NOMENCLATURE

Symbol	Name of quantity	
a_1	speed of sound	m/s
$a_{\rm cr}$	critical speed of sound	m/s
a^*	speed of sound in frozen flow	m/s
a, b	sides of a rectangle	m
c_p and c_v	specific heats of gases at constant pressure and constant volume, respectively	J/kg °C
c_{x}	coefficient of drag	-
D, d	cross-section diameters	m
$D_{\rm h} = 4F/\Pi; d_{\rm h} = 4f/\Pi$	hydraulic or equivalent diameter (4×hydraulic radius)	m
F, f	cross-sectional areas	m^2
$f = F_{\rm or}/F_{\rm gr}$	area ratio of a grid, orifice, perforated plate, etc.	_
G	mass flow rate of liquid (gas)	kg/s
g	gravitational acceleration	m/s^2
h	height	m
$k = c_p/c_v$	specific heat ratio	_
l	length of flow segment, depth of channel, or thickness of orifice	m
$Ma = w/a_1$	Mach number	_
$M = 1/F \int_{F} (w/w_0)^2 dF$	coefficient of momentum (Boussinesq coefficient)	_
m_0	wetting intensity	m^3/m^3
m	exponent	-
$N = 1/F \int_{F} \left(w/w_0 \right)^3 dF$	coefficient of kinematic energy (Coriolis coefficient)	_
N_m	power	W
n	polytropic exponent	_
$n_{ m ar}$	area ratio (degree of enlargement or reduction of cross section); polytropic exponent; number of elements	_

Symbol	Name of quantity	Abridged notation in SI units
$n_{ m el}$	number of elements	-
p_*	static pressure	Pa
p_{f}	total pressure of flow stagnation pressure	Pa
Pex	excess pressure	Pa
Δp	overall pressure difference	Pa
$P_{ m dr}$	drag force	N
Q	volumetric flow rate	m^3/s
R	gas constant	J/kg K
$R_{ m h}$	hydraulic radius $(\frac{1}{4}D_h)$	m
R_0 , r	radii of cross sections of a circular pipe or curved pipe length	m
$Re = wD_h/v$	Reynolds number	_
S, s	spacing (distance between rods in a bundle of pipes, between grid holes, etc.)	m
$S_{ m fr}$	length of a free jet	m
S_0	surface area	m^2
S_m	frontal area of a body in a flow	m^2
T(t)	thermodynamic temperature	K (°C)
T^*	thermodynamic flow stagnation temperature	K
$v_{ m sp}$	specific volume	m ³ /kg; m/s
ν	side discharge (inflow) velocity	m/s
W	stream velocity	m/s
w'	longitudinally fluctuating stream velocity	m/s
z	dust content	g/m ³
Zd	dust capacity	kg/m ²
α	central angle of divergence or convergence; angle of a wye or tee branching; angle of stream incidence	deg
δ	angle of turning (of a branch, elbow); angle of valve opening	
δ_{t}	thickness of a wall, boundary layer, or wall layer	m
δ_{j}	height of joint	m
Δ	equivalent uniform roughness of walls	m
Δ_0	mean height of wall roughness protuberances (absolute roughness)	
$\Delta_0 = \Delta_0/D_h; \Delta = \Delta/D_h$	relative roughness of walls	-
$\varepsilon = F_{\rm con}/F_0$	coefficient of jet contraction	_
ε′	porosity (void fraction)	-
$\varepsilon_{\rm t} = \sqrt{\overline{w}'^2}/w_0$	degree of turbulence	_
$\zeta \equiv \Delta p/(\rho w^2/2)$	coefficient of fluid resistance (pressure loss coefficient)	_

Symbol	Name of quantity	Abridged notation in SI units
ζ_{loc}	coefficient of local fluid resistance	-
ζ_{fr}	coefficient of friction resistance of the segment of length l	
η	dynamic viscosity	Pa s
ηπ	cleaning coefficient	_
$\lambda = \zeta_{\rm fr}/(l/D_{\rm h})$	friction coefficient [friction resistance of the segment of relative unit length $(l/D_h=1)$]	-
$\lambda_c = w/a_{\rm cr}$	relative (reduced) stream velocity	-
μ	discharge coefficient	_
μ_{con}	mass concentration of suspended particles in flow	_
ν	kinematic viscosity	m^2/s
ρ	density of liquid (gas)	kg/m^3
$ ho^*$	density of frozen gas flow	kg/m ³
$ ho_{cr}$	density of gas at critical velocity	kg/m^3
П	cross-sectional (wetted) perimeter	m
φ	velocity coefficient	_

SUBSCRIPTS

Subscripts listed for the quantities F, f, D, d, Π , a, b, w, ρ , Q, and p refer to the following cross sections or pipe segments:

0	governing cross section or minimum area
1	larger cross section in the case of expansion or contraction of the flow segment
2	larger cross section after equalization of the stream velocity
k	intermediate cross section of curved channel (elbow, branch) or the working chamber of the apparatus
con	contracted jet section at the discharge from an orifice (nozzle)
or	orifice or a single hole in the perforated plate or screen
gr	front of the perforated plate, screen, orifice
br, st, ch	side branch, straight passage, and common channel of a wye or tee, respectively
out	outlet
∞	velocity at infinity

Subscripts 0, 1, 2, k, and d at l refer, respectively, to the inlet, straight outlet, intermediate (for a curved channel), and diffuser pipe lengthhs.

Subscripts at Δp and ζ refer to the following forms of the fluid resistances:

loc	local
fr	friction

ov overall

d total resistance of a diffuser in the network

out total resistance of a diffuser or a branch at the outlet from the network

int internal resistance of a diffuser

exp resistance to flow expansion in a diffuser

sh shock resistance at sudden enlargement of the cross section

br and st resistance of a branch and straight passage of a wye or tee (for the resistance coefficients reduced

to the velocity in respective branch pipes)

r.br., r.st. resistance coefficients of the side branch and of the straight passage of a wye or tee reduced to the

velocity in a common channel of a wye or tee