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APPENDIX

ONE

ANALYTICAL SOLUTIONS OF THE
TEMPERATURE FIELDS IN LIQUID
LAMINAR FLOWS

This chapter contains the analytical solutions of the temperature fields in
liquids laminar flows. In the second, third and fourth chapters these resuits are
used in the laminar flow methods and measuring devices.

§Ap.1.1 Application of the Green Function Method to
Determine the Temperature Fields in Laminar
Flows in Tubes

One of the important engineering problems in thermophysics is the
calculation of temperature fields in steady laminar flow of liquids in tubes with
appropriate boundary conditions and internal heat sources. Considering the
analytical solutions of these problems in the form of Green functions [24, 37,
91-99], it is necessary to consider the following:

1. When the function of the internal heat source W depends only on the
longitudinal z and transverse r coordinates, i.e. W = W(r,z), it is enough to plot
only once the Green functions of the corresponding boundary value problems
with boundary conditions of the 1,2,3 type or mixed boundary conditions in
order to obtain the solutions for all possible functions W(r,z) if the functions of
the initial distribution Ty(r) and the functions f(z), are preset on the tube
boundaries.

2. When W = W(r,z,T) is a non-linear temperature function, the solution
involves a non-linear integral equation, which is obtained by the substitution of
W = W(r,z,T) in one of the formulas /Ap.1.4/, /Ap.1.8/, /Ap.1.12/. These
formulas correspond to specific boundary conditions. If W(r,z,T) satisfies the
Lipshits conditions according to the third argument, then successive iterations
[37] converge for the non-linear integral equations.

In many applied problems it is possible to obtain non-linear boundary
problem solutions with high accuracy, if one presets as the zeroth iteration the
solution of the linear boundary value problem or another approximate solution.
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It is then possible to transform the problems with the non-linear boundary
conditions to the problem with linear boundary conditions, but with a non-
linear right part, W [37].

Let us consider the heat transfer problem of laminar flow of Newtonian
and non-Newtonian liquids in tubes with either flat or round cross- sections
with the following assumptions [34-36, 91-94]:

1. The pressure, flow and the heat transfer process are steady state.

2. The liquid is incompressible, its thermophysical properties are constant,
i.e. they do not depend on temperature or pressure. We note that in the heat
exchange calculations all liquids are considered as incompressible. Also, gases
may be included, if their velocity is sufficiently less than the sound velocity (in
practice the gas velocity must not exceed 0.3 of the sound velocity [100]).

3. The liquid flow is fully developed. The velocity profile doesn’t vary
along the tube length (a hydrodynamic entrance section, in which the velocity
profile is fully developed, precedes the heat exchange section). The velocity
profile and the liquid flow rate are preset. For flat, round, circular and
rectangular tube cross sections, formulas for the velocity profile are given in
[34-36].

4. At the inlet of the heat exchange section the liquid temperature
distribution is known.

5. The type of boundary condition on the inner surface of the tube wall is
known.

6. Internal heat sources are operating in the flow.

7. The heat flux change along the tube axis, due to liquid thermal
conductivity, is small compared to the heat flux change, due to heat transfer by
means of forced convection.

A problem considering the assumptions, close to those listed above, was
first solved for Newtonian liquids by Graetz [40, 41] and later, independent of
Graetz, Nusselt considered it a second time [44]. A somewhat different solution
was obtained by Shumilov and Yablonsky [43]. Information about subsequent
solutions are given in [34-36].

Considering assumptions 1-6 the energy equation for the case of the liquid
laminar motion in the flat or cylindrical tube can be recorded in the form [34]:

aT (ﬂ 1 a[rar w
oz " o

®,— m—|+—, z>0, n<r<r,, /Ap.1.V/
. ol cp b P

where 1, z are the radial and longitudinal coordinates; T - is the temperature,
®, - is the flow velocity; a - is the liquid thermal diffusivity; ¢ - is the specific
heat capacity; p -is the density; r - is the shape coefficient (r=0 for the flat tube,
r=1 for the round tube); W - is the function of the internal heat sources; 1y, r; -
are the coordinates of the channel boundary surfaces.
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According to the seventh assumption

2
a—aZ(Cpsz)»[%(x%H or ng»a% , /Ap.1.2/

where A - is the liquid thermal conductivity. Thus it is possible to neglect the
2

term %—;I; in the right side of /Ap.1.1/. The last assumption is realised with
Z

sufficient accuracy [24, 34] if —Z—>>—L , where Pe = E-Z(r2 -n)/a -
2(r, -;) Pe

is the Peclet number, @ - is the mean velocity of the liquid. For example, for

values of the Peclet number Pe>100 the condition /Ap.1.2/ and consequently

the assumption 7 are applicable beginning with z=2(r,-r;) with an error of

about 1%. Assumption 7 in practice is usually applicable for non-metallic

liquids and gases (Prandtl number Pr=1...1000). In case of liquid metals

(Pr=0.005...0.05) it can lose its applicability. In this case, for heat transfer
2

. . L. . %)
solutions using equation /Ap.1.1/ it is necessary to include the term a;.

i.Ap.1.1.1 Temperature Fields in Liquid Laminar Flows

Taking into account assumptions 1-7 the heat transfer problem in laminar
flow in flat (r=0) or cylindrical (r=1) tubes with arbitrary initial conditions and
boundary conditions of type k at r=r; and type m at r=r, (k, m=1, 2, 3) can be
described as follows [24, 34, 55, 92-94]:

Mz 10 {rr c’i’l‘(r,z)]_ W(r,z)
oz T or o | op

® o (1) , 220, 1<r<r,, /Ap.1.3/
0

T(r,0) =To(@), L [T(ry, D] =fx(2), 15[T(r,,2)] =17 (2),

where Ty, - is the temperature distribution at the tube inlet; o, is the velocity
value on the tube axis, o(r) - is the velocity profile, f,l,f,f, - are functions,
which are preset on the tube boundaries. The indices k, m determine the type of
the boundary conditions at the points r; and r, and can accept independently the
values 1, 2, 3.

The operators of the boundary conditions 1}( and lfn have the form [24,
921

- when the boundary conditions are of the first type

B[T(r,, 2] =T(1,2) = £} (2), s=12;
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- when the boundary conditions are of the second type
aI(1,,2)
or
- when the boundary conditions are of the third type

[, 2= 0* - D 1, 2 =150, 5212,

15[T@,, 2)]= (D -2 =£5(2), s=12;

where o, o, - are the convective heat transfer coefficients on the surfaces r=r;
and r=r1,.

The solution of /Ap.1.3/, which is obtained by the Green function method
[37, 91-99] has the form [24, 52, 55, 92]:

n
T(r,2) = [ G(r,8, 2008 0 (©)T, (§)dE + By (1,2) + B (1,2) +

; /Ap.1.4/

zn

+[JGmezmer ==

0on

The form of the functions B}( (r,z) depend on the boundary conditions,

which are preset at the point r=r; and the functions Bfn(r, z) depend on the
type of boundary conditions at the point r=r,:

(r3 > , )
B s+1 s |
(r Z) ( 1) '

f dn, s=12,
0 P F(mdn

ar! ¢
B (r,z) = (-1)**' ;)—:—KIG(L .,z mf;(dn, s=12,
0

Bj(r7) =2 j G(r,1,,,mf5 (Wdn, s=12.
The Green function of the problem /Ap.1.3/

el Fem e
o ¥ol ) ¥al, ) OB 87

G(r,E,z,n) = Z

— r2 ’
o _f\yn[ ]r o(r)dr

where €, \yn(;) - are the eigenvalues and eigenfunctions of the Sturm-
Liouville boundary problem [54, 193 - 196]:

/Ap.1.5/
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4 (})rfi—\g? +82-(;)PCO(;)\V(;)=O, r=—, /Ap.1.6/

s I, ] s A I I,
15 =1 =(-1 ——+y| 2|, s=12
3{%5)_ =9 ar, dr W(QJ

For the flow of Newtonian and some non-Newtonian liquids in flat and
round tubes the solution of /Ap.1.6/ is considered in [34-36, 54, 55]. In the
general case, /Ap.1.6/ can be solved by numerical methods on a digital

computer [56, 190]. The eigen values €, and eigen functions (;) are given
in [24, 34-36, 55].

i.Ap.1.1.2 Heat Transfer in Laminar Flow in a Flat Tube

Consider flow in a flat tube, i.e. between the two unbounded plates, which
are at a distance h from each other. The origin of co-ordinates is placed on one
of the tube surfaces. The axis z is directed along the flow and the axis r is
directed perpendicularly to the wall.

2
Applying assumptions 1-7, r=0 and mom(r) = 6w[i - (%) }, where ®

- is the mean velocity, the problem is described as follows [24, 55]:

—r (1) |0Tr.z) &*Nrz) W(rz)
Gc{g_m i L
T(r.0) = Ty (1), L[T(0.2)] = fx(2), 15[T(h2)]=£2(2) /Ap.1.7/

The indices k, m determine the type of the boundary conditions at the
points 0 and h and can accept independently the values 1, 2, 3. The type of

z>0, O<r<h,
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operators l}(, lfn are given in i.Ap.1.1.1. The solution to /Ap.1.7/ has the
form{24, 55]:

HL@=IG@@JQ{%—(%Y}Q@MQ+

e W(E,m)
+£ { G(r.t,z, n)-—g—gcp—dgdn +Dyn(r,2), /Ap.1.8/

where Dy, (r,2), - is the function, which takes into account the influence of the
boundary conditions at the points =0 and r=h on the temperature field. The

Green function is
2a(z -
Wn(%)\vn(%j CXp|:'— gi (—Zn):l
= 3w ,h
G(r>E.>,Z9n)=ka+Z h

T

_ 6/h,k=m=2,
Kem =10 k22 or m=2,

,  /Ap.1.9/

The eigenvalues g, and the eigenfunctions vy, are determined by the
Sturm-Liouville problem:

ouvi
dd(‘g)(;)+sz[?—(})2]w(})=o, }=%, 0<r<l,

W[w©®]=0, Tnfw)]=0.

The type of operators i}c and i,zn are given in i.Ap.1.1.1. The eigenfunctions
v, (r) canbe represented in the form of a power series [24, 55]:

0
Yo=Y b)),
i=0
4831[bi»4(8n) ‘bi—3(9n)]
ii-1) '
The form of the function Dy,(r,z), the values of the first coefficients bi(e,),
which are necessary for the calculation of the formula /Ap.1.10/ and also the
type of the characteristic equations, the roots of which are the eigenvalues €,
depend on the boundary conditions and are given in Table Ap.1.1. The
eigenvalues &, and the eigenfunctions (r) are reported in [24, 55].

b,(e,) = /Ap.1.10/



APPENDIX 1

232

5 . 0
ST Jo=[a+n(Ua) e+ aa(*s)'q] iexx: 20D 5 iSwé Nocowf%nmm ¢ | ¢
=("3)%q ) ® M
—1-("3)! ~ W gl -z D=+ W) & -z0x X anmu
0=("3)%q 0=1-("3) nW (W) 53¢ 0 VO i ) 3( ‘0°DD 0 _. - al z Z
OHAsva— T 0=t WQ oB@
1=(%3)% 0=( wZM % ST~ WHL-Z000 ﬁﬂ“ cql 1 | ¢
L
cw 0
NIAcwvv Uy [+1 U1 = pq (L) MA: zq° kvO + Wy} e %WNH MHQ ¢ I
=Calo=[a+ 0+ aaoa Vs b %
0=("3)tq 0=t % g
0=("37q 0=1-("3)'q’{ ﬁ )L -zT o+ LI Y eT5e o: fl«-u aql ¢ | 1
1= o % to9
0= 0=( wZM T;te zq e~ WiIEs Nob%ﬁﬂu “al 1|1
¢ 14 € [4 1
w A
vETT0=1 gonIpuod
(3)q suonenbs snsusorIRy) (z°3)"™8(] uonoduny JO ULION Arepunog

(z'n)™iq uonouny jo ujog 'y dy dqeL




233

APPENDIX 1

:MN- 2 Lpd (W) 5 - 2 DD 2=+ (W) G(U 20D w@-m
- 0=[a+nCa) g+ ag(s)tq] [P\ Wl D7y T WIH =200 75 )5 =7d
=l D o z
~ ups (W) Sy —zq°* ¥ € ‘0 )29 (43
0=("3)q 0=1-("3'q’{ P (W) £3( -vaowiSE:L 00D _ﬂu a
hg=("2)'q = EY ALY
1=("3)°q 0=( wv,n_‘.o.w up A:vmﬂwgl?vmﬁC|N obmuﬂ Mﬂn €
S Y £

(penunuoo) 1°f “dy d[qe],




234 APPENDIX 1

i.Ap.1.1.3 Heat Transfer in Laminar Flow in a
Cylindrical Tube
Consider laminar flow in a round tube with the radius R. The origin of co-
ordinates is on the tube axis. The axis z is directed along the flow and the axis r
is directed along the tube radius. Taking into account assumptions 1-7, r=1 and

2
0,0 (1) = Zm[l - (%) } the problem can be described as follows [24, 55]:

2
20| 1_[£) M—ali[r 6T(r,z)}= W(r,z)’
R o rorl o cp /Ap.1.11/

z>0,0<r<R,

T(,0)=Ty(1), E—T%%i’

=0, L[TR,2)]=f](2).
The index j determines the type of the boundary condition at the point r=R
and can accept the values 1, 2, 3. The type of the operator 1,2 is considered in

i.Ap.1.1.1.
The solution T(r,z) of /Ap.1.11/ has the form [24, 55]:

R Zf, 2
T(r,2) = | G(r,é,z,O)F{l - (E) }rb ©)de +
0 /Ap.1.12/

+[[G@.ez n)g W(g ”) d@dn+F x,2),

O =N
O — T

where Fi(r,z) - is the function, which takes into account the influence of the
boundary conditions at the point =R on the temperature field.
The Green function of the problem /Ap.1.11/ is

R
R SRR

_|4/R% j=2,
o, j£2.

The eigen values &, and the eigen functions vy, are determined by the
Sturm-Liouville problem:

. /Ap.1.13/
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—d—[} dwgr)}+82;[l—(;)2jl\y(;) -0, ;=T§f’ 0<r<l,

dy(0) _ 72 -

the solution of which can be recorded in the form of a power series:

)= R e el

/Ap.1.14/

bae) = o) 225 e

el e

The form of the function Fj(r,z), the values of the first two coefficients
bo(e,) and by(e,), necessary for calculations from /Ap.1.14/ and also the
characteristic equations for the calculation of the eigenvalues €, depend on the
serics of the boundary conditions on the tube surface at r=R and are given in
Table Ap.1.2.

Table Ap.1.2 Form of the Function Fj(r,z), which Determines the
Dependence of the Solution of /Ap.1.12/ on Boundary Conditions

Boun- Form of function Fi(r,z) Characteristic
dary equations bi(en)
con-
dition
1 | K@o=

z

i b2i(8n) . (en)2i =0
=0

-2 [960Rz-) peo
= { % Rf(m)dn
F ’ _ 0 . 1, =
2 L (r z)z 3 byi(en) - 2ifen)% = 0 L’o(e )
- 735{ G(1,R,z - MR (dn | 7
3 F3(1,2) = N i
3 ZbZi(gn)~(2i+ =_1

= - [G(R,z - )RE (dn | i=0 | 4
oA +Biy)(e, )% =0
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The eigen numbers s, and eigen functions \yn(;) , to calculate the heat

transfer in a round cylindrical tube, are given in [24, 34, 55].

It is possible to approximate the Green functions by a finite series
/Ap.1.5/, /Ap.1.9/, /Ap.1.13/ with the error set in advance. The equations
/Ap.1.4/, /Ap.1.8/, /Ap.1.12/ can easily be programmed on a digital computer
and used as the algorithms of the different problems solutions of liquid heating
[24, 55] with changes of temperatures, heat fluxes, thermophysical properties,
flow velocities, tubes dimensions and other parameters.

It is of interest to note that the solutions can also be used for the
calculations of mass transfer in laminar flows of a two-component liquid in
tube flow, because in many cases the corresponding problem can be described
in the form of /Ap.1.3/, /Ap.1.7/, /Ap.1.11/. The more complicated cases of the
calculation of heat- and (or) mass transfer in liquid laminar flows, based on the
use of Greens functions, are considered in [94, 96, 97, 163, 164, 172, 173, 179,
197]. Calculations of temperature fields in liquid turbulent flows [184 - 189],
based on the use of Greens functions, are published in [24, 52, 78]. Algorithm
of apparent turbular Prandtl number calculation is considered in [223].

§Ap.1.2 Calculation of Temperature Pattern in
Multilayer System in Form of Two Coaxially Mounted
Cylinders with Liquid in Clearance between them

Ap.1.2.1 Use of Green Function Method for Multilayer
System Temperature Pattern Calculation

The physical model of the considered system consists of two coaxially
mounted cylinders with a liquid placed in the clearance between them. The
circuit of this system is analogous to that one given in Fig.4.1. This system
consists of n layers. The inner cylinder B is in the form of (n-2) layers. The
outer cylinder H makes layer number n and is capable of rotating with angular
frequency . The temperature of its outer surface can vary in time with the
arbitrary law T(R,, ©) = T«(t). The clearance between the cylinders B and H
makes the (n-1) layer which can be filled with the liquid being investigated. On
the boundaries between the layers in the coaxial cylindrical sections at r = R;,
j =1, 2, .., n-1 surface heat sources can act with the specific power Pj,
j=1,2, ., n-l. In the multilayer system being considered internal heat
sources having the volumetric density 'W(r, 7) can act. Let us also note that in
the layer (n-1) of the liquid being investigated the internal heat sources can act
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4»°R* R?
W(r) = hicalbic. Shis 2 , Ro,<r<R

Cn-1Pn-1 (Rl21—1 - Ri—z )2 rt

where | - is the dynamic viscosity of the liquid in the clearance between the
stationary inner cylinder B and the outer cylinder H. This outer cylinder rotates
with the angular frequency ®. Let us denote the thermophysical properties

within each layer as ¢;, p;, A, a; = C—k;—- which are correspondingly the specific
)

heat, density, thermal conductivity and thermal diffusivity of the material of the

j layer.

Taking into account these designations the temperature pattern T(r, T) of
the considered n layer system at the point with the radial coordinate r in the
moment of time T is modeled by the differential equation of the thermal
conduction [176]:

oT(r,7) _ig
ot T or

oT(r,7)

c(r)p(r) —6r—j| + W(r,7), /Ap.1.15/

[rrx(r)

1>0,0<r<R, 0<R;<R,<..<. <R,
cr)=¢jatR;, <r <Ry, p(r) = p;jat R;; <r <R,
Mr) =Ajat Ry <r<R;, W(r, 1) = W; (1, 7) at
Ry <r<R,j=12,..,n, R,=0,
with the boundary conditions:

0,
or
TR;-0,7)=TR;+0,7), j=1,2,..,n-1, /Ap.1.16/
IT(R; - 0,7) OT(R; +0,7) .
ki or T o =Pj(1), j=1,2,..,n1,

TRy, 7) = Ti(x),

and with the initial condition T(r, 0) = Ty(1).

In the problems for the flat, cylindrical and spherical coordinates systems
in the thermal conduction equation the coefficient of the form r is used (r = 0,
1, 2, correspondingly for the flat, cylindrical and spherical coordinate system).
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The analytical solution of this problem which was obtained with the use of
the Green function method has the form:

Ry
T(,0 = [GrE DL e@p@T, () +

+

Ty A O ey o

G(r,&, T~ ME W(E, mdédn - /Ap.1.17/

O'—-—-;:?J

G(r,R,.,7— ")

o]

7k'nR;-xTr (m)dn +

;I’O
—

G(r,R;,7 - m)R;P;(n)dn,

—
1

+
™
O Cmny 3

where

» Vi, (é)exp{ (;2 n)}
G(r.E,r-m=), LI /Ap.1.18/

Ry

Jw? (0x"e(p(x)dx
0

i=1

is the Green function of the considered boundary problem, &;, ;(r) are the eigen
values and eigen functions of the Sturm-Liouville boundary problem

- { Tty )}szrfar)ﬁ(r)w(rho, 0<r<R,
r

M)_x(r) _()_c(r) =LY gt ap11y
p cp
WO o, y®,-0=w®,+0), j=12,.n-1,
dr ! !
dy(R; -0) dyR; +0)
A di =k J=12..n-k 0 wR,) =0,

which arises at the solution of the initial problem /Ap.1.15/, /Ap.1.16/.

For the solution using for the mathematical modeling of the thermal
processes in the measuring device being considered in chapter 4, it is
convenient to use the thermophysical properties of the (n-2) or (n-1) layers as
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the values c, p, A, a= L, in the Green function /Ap.1.18/ and of the Sturm-
cp

Liouville boundary problem /Ap.1.19/. For example:

A
— - — _ _ n-2
C=Cha, P= Pn-2> A= 7\'n—2’ a _an-2 -
cn-2pn—2
or
7"n—1
C=Cnh15 P=Pa-1 7\'=7"n—19 a=4ay 1 =— .
Cn-1Pn-1

The solution /Ap.1.17/ was used in the initial stage for the calculation of
the temperature patterns of the device for the investigation of the dependence of
the thermal conductivity and thermal diffusivity tensors second diagonal
components on the shear rate which is considered in chapter 4. Examples of
other cases of heat or mass transfer modeling in solids are considered in [24,
52, 166, 176, 212 - 217].

§Ap. 1.2.2 Algorithm of Numerical Problem Solution of
Calculation of Temperature Pattern in Multilayer System in
Form of Two Coaxially Mounted Cylinders with Liquid in
Clearance between them®

Let us consider an N -layer cylinder of infinite length with the inner
radius R, > 0 and outer radius Ry. We shall assume that the temperature of T;
layer depends only on time and radius, i.e. T = T(r, 1), T is the time, r - is the
radius. In this case the temperature pattern in the j layer satisfies the equation:

oTr 190 oT
CJPJE=;§(7\.JT-‘§) +Wj(r,1:),
t>0, Rj,;<r<Rj, 1<j<N, /Ap.1.20/

where ¢; - is the specific heat; p; - is the density, A, - is the thermal conductivity
of the j layer; W; - is the amount of heat released per unit volume and time.

The equations /Ap.1.20/ are completed by the boundary conditions on the
inner

ar
(X.LE‘FBLT

r=Ro = PL(D) /Ap.1.21/

* - numerical scheme and program were worked out together with Dr. AL Urusov
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and outer
R %WRTL:RN =g () /Ap.1.22/
surfaces of the cylinder with the initial condition
T =T (), R, ST<Ry, /Ap.1.23/

and also by the inner boundary conditions which arise from the requirement of
the continuity of the temperature and heat fluxes. In general, to assume the
possibility of the existence of sources (or sinks) on the borderlines between the
layers then it is possible to record the inner boundary conditions in the form

Toor,0 = TLZRJ,W, 1<j<N-1, /Ap.1.24/
ot oT .
i o]ty 0 R gm0 =Bi(®, 1SJSN-1, /Ap.L2s/

The equations system /Ap.1.20/ - /Ap.1.25/ is a closed system of equations
for the temperature patterns determination at any time. For the fully developed
temperature field determination, it is possible to use the difference diagram,
described below, for the solution of this problem. This is stipulated by the fact
that equation /Ap.1.20/ is a parabolic type and at T = o the temperature
distribution which is received from problem /Ap.1.20/ - /Ap.1.25/ solution leads
to the solution of the corresponding steady state problem, i.e. as a result we
receive the steady state temperature distribution in the multilayer cylinder.

To apply the finite difference method to the problem /Ap.1.20/ - /Ap.1.25/,
the following was taken into consideration: the use of an explicit formulation is
not expedient here because of the stability constraint conditions which don't
allow for an effective solution. In order to have the opportunity to solve the
steady state problem the method must have absolute stability and consequently
it is necessary to develop an implicit formulation and this leads to the necessity
to solve a system of algebraic equations which can be solved by a simple and
rapid (in sense of machine time) algorithm. Taking into account the above we
come to the conclusion that for the problem /Ap.1.20/ - /Ap.1.25/ it is necessary
to utilize a finite difference formulation which is possible to realize by a three-
point formulation.

Let us assume that n; - is a number of intervals on the length [R;,, R,

R.-R._
1<j<N, b= —J_1 _is the distance between the nodes of the net in the

n4
J
j layer, t - is the spacing, rﬁ =R, +kh;, 0<k<n;, Ty= T(mt,rg).
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With these designations, we specify the finite difference scheme for the
equation /Ap.1.20/ in the form (we assume that 2; = const for each layer):

Cipj——F———— =% jk+

t h?

)

1 m i
i R Al
jk jk J § 1k+1/2 pm4l m+1
—J.T —2Tjk +
k

/Ap.1.26/

Al )
gkl el Ly el 1< i< N, 1<k<n, -1
7 kel ik ] j
I

The approximation of the boundary conditions on the inner and outer
cylinder surfaces depends on the coefficients o, Br, o, Br:

02 02
if et P2 Y bt P
Br h, | <[h,
T]‘,‘; B Tlx’nO m+l m+1
ap = +PTio =er”, /Ap.1.27/
1
o o
if - L
PP
Tm+1 _mtl
L1 1,0 m+l _  m+l
oL I +BLTo =¢L /Ap.1.27a/
1
o o
if 4RI =R
Pr h | <[y
Tm _Tm
ag N’“”“h TN LB T =i /Ap.1.28/
N
o o
if 4R >R
Pr b | [
T]:]m—l _ Ii]n+1
o == 4 B T = 0 /Ap.1.28a/
N
The approximation of the internal boundary conditions has the form:
T =T, 1<j<N-1, /Ap.1.29/
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m+l _pm+l m+1 m+1
2 TJ,nj TJ,nj-x Tj+1,1"Tj+1,0

_ 1
J hj J th

=p, /Ap.1.30/

1<j<sN-1.

When making the computing program on the basis of the above finite
difference scheme, the method of a three- point formulation [123 - 128] was
used. Other algorithms of temperature patten numerical calculation in laminar
flows and in solids were considered in [205, 206, 212 - 217].





