NOMENCLATURE

<i>a</i> , <i>b</i> , <i>c</i> , <i>d</i>	 Failure parameters 	
\boldsymbol{A}	- Area of pipe, m ²	
A_{wall}	 Cross-section area of the pipe wall, m² 	
b_w	 Cross-section width, m 	
d_p	 Inner diameter of the pipe, m 	
D_p	 Outer diameter of the pipe, m 	
D_{eng}	 Equivalent diameter of the engine, m 	
D	 Reference strain-rate, 1/s 	
E_{red}	 Reduced modules of elasticity, MPa 	
E_c	 Initial elasticity of the concrete, MPa 	
E_s	Initial elasticity of the steal, MPa	
f_c	 Uniaxial compressive strength of concrete, MPa 	
f_t	 Uniaxial tensile strength of concrete, MPa 	
f_{bc}	- Equal biaxial compressive strength of concrete	е,
	MPa	
f_{pc}, f_{cc}	- Combined triaxial compression of concrete, MPa	
f_{y}	Yield strength of reinforcement, MPa	
f_{dc}	 Dynamic compressive strength, MPa 	
f_{cs}	 Static compressive strength, MPa 	
f_{dt}	 Dynamic tensile strength, MPa 	
f_{ts}	 Static tensile strength, MPa 	
F_c	 Load contribution from aircraft crushing strength N 	1,
$f_{iI}^{\;\;int}$	 Internal nodal forces of node I in the i-th direction 	n
Jil	N	.1,
$f_{iI}^{\;ext}$	 External nodal forces of node I in the i-t 	h
J iI	direction, N	11
$h_{ m o}$	Thickness of the wall, m	
$\overset{n_{\mathrm{o}}}{h}$	 Thickness of the wan, in Thickness of the spacing of reinforcement layer 	rc
п	in the respective directions, m	
h_1	 Thickness of the reinforcement layer, m 	
I	 Moment of inertia, m⁴ 	
	 Stress invariants, MPa, (MPa)² 	
I_1, J_2	- Suess invariants, wif a, (wif a)	

l – Length of the straight pipe, m

 m_{il} – Diagonal mass matrix of node I in the i-th direction

M – Mass of the missile, kg

 M_2 - Bending moment with respect to axis 2, N-m

 M_3 – Bending moment with respect to axis 3, N-m

n – Step number

P – Axial force, N

 p_k - Pressure at the break location, Pa

p_a – Outside (atmospheric) pressure, Pa

 p_{wall} - Pressure straight after the break location, Pa

p – Reinforcement ratio

q – Steel strain-rate amplitude parameter

 Q_x – Reaction force, N

 S_2 – Sectional modulus with respect to axis 2, m³

 S_3 - Sectional modulus with respect to axis 3, m³

t Wall thickness, m

t_c – Thickness of reinforcement with prevailing compression, m

 t_p – Minimum wall thickness to prevent perforation, m

 t_{pd} – Minimum design thickness to prevent perforation, m

 t_s – Minimum wall thickness to prevent scabbing, m

 t_{sd} – Minimum design thickness to prevent scabbing, m

 t_t – Thickness of reinforcement with prevailing tension, m

 Δt – Time increment, s

U – Reference velocity, m/s

 u_{iI} - Nodal displacement of node I in the i-th direction, m

 \hat{u}_{iI} - Nodal velocity of node I in the i-th direction, m/s

 \ddot{u}_{iI} - Nodal acceleration of node I in the i-th direction, m/s²

v – Velocity of the uncrushed part of the plane relative to the wall, m/s

V – Velocity of the engine, m/s

 w_k – Fluid velocity at the break location, m/s

Thickness of a concrete layer under compression in the corresponding part of the reinforcement, m.

Greek letters

 α , α_{fy} , α_{fu} – Parameters

 β , δ – Parameters

 $\dot{\varepsilon}$ – Strain-rate, 1/s

 $\dot{\varepsilon}_s$ – Static strain-rate, 1/s

 μ – Mass per unit length, kg/m

 ρ_k - Fluid density at the break location, kg/m³

 σ_a – Axial stress, MPa

 $\sigma_{b2/3}$ – Bending stress with respect to axis 2 and 3, MPa

 σ_{dvn} – Dynamic flow stress, MPa

 σ_1 – Maximum principal stress, MPa

 $\sigma_{\rm y}$ – Normal stress, MPa

 σ_{static} – Static flow stress, MPa

 σ_{worst} – Worst stress, MPa

 τ_u – Transverse shear failure, MPa

Abbreviations

ALS – Accident Localisation System

BSRC – Bottom Steam Reception Chamber

BWR – Boiling Water Reactor

CFAIL - Concrete Failure

DIF – Dynamic Increase Factors

DS – Deterministic Software

FC - Fuel Channel

FE – Finite Element

FOSM - First Order-Second Moment

FORM – First Order Reliability Method

GDH – Group Distribution Header

IS – Importance Sampling,

LOCA - Loss of Coolant Accident

LWC - Lower Water Communication

MCC - Main Cooling Circuit

MCP – Main Circulation Pump

MCS – Monte Carlo Simulation

MDBA – Maximum Design Basis Accident

MSRV – Main Steam Relief Valve

NPP - Nuclear Power Plant

PS – Probabilistic Software

PWR - Pressurized Water Reactor

RBMK - Russian abbreviation for "Large-power channel-

type reactor"

RC – Reinforced Concrete RS – Response Surface

SDH – Steam Distribution Header SDD – Steam Distribution Device.