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Introduction

A vast number of specialized investigations concerned with different aspects of trans-
port processes in heterogeneous and, in particular, granular media has been published.
This stems from the exceptionally great variety of such media and processes and also
from their extremely extensive prevalence in the most varied fields of energy genera-
tion, metallurgy, chemical technology, mining thermophysics and other practical activi-
ties. A large number of monographs and other surveys were also published for the
purpose of systematizing in a relatively complete form the most important advances and
results attained during the past decades in disciplines of quite portentous import

For this reason the first question that arises immediately, upon an even casual
perusal of the boundless ocean of journal articles and the numerous monographs on the
subject, is that of the need of still another such monograph. It is our opinion that the
motivation for this will become evident upon recognizing the wide methodological
chasm between the many engineering-type studies and attempts of general-physical
analysis of transport processes on the basis of rigorous methods of theoretical physics
and applied mathematics. Studies of the first type contain an enormously large body of
empirical material, pertaining to different aspects of heat and mass transfer in engineer-
ing practice; these are absolutely necessary for efficient design and optimization of
most of industrial devices and equipment. However, they do not always or insuffi-
ciently explain the underlying physical factors and mechanism of transport and the very
abundance of these studies and their excessive detailing frequently only complicate ana-
lytic correlation. On the other hand, the second type of studies suffers from excessive
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model simplifications, which usually are very far from the actual situation. As a result
they are too complicated both for direct use and even for gaining insight into the
processes, which makes them poorly accessible and not too interesting to the practic-
ing engineer.

The existence of this chasm reduces to a large extent the value both of applied
and theoretical studies and overcoming it requires, first of all, developing a consistent
system of physical concepts on the principal features of transfer of heat, mass and elec-
trical discharge in heterogeneous and multiphase media of different structure and under
different conditions. This applies, in the first place, to gaining insight and incorporation
of only principal factors that affect these processes, while neglecting secondary and un-
important details and, on the other hand, developing sufficiently simple and under-
standable general principles of modeling them, which would have a sufficiently wide
applicability and would not involve excessively refined analytical methods.

The attempt to formulate certain unified approaches to describing different aspects
of the different transport processes in dispersed media is, in fact, the main purpose of
this book. This goal did not consist so much in providing a general description of these
approaches, based on the technique of averaging over an ensemble and illustrating their
workability with respect to elementary applied problems, but in broadening the range of
methodologies which could then be used in analyzing more complex and constantly
arising problems.

This goal left its imprint on the level and style of presentation. Firstly, given the
extensive bibliography and surveys of empirical correlations on heat and mass transfer
in various specific media, the authors have completely forgone systematizing these data
in a more or less complete form. Publications were used primarily only to the extent to
which they appeared to be useful for better mastering the idea and methods of their
implementation and for this reason reference to these are somewhat arbitrary or ran-
dom. Secondly, since our objective consisted in presenting these ideas and methods in
a sufficiently simple form, which could be actually used by engineering personnel in
solving the problems that they face, ensuring better understanding required at times sac-
rificing elements of rigor and preexistent validity of the assumed representations and
approaches, leaving the matter to the intuition of the reader. This feature of individual
chapters of the book may apparently cause some lack of internal satisfaction not only
to the adherents of rigor, but also to fully sensible theoreticians. However, in our opin-
ion, this is compensated for by the obvious practical applicability of the methods devel-
oped here for practical solution of new problems of the theory of heat and mass
transfer, including those coupled with phase and chemical transitions.

Yuri A. Buyevich
Dmitri V. Alexandrov

Department of Mathematical Physics
Urals State University

51 Lenin Avenue

Ekaterinburg, 620083, Russia
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I

Heat Transfer Equations

In engineering practice one usually deals with situations in which the characteristic
minimal linear scale L of a significant variation of some of the quantities that represent
the average properties of the heterogeneous medium or the course of heat transfer in it,
exceeds highly the specified linear scale / of the internal structure of this medium. In
the case of heat transfer in a macroscopically homogeneous granular layer, L apparently
represents the characteristic distance at which a change occurs in the mean temperature
of significance to this process, whereas the mean dimension of the particles making up
the layer can be used as the structural microscale. In dilute dispersions (suspensions,
emulsions, composite materials) this microscale is determined by the mean distance be-
tween the centers of adjoining discrete inclusions.

In the above situations it is natural to analyze heat transfer in the continuum ap-
proximation as occurring simultaneously in several fictitious homogeneous continua
with their specific effective properties — specific heat and thermal conductivity. Each
such continuum simulates a separate phase or component of the original heterogeneous
medium; the possibility of heat transfer between the continua is allowed for. For
steady-state processes, when the phase or component temperatures equalize, one may
introduce a single continuum, which corresponds to a single-temperature model of the
heterogeneous medium. In the case of a granular layer or of a moving disperse system
it is natural to introduce two fictitious continua that simulate respectively the dispersed
phase formed by the particles and the continuous medium between them. The latter
may be a gas or a dropwise liquid, as well as a solid substance, which occurs in com-
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2 HEAT TRANSFER IN DISPERSIONS

posite materials with discrete inclusions. These inclusions may be in any state. If the
composite material, granular layer or dispersed system contain particles or inclusions
with highly differing thermophysical and other properties, it may turn out advisable to
introduce a large number of homogeneous continua — one of the continuous medium
between the particles and several for the different kinds of particle systems.

The continuum method of describing heat transfer in heterogeneous media in-
volves two fundamental interrelated problems. The first consists in formulating a set of
equations for the mean temperatures of these continua on the basis of the law of con-
servation of energy. These equations always contain effective heat fluxes in the individ-
ual continua and also terms describing the heat transfer between these continua. All
these quantities must be expressed as functions or functionals of unknown variables of
the equations, i.e., of the mean temperatures of the continua and of their derivatives
with respect to independent variables, and also of parameters and physical charac-
teristics that describe the structure of the medium and the properties of its phases. This
requires attaining closure of this set of equations, which is absolutely necessary for
their applicability of the study of applied problems. The finding of such functions and
functionals comprises the second fundamental problem.

An entirely similar problem arises also in analyzing transfer of some physical
quantity (mass, electric charge, momentum), rather than of heat, in heterogeneous sys-
tems. Given the identical physical meaning and mathematical formulation of problem of
diffusion mass transfer, all the results obtained for heat transfer also apply to transfer
of mass. In the latter case the mean heat flux densities are replaced by impurity mass
fluxes, whereas the effective thermal conductivities are replaced by effective diffusion
coefficients, etc. In the case of momentum transfer, equations for the mean tempera-
tures of continua are replaced by equations for their average velocities or displacements
and the obtaining of closure equations for effective forces and stresses in continua is
the principal concern of rheology within the framework of which one must find effec-
tive viscosities and elastic moduli, and also all the coefficients in equations for the
forces of interaction between the continua. The present monograph is not concerned
with rheology problems and it focuses primarily on the transport of a scalar physical
quantity — such as heat or the mass of a diffusing admixture.

This chapter is concerned with the fundamental solution of the first of the above
problems — rigorous derivation of effective equations for the mean temperatures of the
dispersed phases (or of the continua modeling them) on the basis of the general Gibbs
representations over the ensemble of possible versions of the states of this medium.
However, before describing the properties of the configuration ensemble of a system of
particles of a moving dispersion or of a stationary granular layer and the mathematical
tools of the averaging procedure needed for this purpose, we shall present a brief de-
scription of the traditional methods of analysis of heat transfer in heterogeneous and, in
particular, in granular systems.

I.1 Equations of the Two-Temperature Model

The equations of heat transfer are usually postulated within the framework of the phe-
nomenological or semi-empirical method or are obtained as a result of averaging over
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representative spatial objects (volume or elements of differently oriented surfaces). In
studies of the former kind, which apparently were started several decades ago for the
cases of analysis of temperature distributions in rocks, oil-bearing strata and also in
dense granular beds of different types [1-3], it is necessary to postulate both the very
form of the equations and the functional representations of the quantities making them
up. Exhaustive surveys and examples of practical application of different versions of
the phenomenological approach are contained in a number of monographs [4-9] and in
a large number of journal articles. Lately these methods were further developed by An-
tonishin and his coworkers [10, 11], who paid particular attention to different aspects
of their application in describing heat transfer in granular beds of different types (qui-
escent, rotating, ordinary- and vibro-fluidized).

The technique of spatial averaging has attained a high level of perfection as a
result of work by a large number of investigators. A survey of usually employed rep-
resentations and methods and also of the principal results can be found in [12-18]. The
effective heat transfer equations obtained from spatial averaging of ordinary Fourier or
convective heat transfer equations, which are valid in materials of the individual phases,
have the same basic form as some of those postulated from empirical considerations.
This, obviously, can be regarded as important evidence of the goodness of fit of the
phenomenological theory. However, approaches based on spatial averaging do not yield
anything virtually new with respect to derivation of an "equation of state" for effective
heat fluxes and rate of interphase heat transfer, i.e., they do not contribute to the solu-
tion of the second of the above fundamental problems.

We shall restrict ourselves, for the purposes of illustration, to analysis of heat
transfer in a macroscopically homogeneous infiltrated porous body or granular bed.
When using the phenomenological model, the mean temperatures Ty and T; of the "con-
tinuous" (fluid) and "dispersed" (solid) medium are usually obtained from expressions
such as

810 .
Ce0) (3 +V (U‘Eo)}= xeoA’Co + he +Je0 » (I-l)
o7 .
Cel E =Xe1 —he tJel »

the general form of which is the same as that of equations obtained by spatial averag-
ing. If it is assumed that the temperatures of the solid and liquid phases equalize virtu-
ally instantaneously (which is possible in principle when rate h, of interphase heat
transfer is sufficiently high), then Eqgs. (I.1) can be replaced by the expression

o

5 + ooV (D) =AAT+j,, Tp=T1=T1, (1.2)

Ce

Ce=Ce0t Cel » Ae = }VeO + et Je=Je0 tJel

that is obtained by summing Egs. (I.1) at 9 = 1.



4 HEAT TRANSFER IN DISPERSIONS

Actually, Eqs. (I.1) and (I.2) implicitly utilize an unproven hypothesis to the ef-
fect that the effective mean heat flux densities in both phases satisfy the Fourier law,
i.e., that qeo = —AeoVT0, qe1 = —Ae1VT1. Similarly, they include a convective heat flux
stemming from the flow of the fluid phase, which is assumed to be equal to c.ouTty,
where u has the meaning of the mean velocity of the fluid in the pore space (but not
to the mean filtration velocity us = €u, where € is the porosity).

Accepting both the above hypotheses, we shall express the effective strengths of
the mean heat sources in the liquid and solid phases per unit volume of heterogeneous
medium by similar quantities, assumed to be known, for materials of both phases as j,q
= gjp and j,; = @j;, where @ = 1 — € is the mean volumetric concentration of the solid
phase. In addition, we shall write the effective specific heats in Eqgs. (I.1) as

Ced = EPOCO > Cel =PPICT (L3)

(po and p; are the densities and cg and c| are the specific heats of the liquid- and
solid-phase materials), the physical meaning of which is obvious. However, even in this
case closure is far from being attainable.

First, the meaning of the effective heat transfer coefficients A,y and A, and also
their functional dependence on the thermal conductivities Ay and A; of the materials
and on the mean phase concentrations € and ¢ are also highly unclear. The obtaining
of this relationship is difficult also because firstly, the effective coefficients depend to
a larger extent not only on the mean concentrations, but also on the very nature and
specifics of the microstructure of the heterogeneous medium. Secondly, they turn out to
be far from identical for heat transfer with different time scales. We shall illustrate the
above using quite simple examples.

Let the topological properties of the domains occupied by the solid and liquid
phases be approximately the same. This is approximately valid for many fluid-filled
capillary-porous media. If heat transfer occurs at close to steady-state conditions (rela-
tively large time scale), then the effective thermal conductivity A, of the heterogeneous
medium in Eq. (I.2) should be properly expressed by the equation

7\.6 = 87\.0 + ([)7\.1 , 1.4)

that follows directly from the theory of mixtures. However, it is virtually impossible to
make allowance, in this quasi-steady approximation, for the difference between the
mean phase temperatures within the framework of the two-temperature model given by
Eq. (I.1) if for no other reason then because it remains highly unclear how to separate
Ae into its two components A,y and A,; that are contained in the different equations
(I.1). It is obvious that this specification of thermal conductivities for the individual
phases is very high from being unique.

Further, if the time scale of the process is sufficiently small (as this happens,
among others, at the initial stage of heating an infiltrated porous body by a solid wall),
the heat initially propagates only through the phase with the higher thermal conductiv-
ity, whereas the second phase virtually either does not succeed in significantly affecting
this process or to change its temperature to a significant extent. Under these conditions
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Eq. (I.4) loses its meaning and the effective thermal conductivity as a whole at suffi-
ciently small times consists of only one of the terms in the right-hand side of Eq. (1.4),
namely the one corresponding to the phase at the higher temperature.

Let us now examine slightly unsteady heat transfer in a granular bed with radi-
cally different topological properties. In fact, in this case the continuous phase then ex-
hibits the connectivity property and permits unhindered transfer of heat only through
itself. The dispersed phase, conversely, consists of discrete non-connected elements,
separated by interstices of the continuous phase. If we neglect the conceivable transfer
of heat by direct physical contact between the particles, and also through the aforemen-
tioned interstices, then this continuous transport of heat turns out to be impossible in
principle. It follows from this that in the last case

M

— 1.5
" 1.5)

7\‘627\‘60:7\‘0]((([)?]()7 7\'elzoa K

where f(@, ¥) is some function of the mean concentration in the bed and of the ratio of
the thermal conductivities of the phase that may, additionally, depend on the bed’s
structure (type of particle packing, their size distribution and shape). If the particle
shape is significantly anisotropic and exhibits an orderly orientation, then in the general
case, the single scalar coefficient (I.5) should be replaced by the tensor of effective
thermal conductivities.

The existence of even a weak contact conductivity naturally gives rise to heat
transfer over the dispersed phase and non-conformance to Egs. (I.5), which is the more
perceptible, the higher the thermal conductivity of the material of this phase as com-
pared with that for the continuous phase in the intervals between the particles.

If we now consider heat transfer in a granular bed with a small time scale, then
only the continuous phase participates in this process, whereas there is insufficient time
for the discrete particles to react to the rapidly changing temperature situation. In this
case the effective thermal conductivity turns out to be much smaller than that formally
computed from Eq. (I.5). Such a situation occurs, among others, at the initial stage of
heating of a granular bed by a solid wall [10, 11, 19].

We wish to note that Eqs. (I.4) and (1.5) completely ignore the transport compo-
nent induced by the so-called convective dispersion of heat. This phenomenon is
brought about by transfer of heat resulting from mixing of individual jets of liquids
flowing over the bed particles or in the course of mixing of liquid flowing in the sec-
tioned porous space of the body. For this reason the above equations are valid approxi-
mately only when the thermal Peclet number, based on the linear structural microscale
of the heterogeneous medium, is small.

The question of identification of the specific rate &, of interphase heat transfer in
Egs. (I.1) of the two-temperature model, which was analyzed particularly thoroughly
for granular systems by Antonishin with his coworkers [10, 11], is even more compli-
cated. Without going into details, we wish to point out that virtually all the suggestions
on defining this quantity reduce to the expression

he=0ap1c1S (T1 — T) (L6)
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where S is the specific area of the phase interface, whereas o, is some effective coef-
ficient per unit area of this surface, and differ only by the manner of definition of o,.

Upon neglecting the conductive manner of transfer as compared with the convec-
tive for the continuous phase and the contact conductivity for the dispersed phase, Eqgs.
(I.1), with closure provided by Eq. (1.6), were applied to specific problems of heating
or cooling granular and porous strata by percolating flows of gas or dropwise liquid as
far back as the 20ties [20, 21]. Exhaustive solutions of such problems were suggested
in the book [22], which also presents tables of a number of functions that arise in the
course of these solutions.

The use of Egs. (I.3) and (I1.6) in the second of equations (I.1), coupled with ne-
glecting the contact conductivity and extraneous heat sources, yields a simple relaxation
equation for the mean temperature of the dispersed (solid) phase

0T 0,S
8_;: 0 (T1— %) > (L.7)

where @/0,S has the meaning of a characteristic relaxation time. In general, however,
the relationship between 7| and T differs perceptibly from that in Eq. (I.7). Many at-
tempts were made to allow for this difference within the assumptions of the model used
in [20, 21], i.e., by neglecting the molecular heat transfer by introducing a time-depend-
ent heat transfer coefficient o, (see, among others, the book by Arens, et al. [9]). A
large volume of computational data pertaining to different aspects of mining thermo-
physics, based on the first of equations (I.1) of the two-temperature model and its sim-
plified versions with closure provided by expressions such as Eq. (I.7) are given in the
books [23, 24].

I.2 Heat Transfer in Systems with Perceptible Thermal Inertia
of the Solid Phase

The difficulties in obtaining closure of the equations of the two-temperature model and,
in particular, in determining the magnitude of interphase heat transfer in a more rigor-
ous form than given by quasi-steady equation (I.6) have resulted in partially forgoing
the continuum method of describing heat transfer in porous and granular media. Under
the new approach, transport in the continuous (fluid) phase is, as previously, described
as for a continuum, but transfer with elements of the dispersed (solid) phase is analyzed
on the basis of classical approaches to the heating and cooling of each such element.
This statement of the problem appears to be justified, in the first place, in situation
when there is no transport over the dispersed phase, which is frequently the case in
granular beds. However, such a situation may occur also in the case of porous materials
being infiltrated by fluid. Moreover, it is suitable in familiar simplified models of po-
rous bodies consisting of intermittent plane-parallel layers of a solid substance, sepa-
rated by similar free cracks that contain only a fluid. A survey of solved problems of
this type is given by Kitayev [8].

The applications of this method to problems of heating of granular beds consist-
ing of identical, regularly shaped particles are of greater interest. Apparently, Ivantsov
and Lyubov [25] were the first to formulate and solve this problem for a bed of solid
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ertia. In these cases it is advisable to introduce several different continua, that model
particles of different types and, consequently to use a multi-temperature model of the
starting medium. Without going into details, the form of the equations of this model is

K K
a1
Pocoe [—ato + VOVTO]: —V(q+ap)+h+ Y e+ Y, Optg, (157)
k=1 k=1

aTk .
PrCKPk {3 + VkVTk]: -Vqr — i+ @ik, k=1,...K,
where

= [ m¥)Vig® @ rlv)ar, (158)

|rr|<q,

o= | nQu-Q)mtr)ar,

| r-r | =a;

K
q=-2%VT- Y, =2 j e (1. 6) Va® @
k=1

r) dr +

[ r=r| <ay

K K
Y [ d-tPmena, e=1-Y o,
=1

=1 | =g, =

where integration is carried out over the locations of center r’ of a particle of the kth
kind such that point r lies within this particle, ni(z, r’) represents the conditional denu-
merable concentration of particles of the kth kind in the vicinity of a fixed particle of
the same kind, whereas the superscripts (k) in the integrands simply designate the type
of particle within which the conditional distributions of temperature 1™ and heat flux
q(k) are calculated.
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