## A

## Abrupt

contraction, 234, 626
expansion, 224, 230, 626
Acceleration, 191
pressure losses of, 585
Acetone, density of, 10t
Aerodynamic
characteristics, 297
effect, 314
grid, 411
losses, 187
Aerodynamics, 1
Air conduit
flexible, 108
glass-fabric, 108, 419
Air distributors, with perforated outlet, 758-763t
Air heater, 834t, 835t
electric, 836t, 837t
smooth-tube, 836t
Air intakes, 188
Air pipelines, asperities in, 107
Air-intake devices, 214t, 215t
Ammonia, density of, 10t
Angle of twisting, 327
Aniline, density of, 10 t
Annular
grooves, 105
jet, 312
step, 492
turn, 417

Aperture in the wall, 239
Apparatus, various types of, 779
Approach velocities, 587
Area ratio, 287, 321
Aspect ratio, 51
Asperities, 86, 402

$$
\text { local, } 404
$$

Asymmetric velocity distribution, 228
Attenuation, 625
Automatic control, 621
Axial turbomachines, 325

## B

Badly streamlined bodies, 677t, 678t
Badly streamlined body of revolution, 675
Baffle, 179, 244, 315
Baffle plate, 103
Bag filters, 622
Bars, 578
Beds, 575
Bend, 391, 424-426t, 431t, 789t
combined (joint), 407
expanding, 394
flexible glass-cloth, with furrowed surfaces, 462t, 463t
joined, gate-like, 455t
joined, S-shaped, spatial (flow into two mutually perpendicular planes), 451 t , 452 t
joined, U-shaped, in one plane, 453t, 454t
smooth, 409
Z-shaped, 408

[^0]Bend-collector, combination, mutual effect of, 855t
Bend-wye, combination, mutual effect of, 852-854t
Benzene, density of, 10 t
Bernoulli equation, 25, 29, 301
Beveling, 394
Blading, 327
Blasius formula, 88
Blowing intensity, 188
Blowoff, 310
Bodies of different shapes, three-dimensional flow, 693-695t
of irregular shape, 607-609t
of isomeric shape, three-dimensional flow, 692 t
Body midsection, 674
Bottom guides, 621
Boundary layer, 20, 288
fully turbulent, 291
separation of, 291
suction, 308, 309
thin, 85
Branch
gooseneck-type, 407
lateral, 67
paired, 408
side, 486, 500
smoothly rounded, 491
Bromine, density of, 10 t
Bundle
of smooth-wall in-line tubes (in cross-flow), $838 t, 839 t$
of smooth-wall staggered tubes (in cross-flow), 837, 838t
Buoyancy, 38
negative, 64
Butane (normal), density of, 10t
Bypasses, 391, 626
sharply curved, of rectangular cross section, 458t, 459t

## C

Carbonic acid, 107
Castor oil, density of, 10 t

Center of gravity, 53
Centrifugal forces, 392
Chamber end, 624
Channel
common, 484
magnetohydrodynamic, 50
narrow, 180
narrow annular, 99
plane, 227
rectangular, 96
rotating, 802
sharply bent, 408
square, 96
stepwise, 232
straight, 707
vertical, 423
Channel entry
through a fixed louver, 212t
through perforated plates, 213t
Characteristic
dimension, 52
length, 85
Chords, arranged crosswise, 611t
Circular-annular entry, 186
Circular
bellmouth, 181
collector, 186, 187
cylinders, bundles of, 102
plates, in a tube, three-dimensional flow, 697t
section, bends and elbows, 429-431t
sector, 100
Circular-section rods, 591
Circumferential velocity, 802
Coal tar, density of, 10t
Coconut oil, density of, 10 t
Coefficient
of hydraulic friction, 405
of radial nonuniformity, 323
Collector, 178n
Combined suction, 310
Complex
fitting, 626
geometry, 95
parts, 626
Compressibility, 288

Compressible
fluids, 25
gas, discharge of, 63
Compressor, 323, 329
stages, 187
Concrete pipelines, 105
cavities, 105
irregularities, 105
Configuration
in-line, 576, 795
staggered, 577, 795
staggered, of orifices, 577
Constant flow conditions, 278
Constant-mass core, 624
Container, long passive, 130
Containers
finite-length, 128
passive cylindrical, 126
self-propelled, 126
Continuity
equation, 24, 301
of a stream, 24
Contraction, 581
angle, 332
Controlling devices, 617, 618
Coriolis
coefficients, 29
forces, 803
Corner
beveled, 413
inner, 410
outer, 410
Corrosion, 87
Corrugated strips, 581
Couette flow, 127
annular forced, 128
Counterflow, 584
Coupled joints, 105
Critical
Reynolds number, 20
zone, 136t, 137t
Cross section
elliptical, 244
expansion of, 298
of fittings, 4
rectangular, 397, 421
variable, 332

## Crosses

inflow (converging), 496
standard, 497
straight, diverging, 563-565t
Crosswise bundles, 575
Cyclone, 780, 808-810t, 812-814t
battery, 815t
countercurrent, 811 t
diameter of, 782
direct-flow, 816t, 817t
Cylinders, 666
circular rough, in a tube, plane-parallel flow, 682 t
circular smooth, in a tube, plane-parallel flow, $680 t, 681 \mathrm{t}$
elliptical smooth or ellipsoid, in a tube, three-dimensional flow, 696t
layered (porous), 586
loosely arranged, 103
pair of circular, in a tube, plane-parallel flow, 688t
single circular, with fins or laths in a tube, plane-parallel flow, 683t
smooth, in a tube, arranged in one central longitudinal row, plane-parallel flow, 699t
Cylindrical
(spherical) barriers, 666
layer, 586

## D

Dean number, 398
Deflectors, 805, 846t, 847t
Deformation, 333
Dichloroethane, density of, 10t
Diffuser, 225
annular with inner fairing, 370 t , 371 t
annular, 709
axial-annular, 323
axial-inlet radial-annular, 709
axisymmetric, 295, 296
conical, 280, 338-344t
conical, at large subsonic velocities, 345-349t
conventional, 332
curved-axis, 330, 331
divergence angle, 788n
exit, 708
flow patterns in, 278
in a network, 277
jet, 312
of circular cross section, 358t, 359t
of circular cross section, with curved axis, $374 t$
of circular cross section, with expansion
in two planes, 790t
of circular cross section, with stepped walls, 360-362t
of rectangular cross section, 350-352t
of rectangular cross section, installed
downstream, 369t
of rectangular cross section, with stepped walls, 362t, 363t
of reduced resistance, 365 t , 366 t
of reduced resistance, with a screen, 365 t
optimum characteristics of, 303t
plane, 226, 283, 289, 300, 318, 790t
plane, five-channel subsonic, 358 t
plane stepped, 321
preseparation, 296
pyramidal, 300, 709
radial-annular, 709
rectangular, 289
rectilinear, 307, 318
separation-free, 284
short, 308
step, 231
stepped, 323
stepwise, 314
surface, highly polished, 708
turbomachinery, 372 t
with asymmetric expansion in one plane, installed downstream, 367t, 368t
with curvilinear boundaries, 359 t , 360 t
with expansion in one plane, $353-355 \mathrm{t}$
with expansion in one plane, with curved axis, 373t
with expansion in one plane, with stepped walls, 364 t
with stepped walls, installed downstream, 369t
with symmetric expansion in one plane, installed downstream, 367t
with transition from a circle into a rectangle, 381t
Dimensionless velocities, 412
Dimples, 800
Discharge, 243
coefficient, 55-57, 190
coefficient, values of, 58-62t
corona, 791
diffusers, downstream of axial fans, 753 t
from a bend and a composite elbow, 757 t
from a diffuser (with a smooth rounded inlet), onto a baffle, 743t
from a straight channel, through a fixed louver grating, 771t
from a straight tube, through an orifice or perforated plate, 767-769t
from a straight walled elbow, 754-756t
from a tube (channel) onto a baffle, 742 t
from a tube made flush, with the wall
in the presence of a passing stream, 721t
from a tube, through an orifice or perforated plate, in transition and laminar regions, 769 t
sections under different conditions, 772t
side, from the end orifice, of a circular pipe, 770t
velocity, 63
Discharging collector, 112
Disk throttle, 619
Dispersed dust, 585
Divergence angle, 227, 279, 286, 289, 322
fictitious, 316
large, 707
limiting, 277
moderate, 288
small, 306, 707
Doubly curved turns at different values, 450 t , 451 t
Drag coefficient, 663
Driving head
negative, 40
net (self-draught), 38
Dry filtration, 585
Dry gas
density of, 11t
specific heats, 11 t
Dust
catcher, 786
content, 585
Dust separator
battery-type, 783
louver-type, 779
Dust-laden air flow, 116
Dust-trapper, 820t
with perforated plates, 821 t
Dynamic pressure losses, 42

## E

## Eddy

extensive, 401
formation, 42, 617
internal motion, 48
Edges
beveled, 236, 712
inlet, 177
rounded, 182, 712
sharp, 182
thick, 236
thickened, 182
Efficiency, 330
coefficient, 302
Ejector mixing chamber, 228
Elbows, 391, 789t
combined, 409
composed of separate elements, 438 t
joined, made from zinc-coated sheet, 459-461t
of circular cross section, with profiled guide vanes, $468 t$
of rectangular cross section, with different shapes, 436 t , 437 t
of rectangular cross section, with thin guide vanes, 466t
pressure profiles, 392
right-angle, 394, 409
rounding of, 393
segmented, of circular cross section, 439-441t
smooth, of rectangular cross section, with thin guide vanes, 467 t
U-shaped, rectangular cross section, 449 t
velocity profiles, 392
with rounded and diverging or converging exit, 434t
with rounded corners, 435 t
with sharp corners, 432t, 433t
Z-shaped, with rounded corners, 445 t
Z-shaped, with sharp corners, 442-444t
$\Pi$-shaped, 408
$\Pi$-shaped, with rounded corners, 448t
$\Pi$-shaped, with sharp corners, 446t, 447t
Electric field length, 792
Electrical conductivity, 50
Electromagnetic fields, 49
Element shape, 44
Elements, adjacent, 45
Ellipse semiaxes, 245
Emery paper, 402
End-face wall, 179
Energy
equation (see Bernoulli equation)
internal, 30
kinetic, 277
losses, 191
potential, 277
Equivalent angles, 318
Excavation, 675
Exhaust vents
circular, 764t
of rectangular cross section, lateral openings with fixed louvers, 765t, 766t
of rectangular cross section, lateral openings without fixed louvers, 765t, 766t
straight, 764t
Expansion
joints, types of, 659t, 660t
losses, 298
Expansions, 581

## F

Fabrics, 575
Fairings, 626
Fan
axial, inlet elements of, 216t
blades bent backward, 217t
blades bent forward, 218t
centrifugal, 709
centrifugal, inlet elements of, 217 t
rotor, 67
shaft, 80
Filters
aerosol, 787
bag, 786, 824t
electrostatic air, 830t, 831t
electrostatic, $828 t$
exhaust, 779
frame, 826t
industrial electrostatic, 829 t
laboratory, 827t
modular unified, 822 t, 823 t
roll, 824-826t
Filtering
cloth, 585
fabrics (according to Adamov), 612t
materials, at high pressures of the flow medium (clean), 601t, 602t
Filtration rate limits, 787
Fins, 799
lateral, 319
spiral, 99
Fixed louver, 185, 186, 713
Flap (in the system), 644t
Flat plate, 670
Flow
adiabatic, 102
at the exit from tubes and channels, 705
axisymmetrical, 589
boundary layer, 101
cavitation-free, 421, 679
central impingement of, 792
deflection, 322
distribution, nonuniform, 28
dust-laden, 420
incoming, 243
initial nonuniformity of, 290, 293
internal, 49
lateral impingement of, 792
lateral incidence of, 792
mean velocity, 23
moderate nonuniformity, 28
nonisothermal, 51
nonseparating, 278, 289
nonstabilized, 100
obstacle, 664
of stagnated gas, 32
of subsonic fluid, 288
of suspensions, 52
oscillating, 666
past obstructions in a tube, 663
past two cylinders, 673
peripheral impingement of, 792
peripheral incidence of, 791
plane-parallel, 50
pulsations, 312
secondary, 95
separationless models of, 310
stabilized, 19, 89
stabilized laminar, 93
stabilized turbulent, 665
stratified, 589
supply, methods of, 793
swirled, 327
three-dimensional, 664
through barriers uniformly distributed over the channel cross section, 575
through labyrinth seals, 617
through pipe fittings, 617
turbulent stabilized, 93
twisted, 800
twisting, 327
volumetric, 45
Flowing medium, density of, 9, 41
Flow rate equation, 23
Flow regime, 4, 44
fluid, 18
laminar, 19
of mass, 23
stepwise increase in, 118
volumetric, 24
Flow separation, 21, 191, 302, 318, 400, 403
fully developed, 278
in diffusers, 282
inception of, 278
nondeveloped, 278
Flow spreading, 707

Flow streams
division into, 483
merging of, 483
Flow-stopping devices, 617
Fluid
calculation of resistance, 67
compressibility of, 401
conducting, 50
friction loss, 41
low-viscous, 52
motion, equations of, 23
overall resistance, 44
real (viscous), 18
transport capacity, 106
Fluoroplastic, 109
Flute layer, 404
Foam, 786
Forced ventilation, 67
Forced ventilation system, calculation of resistance, elements of the system, 68-71t
Fouling, 581
Free discharge, 706, 707
from a circular straight wall diffuser, 722-724t
from a rectilinear (straight wall) diffuser, of rectangular (square) cross section, 735-738t
from a straight tube, at different velocity distributions, 719t, 720t
from a straight wall plane (rectangular) diffuser, 739-741t
from annular diffusers, 744 t , 745 t
from axial-annular-radial diffusers, 746t, 747t
from conical diffusers, at high subsonic velocities, 725-734t
from rectangular diffusers, downstream of a centrifugal induced draft fan, 748t
nonsymmetrical diffuser, downstream of a centrifugal intake fan, 749t
pyramidal diffuser, downstream of a centrifugal intake fan, 750t
Free-area coefficient, 578
Frequency of vibrations, 679
Friction coefficient, 2, 49, 85
diagrams of, 133-162t
during acceleration, 119
during retardation, 119

Friction losses, 37, 298
Frictional drag, 41

## G

Gap, 625
Gas
at high pressures in atmosphere, 63
cleaning, 72
density of, 10 t
dynamic viscosity of, 14 t
equilibrium of, 21
fittings, 406
kinematic viscosity of, 15 t
mains, 72
multicomponent, 10
perfect, 24
perfectly stagnated, 33
pipe fittings, 406
pipelines, 106
properties, 9
Gasdynamic functions for subsonic flow, 34 t
Gas-liquid mixture, 53, 423
Gate valves
in a straight tube, 631t, 632t
plane-parallel, of the Ludlow type, 633-635t
sector, 643 t , 644 t
Gates
circular outlet seal, 637 t , 638 t
conical, revolving, 639t
disk seal, 620
rolling seal, 636 t
spherical seal, with a spherical valve disk and seat, 642 t
spherical seal, with one-sided sealing of the valve, 640 t
spherical seal, with two-sided sealing of the valve, 641t
Globe valve
"Kosva" angle, at complete opening, $628 t$
direct-flow angle, 629 t
standard, with dividing walls at complete opening, 630t
Glycerine (anhydrous), density of, 10t
Grating, 580
fixed louver, 185
in a wall infinite surface area, 272t
made from bars with the angle of attack, 602t, 603t
made of bars with the angle of attack, 603t, 604t
standard, 185, 713
with adjustable louvers, 272 t
Grid, 575
at subsonic flow velocities, 599t, 600t
made of thickened laths, 594t
nonuniform, 588
perforated, 576
thickened, 580
thin-walled, 592t
with beveled orifice, 593 t
with different shapes of orifice edges, 597 t
with rounded orifice edges, 595t, 596t
Guide vanes, 315, 317

H
Hagen-Poiseuille
curve, 101
law, 92
Hartman number, 50
Headers, 498
(diverging) box, 566t
intake, 568 t
outlet, 567 t
Z-shaped, 570t
$\Pi$-shaped, 569 t
Heat exchangers, 794
multipass, 800
of various types, 843 t
Heat transfer, 116
Heaters, 795
Heating (cooling) surface, 798
Heating furnace, 845 t
Heterogeneous (nonuniform) systems, 49
Heterogeneous systems, resistance for, 48
High resistance, network of, 46
Homogeneous systems, resistance for, 48
Hood, 191
Hoses
characteristics of, 154t
reinforced rubber, 108, 109
smooth rubber, 108
stabilized flow in various types, 154-156t
Hydraulic
diameter, 50
resistance, 1,86
resistance of networks, 41
Hydraulics, 1
Hydrodynamic similarity, 50
Hydrogen sulfide, 107

## I

Inclination angle, 798
Incompressible homogeneous medium, 25
Incompressible fluid, 25, 109
flow of, 53
jet of, 37
Inertial separation, 786
Injection, 115
Inlets
beveled wall, 177
circular bellmouth, 196-198t
entry from a limited volume, 200t
pipes of axial stationary turbo-machines, 213t
pipes, 187
resistance coefficients of, 177
side, 183
with different types of mounting,
201t, 202t
with facing baffle, 200t
with straight boundaries, 178
Insert, 407
Intake collector, 499n
Interaction effect, 623
Interconnected bodies, 675
Invariability of density, 43
Inverse problem, 296
Irregular shape, 582
Irreversible losses, 331
Irrotational (laminar) motion, 48
Isentropic process, 47
Isentropic retardation, 33
Isotherm, 31

| J | Lumped material, 575 |
| :---: | :---: |
| Jet Lumps of spherical or irregular shape, 582 |  |
| additional expansion of, 708 <br> axisymmetric free submerged, 715-717t | M |
| discharge, 53 | Mach number, 4, 31, 44, 576 |
| discharged, 705 | high, 242, 266t |
| expansion, 53 | Magnetohydrodynamic (MHD) channel, 50 |
| free, 229, 625, 714 | Mass discharge, 63 |
| free, of circular cross section, 773t, 774t free, plane-parallel, 775t, 776t | $\begin{aligned} & \text { Mass flux, } 35 \\ & \text { reduced density of, } 35 \end{aligned}$ |
| ideal gas, 33 | Mean flow velocity, 23 |
| narrow flow, 588 | Mechanical contamination, 106 |
|  | Media |
| K | cemented or bonded, 581 |
| Kerosene, density of, 10tL | loose or unbonded, 581 |
|  | Meshes, 581 |
|  | Metallic strips, 108 |
|  | Mixing chamber, 229 |
| Labyrinth, 624 | Moisture, 107 |
| with flow passage from one volume, 657-659t | Momentum exchange, 400 |
| Labyrinth seal with an enlarged gap, 655t, 656t | Movable flaps, 270-272t |
| Laminar regime, 145t | N |
| Lateral entrance, 183 | Navier-Stokes equations, 129 |
| Light machine oil, density of, 10t | Newton's binomial rule, 37 |
| Lignite oil, density of, 10t | Newtonian fluid, 48 |
| Limiting cavitation numbers, 420 | Nikuradse's resistance equations, 89 |
| Linear frictional resistance, 2n | Nitrogen dioxide, density of, 10 t |
| Linseed oil (boiled), density of, 10t | Nonuniformity, 41 |
| Liquids | Notches, 97 |
| equilibrium of, 21 | Nozzle, 53, 56 |
| incompressible, 38 | bellmouth, 266t, 267 t |
| properties of, 9 | converging conical, 198t |
| Local | converging, 331, 332 |
| losses, 298 | converging, of circular cross section, 375-377t |
| pressure drops, 2 | inner cyndrilical, 57 |
| resistance, 41 | losses, 63 |
| shear stress, 96 | shape of, 58-62t |
| stalls, 402 | Numerical methods, 289 |
| Locking devices, 47, 806 |  |
| Longitudinal | 0 |
| oscillating velocity, 669 | Oblique |
| rows, 673 | flow, 189 |
| Loose material, 575 | inflow, 190 |

Oblong body, 665
Optimal geometric parameters, 418
Optimization parameters, 187
Orifices
change in flow area of, 223
change in velocity of, 223
discharge from, 54
gas flow through, 53
grid, 181
in a straight tube, $259-262 t$
in a thin wall in presence of a passing flow, 267-270t
in a wall with infinite surface area, 263t, 264t
in transient and laminar regions, 264t, 265t
in tubes at large subsonic velocities, 266t
liquid flow through, 53
round-edged, 239
shape of, 58-62t
sharp-edged, 236, 238, 241n
side, 184
single, 181
submerged, 54
types installed in a transition section, 256-258t
Oscillations, 416
Outlet elements, installed downstream
of centrifugal fans, 751t, 752t
Oxygen, 107

## P

Packed bed, 582
Packings, 575
a bed of spherical or lumpy irregular-shape
bodies, 605t, 606t
chordlike, 581, 584
density of, 787
gridlike, 581
of ceramic Raschig rings, 610t
of wooden laths (chordlike), 611t
wetted, 584
Paired collectors, 115
Parabolic
stagnant zone, 667
velocity profile, 226
Particles
binding of, 786
capture of, 783
macroscopic, 115
nonsphericity of, 671
of irregular shape (see Bodies of irregular shape)
suspended, 779
Passing stream, 243
Pasted strip, 404
Perforated plates, 227, 237, 575
in tubes at large subsonic velocities, 266 t
series of, 792
wetted, 785
Perforated
surfaces, 710
walls, 110
Permeability, 586
Perturbations, 88
Physical quantities, 4
names and dimensions of, 5-8t
Pipe
annular, 19
bent, 51
corroded steel, 72
exhaust, 782
exit section of, 2
fittings, 806
inlet, 187
short, 2
smooth, 4
Pipeline, 590
formation of deposits in, 106
Pitch
nonuniform transverse, 797
variable, 797
Plugs, 618
cone, 623
Plunger stroke, 620
Pneumatic transport, 419
Point of transition, 669
Poiseuille flow, 127
Polluted air, 805
Polymers, 109, 115
Polypropylene, 109
Polytropic exponent, 30
Poorly streamlined bodies, 669

Pores, 581
Porous materials, 578
bounded, 583
Porous
medium, 581
segment, 111
Positive pressure gradient, 189
Postcritical region, 286
Poster stamped paper, 402
Prandtl formula, 87
Preinserted cylindrical segment, 293
Preseparated layer, 319
Pressure-boosting device, 64
Pressure
heads, 27
recovery coefficient, 233
reduction coefficient, 707
reduction factors, 725-734t
systems, 1
units, 30
acceleration (deceleration) losses, 798
calculation of distribution, 47
elevation, 40
excess, 40
redistribution of, 51
small drop, 38
static, 28
total, 40
Prismatic bodies, 669
Process apparatus, 579
Profile, of symmetrical velocity, 289
Profiled preseparation, 319
Profiles
rolled and shaped, in a tube, plane parallel flow, 688t, 689 t
shaped, placed in one longitudinal row, in a tube, plane-parallel flow, 698t
Protuberances, 86
Pulverized material, 419, 420
Pumps, 329

## Q

Quadratic region, 619

R
Radiators
finned tubular, 832t, 833 t
honeycomb, 794
honeycomb, with hexagonal or circular pipes, 831t, 832t
plate, 833 t
tube, 833 t
tubular-finned, 794, 795
tubular-plate, 794, 795
Raschig rings, 575, 583
Reattachment of layer, 401
Recirculation, 181
Rectangular plate, in a tube, three-dimensional flow, 697 t

Rectification column, 579
Recuperators, 844t
Reduced velocity, 32, 282
Regeneration, 622
Regime
of quadratic resistance law, 140t
bubbling, 785
fluid flow, 18
foam, 785
laminar, 240
laminar flow, 19
replacement of, 90
self-similar turbulent, 240
square-law, 89
transition, 240
wavy, 785
Relative spacing, 707
Resistance
drag, 669
external frontal, 191
nonuniform, 589
shape, 665
Resistance coefficients, 3, 50, 173
converging and transition sections, 277
diagrams of, 192-218t, 246-273t, 337-381t, 424-477t, 592-612t, 627-660t, 680-701t, 719-776t, 808-856t
fluid, 42
friction, 331
internal, 325, 329
of bends, 391
of compensators, 617
of curved segments, 391
of diffusers, 277
of elbows, 391
of exit sections, 705
of grids, 575
of inlet, effect of the wall on, 177
of labyrinth seals, 617
of manifolds, 483
of packings, 575
of plugs, 617
of porous layers, 575
of screens, 575
of sections with apertures, 223
of sections with diaphragms, 223
of sections with girders, 663
of sections with orifices, 223
of sections with other shapes, 663
of sections with proturberances, 663
of sections with sudden contraction, 223
of sections with sudden expansion, 223
of sections with trusses, 663
of tees, 483
of throttling devices, 617
of valves, 617
of wyes, 483
Resistance
curve, 92, 101
forces, 1
Resistance to flow
at entrance into conduits, 177
at entrance into tubes, 177
friction coefficients for, 85
in conduits, 85
in straight tubes, 85
smooth change in velocity, 277
through orifices, 223
with changes of the stream direction, 391
Reynolds number, 3, 18, 44, 55, 57, 86, 87, 283
critical, 20
low, 307
Rolling paper, 402
Rotation, 781

Roughness, 85, 294
nonuniform, 91, 396
ordered, 89
protrusions, height of, 295
relative, 86, 91, 782
uniform-grain, 88
S
Screens, 184, 575, 598t, 599t
at subsonic flow velocities (see Grids
at subsonic flow velocities)
corrugated, 786
in series, 579
noncontaminated, 577
two-plane, 578
Scrubbers
air, 779
centrifugal, 822 t
gas, 779
Venturi, 784
wet, 784
wet, turbulent, 818t, 819 t
with wooden packing, 821 t
Seawater, density of, 10 t
Settling plates, 787
Separation zone, 177, 309
Separation, 86
Separators, 850 t
Shafts
fan, 80
intake, 184, 209t
mine, 675
straight intake circular, 211t
straight, 209t
supercharger, 65
ventilating, 184
with bends, 210 t
Shaped part-fittings, combination, mutual effect of, 856 t
Sharp turns, 626
Shock, 225
Shock coefficient, 298, 301
total, 326
Short
starting length, 101
transition piece, 301
Side wall, 55
Similarity groups, 31
Simple transformations, 49
Sintering gases
installation, scrubbing of, calculation
of resistance, elements of the system, 73-76t
scrubbing of, 72
Slats, 779
Slits, 309
Sloping bottom, 186
Smoke discharging, 712
Smooth
entrance, 100
transition, 317
turning, 411
walls, 402
Smoothly expanding tubular section, 277
Smoothly rounded branch, 491
Spacers in a tube, plane-parallel flow, 684-687t
Spatial (annular) turn, 416
through 180 degrees, 418 t
Specific energy, loss of, 46
Speed of sound, 32
Sphere, 666
in a tube, three-dimensional flow, 690t, 691t
Spillway, 623
Splitters, 316
Square-law regime, 89
Stabilizing effect, 419
Stagnation temperature, 32
Starlike shapes, 97
Static momentum, 36
Static pressure, 295
distribution of, 46
recovery, $231,301,310,313$
uniform distribution of, 43
Stationary hot gas, 23
Stopping device, 620
Straight
inlet section, 177
insert, 284
passage, 488
Stream
deformation, 18
discharged, 3
dusted, 52
Streamlines, 588
asymmetry of, 667
Subsonic flow, 34t
of fluid, 288
velocities, 292
Subsonic range, 289
Suction, 243
Sudden contraction, 180, 237, 254-256t
in transition and laminar regions, 255t, 256t
Sudden expansion, 237, 320, 485
velocity distributions of, 246-252t
Sulfur dioxide, density of, 10t
Superchargers, 40, 64
high-head, 66
Superposition
of losses, 42, 44
principle of, 45
Supersonic velocities, 102
Support plates, 102
Surface tension coefficient, 579
Swirler, 782, 800-801
blade, 783
conveyer-type, 802
Symmetric plane turn through 180 degrees, 419
Symmetrical
180-degree turn, 417
velocity profile, 289

## T

Tangential injection, 315
Tape insert, 802
Tapered air ducts, 710
Temperature
correction for, 37
small differences, 52
Throttle, 806
Throttling devices, 298, 617, 618
Tortuous flow paths, 625
Total
energy (pressure) loss, 1
pressure loss factor, 313
resistance, 48

Trailing part, 674
Transition
from rectangular to circular cross sections, 380 t
of a circle into a rectangle, 336
of a rectangle into a circle, 336
point, 401
region, 93, 714
sections, 332
Transition piece, 333, 618
converging, 334
converging-diverging, 332, 377t, 378t
diverging, 334
length of, 335
with sharply changing cross sections, 379 t
Transverse
bundle of finned tubes, 840t
distribution, 23
self-oscillations, 679
tube bundle, with different
cross-sectional shapes, 841t, 842t
Trays
bubbling, 579, 580
wetting, 579
Triangles
equilateral, 100
equilateral rectangular, 100
isosceles, 99
Truss, 675
in a tube, plane-parallel flow, 700t, 701t
Tubes
and channels, 426-428t
annular concentric, 127
annular, 664
bundles, 147-149t, 795
circular annular, 98
circular with rough walls, 140 t
circular with smooth walls, 133 t
circular with walls of nonuniform roughness, 138t, 139t
circular with walls of uniform roughness, 134-137t
commercial, 92
curved, 392
eccentric annular, 99
elliptical, 98
entrance into various types, 192-196t, 203-208t
entry through first side orifice, 207t, 208t
entry through orifices, 203-205t
equilateral triangle, 96
equivalent roughness of surfaces,
types/materials of tubes, 120-126t
finned, 799
flat-rolled, 103
flat-rolled aluminum, 103
flat-rolled steel, 103
flexible corrugated, 108
flow deformation in, 252-254t
helical, 398
noncircular, 97
nonrotating, 803
nonstabilized flow, 161t, 162t
parallel interstitial flow in, 147-149t
porous, 111
rectangular, 98
reinforced by various spacers and braces,
across the section, along the channel, 700t
rotating, 803
seamless, 104
settling, 788
smooth inlet, 161t, 162t
smoothly curved, 396
spirally corrugated, 802
square, 227
stabilized flow in various types, 133-147t, 150-153t, 157-160t
straight, pressure losses in, 85
tension, 157 t
with screen at the inlet, 206t
Turbines, 329
Turbo machines, 187
axial stationary, 213t
Turbulence
degree of, 44
scales, 590
Turbulent
agitation, 41
mixing, 484
Turbulization, 400
Turbulizer, 591
Turns
and bends, 428t, 429t
and elbows, in system of pneumatic transport, 475-477t
and elbows, joined, curved, 455-457t
and elbows, of rectangular cross section, 463t, 464t
conventional, 495
spatial (circular), through 180 degrees, (during suction), 469t, 470t
spatial (circular), through 180 degrees, (with pumping), 471t, 472t
symmetric, through 180 degrees, in one plane,
(during suction), 473t, 474t
with concentric guide vanes, 465 t

## $\mathbf{U}$

Uniform velocity distribution, 3

## V

Valve
ball, on a spherical seat, 654 t
butterfly, 618
butterfly, in a tube of circular cross section, 646t
butterfly, throttling, in a tube of rectangular cross section, 647 t
check, with screen, 651 t
conical, 621
conical, on a conical seat, 653 t
conical, on a flat seat, 654 t
cylindrical, in the system, 645 t
disk, 618
disk, under complex conditions, 654 t , 655 t
disk, with bottom guides, 652t, 653t
disk, without bottom guides, 651t, 652t
gate, 617, 618
globe, 617
regulating, $619,650 \mathrm{t}$
single-seat, 619
suction, with screen, 651 t
throttling, in a tube of circular cross section, with disk gates of different shape, 649 t
throttling, thin-walled disk, with parallel and nonparallel flaps, 648t
various types of gate, 627 t
various types of globe, 627 t
Vanes
arc, optimum angle of, 414
concentric, 415
guide, 410, 711
screw, 783
swirl, 783
thin shaped, 414
Velocity
coefficient, 56
distribution, 44, 403
fields, 280
profiles, 44, 130
retardation, 329
Ventilating hoods, 805
Ventilators
dome, 805
rectangular roof, with panels, 850 t
roof, 848t, 849t
Vessel bottom, 55
Viscosity
dynamic, 12
kinematic, 12
units of, 13t
Viscous
forces, 48, 86
resistance force, 48
sublayer, 87
Volumetric
flow, 45
gas content, 422
generators, 320
pair, 393
single toroidal, 668
Vortices
formation of, 41
random, 668
shedding of, 668
stalling of, 285
W
Wake, 666
attached, 668
toroidal vertical, 667

Wall mount, 198t, 199t
with facing baffle, 198t
Water, density of, 10t
Welding seams, 406
Wet scrubber, 72, 73t
Wind energy, 805
Wind tunnels, 591
calculation of resistance, types of elements, 78-80t
closed-circuit, 77
low-velocity, 77
open-throat, 77
working section (open) of, 273t
Wire net, 324
Wood oil, density of, 10t
Wooden laths, 583
Working section, 80
Wyes
converging, 484, 491, 501-509t
convergent, nonsymmetric, 542-543t
converging, of improved shape, 511-515t
converging, of industrial construction, 522 t
converging, of normalized construction, 517-521t
converging, smooth, 516t
converging, threaded, 510 t
diverging, 485, 523-527t, 529-534t
diverging, of normalized construction, 538-540t
diverging, smooth, 541 t , 542 t
double, 496
equilateral, 494
four-way, 556-562t
nonstandard, 483
nonstandard diverging, 489
of improved shape, 535-538t
of rectangular cross section, 483
symmetrical, 495
symmetrical (equilateral), 543-555t
threaded, 528t
welded, 492
with branches, 490
with screwed pipes, 492
Wye-collector, sectional, effect of, 855 t


[^0]:    Note. Page numbers followed by the letter t denote tables; and numbers followed by n denote footnotes.

