NOMENCLATURE | <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> | Failure parameters | | |---|---|-----| | \boldsymbol{A} | - Area of pipe, m ² | | | A_{wall} | Cross-section area of the pipe wall, m² | | | b_w | Cross-section width, m | | | d_p | Inner diameter of the pipe, m | | | D_p | Outer diameter of the pipe, m | | | D_{eng} | Equivalent diameter of the engine, m | | | D | Reference strain-rate, 1/s | | | E_{red} | Reduced modules of elasticity, MPa | | | E_c | Initial elasticity of the concrete, MPa | | | E_s | Initial elasticity of the steal, MPa | | | f_c | Uniaxial compressive strength of concrete, MPa | | | f_t | Uniaxial tensile strength of concrete, MPa | | | f_{bc} | - Equal biaxial compressive strength of concrete | е, | | | MPa | | | f_{pc}, f_{cc} | - Combined triaxial compression of concrete, MPa | | | f_{y} | Yield strength of reinforcement, MPa | | | f_{dc} | Dynamic compressive strength, MPa | | | f_{cs} | Static compressive strength, MPa | | | f_{dt} | Dynamic tensile strength, MPa | | | f_{ts} | Static tensile strength, MPa | | | F_c | Load contribution from aircraft crushing strength N | 1, | | $f_{iI}^{\;\;int}$ | Internal nodal forces of node I in the i-th direction | n | | Jil | N | .1, | | $f_{iI}^{\;ext}$ | External nodal forces of node I in the i-t | h | | J iI | direction, N | 11 | | $h_{ m o}$ | Thickness of the wall, m | | | $\overset{n_{\mathrm{o}}}{h}$ | Thickness of the wan, in Thickness of the spacing of reinforcement layer | rc | | п | in the respective directions, m | | | h_1 | Thickness of the reinforcement layer, m | | | I | Moment of inertia, m⁴ | | | | Stress invariants, MPa, (MPa)² | | | I_1, J_2 | - Suess invariants, wif a, (wif a) | | l – Length of the straight pipe, m m_{il} – Diagonal mass matrix of node I in the i-th direction *M* – Mass of the missile, kg M_2 - Bending moment with respect to axis 2, N-m M_3 – Bending moment with respect to axis 3, N-m *n* – Step number P – Axial force, N p_k - Pressure at the break location, Pa p_a – Outside (atmospheric) pressure, Pa p_{wall} - Pressure straight after the break location, Pa p – Reinforcement ratio *q* – Steel strain-rate amplitude parameter Q_x – Reaction force, N S_2 – Sectional modulus with respect to axis 2, m³ S_3 - Sectional modulus with respect to axis 3, m³ t Wall thickness, m *t_c* – Thickness of reinforcement with prevailing compression, m t_p – Minimum wall thickness to prevent perforation, m t_{pd} – Minimum design thickness to prevent perforation, m t_s – Minimum wall thickness to prevent scabbing, m t_{sd} – Minimum design thickness to prevent scabbing, m t_t – Thickness of reinforcement with prevailing tension, m Δt – Time increment, s U – Reference velocity, m/s u_{iI} - Nodal displacement of node I in the i-th direction, m \hat{u}_{iI} - Nodal velocity of node I in the i-th direction, m/s \ddot{u}_{iI} - Nodal acceleration of node I in the i-th direction, m/s² v – Velocity of the uncrushed part of the plane relative to the wall, m/s V – Velocity of the engine, m/s w_k – Fluid velocity at the break location, m/s Thickness of a concrete layer under compression in the corresponding part of the reinforcement, m. ## **Greek letters** α , α_{fy} , α_{fu} – Parameters β , δ – Parameters $\dot{\varepsilon}$ – Strain-rate, 1/s $\dot{\varepsilon}_s$ – Static strain-rate, 1/s μ – Mass per unit length, kg/m ρ_k - Fluid density at the break location, kg/m³ σ_a – Axial stress, MPa $\sigma_{b2/3}$ – Bending stress with respect to axis 2 and 3, MPa σ_{dvn} – Dynamic flow stress, MPa σ_1 – Maximum principal stress, MPa $\sigma_{\rm y}$ – Normal stress, MPa σ_{static} – Static flow stress, MPa σ_{worst} – Worst stress, MPa τ_u – Transverse shear failure, MPa ## **Abbreviations** ALS – Accident Localisation System BSRC – Bottom Steam Reception Chamber BWR – Boiling Water Reactor CFAIL - Concrete Failure DIF – Dynamic Increase Factors DS – Deterministic Software FC - Fuel Channel FE – Finite Element FOSM - First Order-Second Moment FORM – First Order Reliability Method GDH – Group Distribution Header IS – Importance Sampling, LOCA - Loss of Coolant Accident LWC - Lower Water Communication MCC - Main Cooling Circuit MCP – Main Circulation Pump MCS – Monte Carlo Simulation MDBA – Maximum Design Basis Accident MSRV – Main Steam Relief Valve NPP - Nuclear Power Plant PS – Probabilistic Software PWR - Pressurized Water Reactor RBMK - Russian abbreviation for "Large-power channel- type reactor" RC – Reinforced Concrete RS – Response Surface SDH – Steam Distribution Header SDD – Steam Distribution Device.