0. Description of the most important Symbols

The following most important symbols are used, in principle, whereever possible, deviations from these symbols are always indicated at the relevant equations and illustrations.

Sym	lbol	Description	Unit	Remarks
A		area, area of cross-section	m²	
В	В	amount of fuel	kg	
	Ė	fuel flow rate	kg/s	
С	С	radiation constant	$W/(m^2K^4)$	
-	C_s	radiation constant of black	(/	
	-5	body	$W/(m^2K^4)$	$C_s = 5.67 \text{ W/(m}^2\text{K}^4)$
D		diameter	m , (iii k)	O _S 0,07 W/(III IC)
E	Е	modulus of elasticity	Pa	preferred: N/mm ²
_	Ē	energy	J	preferred. Willing
F	_	force	Ň	
G			N	6
Н	Н	force of weight		$G = m \cdot g$
П		head, loss of head	m L/L	
	H _o	gross calorific value	J/kg	
	Н.	net calorific value	J/kg	
I	ļ	geometrical moment of inertia	m ⁴	
	í	momentum	Ns	
ı		current	Α	
L		length	m	
M		moment	N m	
0		surface	m^2	
Р		output	W	1 W = 1 J/s
Q	Q	amount of heat	J	1J = 1Ws
	Ġ	heat flux	W	
R		specific gas constant	J/(kg K)	
S		safety factor	_	
Т		thermodynamic temperature	K	
Ü	U	circumference	m	
•	Ü	voltage	 V	
V	v	volume	m ³	
•	v	flow rate	m³/s	
w	w	work	J	
vv	w	resistance moment	m ³	
а	а	acceleration	m/s²	
	а	temperature conductivity	m²/s	
С	С	specific thermal capacity	J/(kg K)	
	С	spring coefficient	N/m	
d		diameter	m	
f	f	factor	_	
	f	frequency	Hz	1 Hz = 1/s
g		acceleration due to gravity	m/s²	$g_n = 9,80665 \text{m/s}^2$
h	h	enthalpy	J/kg	Jii -,
.,	h	height	m	
i		radius of moment of inertia	m	
1		radius of moment of mertia	111	

					ΧI
k	k	overall heat transfer coefficient	$W/(m^2K)$		
	k	height of tube roughness	m		
m	m	mass	kg		
•••	m	mass flow	kg/s		
	m	opening ratio	-		
n	n	number of revolutions	1/s		
	n	air ratio			
р		pressure	Pa	$1 Pa = 1 N/m^2$	
ġ		heat flux density	W/m²		
r	r	specific evaporation enthalpy	J/kg		
	r	radius	m		
s		layer thickness, wall thickness	m		
t		time	s		
v		specific volume	m³/kg	$v = 1/\rho$	
w		velocity	m/s	V 17Q	
z	ż	decomposition rate	kg/s		
α	α	coefficient of longitudinal elongation	1/K		
	α	flow rate	_		
	α	heat transfer coefficient	$W/(m^2K)$		
β	β	volumetric expansion coefficient	1/K		
	β	angle			
δ		thickness of boundary layer	m		
ε	3	emission ratio	_		
	3	elongation	_		
ζ		resistance coefficient	_		
η	η	dynamic viscosity	Pas		
	η	efficiency	-		
ϑ		temperature °Celsius	°C		
λ	λ	thermal conductivity	W/(m K)		
	λ	ratio of slenderness	_		
	λ	tube friction coefficient	_		
μ		friction coefficient	-		
ν		kinematic viscosity	m²/s		
Q		density	kg/m³		
σ	σ	tension, stress	N/m^2		
	σ	surface tension	N/m		
τ		sheer stress, shear strain	N/m²		

Characteristic Quantities

Gr

Pe

Re

Bi Biot number
$$= \frac{\alpha \cdot \mathbf{s}}{\lambda_{\mathbf{w}}}$$

Grashof number
$$= \frac{d^3 \cdot g \cdot \beta \cdot \Delta \vartheta}{v^2}$$

Nu Nusselt number =
$$\frac{\alpha \cdot d}{\lambda}$$

Reynolds number

Péclet number
$$= \frac{\mathbf{w} \cdot \mathbf{d}}{\mathbf{a}} = \frac{\mathbf{w} \cdot \mathbf{d} \cdot \mathbf{\varrho} \cdot \mathbf{c}}{\lambda} = \text{Re} \cdot \text{Pr}$$

Pr Prandtl number
$$=\frac{c \cdot \varrho \cdot v}{\lambda} = \frac{v}{a}$$

Re Reynolds number $=\frac{w \cdot d}{v}$

Data are required for the unambigious description of a characteristic quantity, how the characteristic quantity used is defined and the temperature on which the properties are based.

Sign	s			
٨	difference	c	radiation	

äq

th

ü

external equivalent

theoretical, thermal

overpressure

α	differential	Ť	turbulent
Σ	sum	V	flow, loss
		W	wall

Superior Indicator mean, average

	guantity referred to time	dyn	dynamic	
	quantity referred to time	ges	total	
^	maximum	ĥ	hydraulic	
V	minimum	:	into	

			Internal
~	alternating	log	logarithmic
,	liquid phase	n	normal condition
"	vapour phase	proj	projected

Inferior Indicator

interior mateator		x	direction
F	flame	у	direction
FI	liquid, fluid	źul	permissible
G	gas	ϑ	relating to temperature
Gr	boundary layer		vertical
K	convection	Į.	parallel