. (1.2)

HereRg is universal gas constant,M is molar weight of the gas. The transfer coefficients
are determined as follows: dynamic viscosity coefficient varies with respect to temper-
ature according to the power lawµ/µ∞ = (T/T∞)0.7 or Sutherland’s lawµ/µ∞ =
(T∞ + Tµ) (T/T∞)1.5/(T + Tµ), Tµ = 110.4, and Prandtl number is assumed to be
constant Pr= µcp/λ = 0.7.

1.1.2 Boundary and Initial Conditions

Solution of the problem described by Navier-Stokes equations (1.1) is subject to the
boundary conditions. No-slip and flow tangency conditions (u = v = 0) are imposed
on the boundary of the computational domain, which coincides with the body solid sur-
face; the streamlined surface is also considered to be heat-insulated ([∂T/∂n]w = 0) or
isothermal (Tw = const). In some cases local or integral heat balance condition may be
imposed on the streamlined surface. Outer boundary of the computational domain is sub-
ject to radiation conditions, which correspond to the diverging wave and are written in the
form of Riemann invariants:

α1 =
2a

γ− 1
− u

∂ξ

∂x
− v

∂ξ

∂y
= const, α2 =

p

ργ
= const,

α3 = v
∂ξ

∂x
− u

∂ξ

∂y
= const, α4 =

2a

γ− 1
+ u

∂ξ

∂x
+ v

∂ξ

∂y
= const,

wherea is sound speed. In addition, signs of eigenvalues are checked at every point of
the inflow boundary
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λ1 = u
∂ξ

∂x
+ v

∂ξ

∂y
− a

√(
∂ξ

∂x

)2

+
(

∂ξ

∂y

)2

, λ2 = u
∂ξ

∂x
+ v

∂ξ

∂y
,

λ3 = u
∂ξ

∂x
+ v

∂ξ

∂y
, λ4 = u

∂ξ

∂x
+ v

∂ξ

∂y
+ a

√(
∂ξ

∂x

)2

+
(

∂ξ

∂y

)2

,

The signs of eigenvalues specify the direction of perturbation propagation with respect
to ξ = const. Atλi ≥ 0 (“inflow boundary”) the corresponding invariant on the outer
boundary is calculated by the values of gas dynamic variables in the free stream, and in
case ofλi < 0 (“outflow boundary”) a smooth interpolation of the formUk − 2Uk−1 +
Uk−2 = 0, whereU is a vector of Riemann invariants, is applied. A periodic constraint
is imposed on the inner boundary of the computational domain, which coincides with the
positivex-axis.

Uniform free stream condition is taken as an initial approximation with further evolu-
tion of the flow field according to the unsteady problem solution. In addition to the above,
the time step increases as the flow pattern is generated, which eventually makes it possible
to solve steady-state problem. The numerical implementation is more efficient if the prob-
lem is solved initially on a coarse grid (21× 21× 21) following the approach described
above, and then the resulting interpolated solution is used as an initial approximation for
a finer grid. The data obtained earlier with the closest values of the variable parameters
to the required ones is used as an initial approximation for parametric computations by
Mach and Reynolds numbers.

1.1.3 Differential Reynolds Equations

Numerical simulation based on integration of Reynolds-averaged Navier-Stokes equa-
tions, referred to as Reynolds equations, is prominent in theoretical analysis of fluxes
with different flow modes. This system of equations is not closed. Different turbulence
models, both algebraic and differential, are used for its closure.

Reynolds-averaged Navier-Stokes equations can be written in divergent form in an ar-
bitrary curvilinear reference frame(ξ, η), wherex = x (ξ,η), y = y (ξ, η) are Cartesian
coordinates, as follows

∂Q
∂t

+
∂E
∂ξ

+
∂G
∂η

= B. (1.3)

HereQ is a vector of conservative dependent variables,E andG are flux vectors in curvi-
linear reference frame,B is a source vector. VectorsQ, E, G, andB are related to the
corresponding vectorsQc, Ec, Gc, andBc in Cartesian reference frame by the formulae

Q = JQc, E = J

(
Ec

∂ξ

∂x
+ Gc

∂ξ

∂y

)
, G = J

(
Ec

∂η

∂x
+ Gc

∂η

∂y

)
, B = JBc

whereJ = ∂ (x, y)/∂ (ξ, η) is transformation Jacobian.
Cartesian components of vectorsQc, Ec, Gc andBc for two-dimensional Reynolds

(Favre)-averaged Navier-Stokes equations are written as follows
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Qc =

∥∥∥∥∥∥∥∥∥∥∥∥

ρ

ρu
ρv

ρ(e + q2)
ρq
ρω

∥∥∥∥∥∥∥∥∥∥∥∥

, Ec =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

ρu

ρu2 + p +
2
3
ρq2 + τxx

ρuv + τxy

ρuH +
5
3
ρuq2 + Ix

ρuq + Iq
x

ρuω + Iω
x

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

,

Gc =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

ρv
ρuv + τxy

ρv2 + p +
2
3
ρq2 + τyy

ρvH +
5
3
ρvq2 + Iy

ρvq + Iq
y

ρvω + Iω
y

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

, Bc =

∥∥∥∥∥∥∥∥∥∥∥∥

0
0
0
0

h1ρωq
h2ρω2

∥∥∥∥∥∥∥∥∥∥∥∥

,

whereρ is gas density;u, v are Cartesian components of the velocity vectorV; p is
pressure;e = h−p/ρ+

(
u2 + v2

)
/2 is total energy per unit mass;H = h+

(
u2 + v2

)
/2

is total enthalpy,h = cpT is static enthalpy;cp is specific heat at constant pressure,τ is
viscous stress tensor with components

τxx = (µ + µT )
(

2
3

divV − 2
∂u

∂x

)

τxy = τyx = − (µ + µT )
(

∂u

∂y
+

∂v

∂x

)

τyy = (µ + µT )
(

2
3

divV − 2
∂v

∂y

)
,

I is a heat flux vector
I = − (λ + λT ) grad(T ) + τV ,

µ andλ are molecular viscosity and heat conductivity coefficients,µT andλT are turbu-
lent viscosity and heat conductivity coefficients;

I q = −
(

µ +
µT

Pr1

)
grad(q), Iω = −

(
µ +

µT

Pr2

)
grad(ω).

The source vector in Reynolds equations for flat (ν = 0) and axisymmetric (ν = 1)
flow takes on the form

B = J

(
0, 0, ν

(
p + µ

(
2
3

divV − 2
v

r

))
, 0, h1ρωq, h2ρω2

)T

.

Two-parameter differentialq − ω turbulence model (Huang and Coakley, 1993) is
used in this work. The turbulent viscosity is expressed as follows:
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µT = Cµf
ρq2

ω
, f = 1− exp

(
−α

ρrwq

µ

)
, α = 0.02, Cµ = 0.09,

h1 = C11

(
Cµf

S

ω2
− 2

3
divV
ω

)
− C12, h2 = C21

(
Cµ

S

ω2
− C23

divV
ω

)
− C22,

S =
4
3

[(
∂u

∂x

)2

− ∂u

∂x

∂v

∂y
+

(
∂v

∂y

)2
]

+
(

∂u

∂y
+

∂v

∂x

)2

, divV =
∂u

∂x
+

∂v

∂y
,

whereC11 = C12 = 0.5, C21 = 0.055 − 0.5f (q, rw, ρ, µ), C22 = 0.833, C23 = 2.4,
Pr1 = 2, Pr2 = 2, rw is a distance from the wall,q andω are turbulent velocity and
frequency accordingly.

Perfect gas state Eq. (1.2) is used to close the resulting system of equations; molecular
viscosity coefficient depends on temperature according to a power lawµ/µ∞=(T/T∞)0.7

and Prandtl numbers are assumed to be constant Pr= µcp/λ = 0.7, PrT = µT cp/λT =
0.9.

1.1.4 Boundary and Initial Conditions

Solution of the problem determined by Reynolds equations (1.3) is subject to the same
boundary conditions as the Navier-Stokes problem solution, since the type of equations
remains the same. In addition, the values of the turbulence parameters in the free stream
should be set asq = q∞, ω = ω∞.

No-slip and flow tangency conditions (u = v = 0) are imposed on the boundary of
the computational domain, which coincides with the body solid surface; the streamlined
surface is considered to be heat insulated ([∂T/∂n]w = 0) or isothermal (Tw = const). In
addition, the solid surface boundary conditions are used for the equations that determine
behavior of turbulence parameters: the condition of turbulent pulsation damping (qw = 0)
and the frequency impermeability condition ([∂ω/∂n]w = 0).

Outer boundary of the computational domain is subject to radiation conditions, which
correspond to the diverging wave and are written in the form of Riemann invariants:

α1 =
2a

γ− 1
− u

∂ξ

∂x
− v

∂ξ

∂y
= const, α2 =

p

ργ
= const,

α3 = v
∂ξ

∂x
− u

∂ξ

∂y
= const,

α4 =
2a

γ− 1
+ u

∂ξ

∂x
+ v

∂ξ

∂y
= const,

α5 = q = const, α6 = ω = const,

wherea is sound speed. Furthermore, signs of eigenvalues are checked at every point of
the inflow boundary
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λ1 = u
∂ξ

∂x
+ v

∂ξ

∂y
− a

√(
∂ξ

∂x

)2

+
(

∂ξ

∂y

)2

, λ2 = u
∂ξ

∂x
+ v

∂ξ

∂y
,

λ3 = λ2, λ4 = u
∂ξ

∂x
+ v

∂ξ

∂y
+ a

√(
∂ξ

∂x

)2

+
(

∂ξ

∂y

)2

, λ5 = λ6 = λ2.

The signs of eigenvalues specify the direction of perturbation propagation with respect
to ξ = const. In case ofλi ≥ 0 (“inflow boundary”) the corresponding invariant on the
outer boundary is calculated by the values of gasdynamic variables in the free stream,
and a smooth interpolation of the formUk − 2Uk−1 + Uk−2 = 0, whereU is a vector of
Riemann invariants, is applied in case ofλi < 0 (“outflow boundary”).

Periodicity conditions are imposed on the inner boundary of the computational do-
main, which coincides with the positivex-axis.

Due to the similarity between Navier-Stokes and Reynolds equations, all that was
said above in Section 1.1.2 concerning the choice of initial conditions for the system of
Navier-Stokes equations holds true for the system of Reynolds equations.

1.2 APPROXIMATION OF EQUATIONS

For numerical analysis, systems of Eqs. (1.1) and (1.3) are nondimensionalized. This is
done by dividing Cartesian coordinates by a characteristic lengthL (for example, in case
of simulation of flow over a cylinder or a sphere, the characteristic length is taken to be
L = R, whereR is the body radius), velocity components by velocityV∞, pressure by
doubled impact air pressure2q∞ = ρ∞V 2∞, time by a characteristic time, during which
a fluid particles stays in the body proximity,t∗ = R/V∞; other gasdynamic parame-
ters are divided by their values in the free stream. The initial boundary value problem
stated above is solved numerically using an integral-interpolation method (finite element
method). Application of the finite element method for Navier-Stokes (1.1) and Reynolds
(1.3) equations yields the difference analog of conservation laws

Qn+1
i,j −Qn

i,j

τi,j
+

En+1
i+1/2,j − En+1

i−1/2,j

hξ
+

Gn+1
i,j+1/2 −Gn+1

i,j−1/2

hη
= Bn+1

i,j ,

wheren is a time step number;τi,j is a time increment. The time increment is specified
as follows

τi,j = τ0

(
amin + (amax− amin)

Ji,j −min(Ji,j)
max(Ji,j)−min(Ji,j)

)
,

whereτ0 is a value of the time step that corresponds to the largest computational cell at
given values of parametersamin andamax (for example,amin = 0.02 andamax = 1);
i, j, andhξ, hη are numbers of the nodes and increments ofξ, η accordingly. Using the
variable in space time increment proportional to the area of an elementary cell speeds up
the computation process for the steady-state time relaxation solution.
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