NOMENCLATURE

b	Width of roughness elements, helical
	channel, lobes of twisted tubes, space
	between tubes within a bundle, m
$c_f = 2\tau_w/\rho u_\infty^2$	Friction coefficient
$\stackrel{c_p}{D}$	Specific heat, J/kg · K
D	Diameter of the curvature of a coiled pas-
	sage, m
d_0	Diameter of the cylinder, of the zero
	shear stress surface, describing a coiled
	tube, m
d_1, d_2	Diameters of washed surfaces of tubes
	comprising an annular or helical chan-
	nel, m
d_e	Equivalent diameter of channel, m
E	Voltage across the anemometer wires, V
F	Net cross-sectional area, heating-wall sur-
	face, m ²
G	Working-fluid flow rate, kg/sec; coeffi-
	cient
$G(k^+), G_1(k^+)$	Thermal functions of roughness
$H = \delta^*/\delta^{**}$	Shape factor
h	Height of helical passage, m
I	Current, A
k	Height of roughness projections, m
$k^+ = ku_*/\nu$	Dimensionless height of roughness projec-
	tions at temperature T_f
l	Mixing length, length of channel, m
p	Pressure, Pa
Δp	Pressure differential, Pa
Q	Heat flux, W
q	Heat flux density, W/m ²
$R(k^+), R_1(k^+)$	Hydrodynamic functions of roughness
r	Tube radius, current radius, m
r_0	Radius of cylinder, of zero shear stress
	surface, m
$r_0^+ = r_0 u_* / \nu$	Dimensionless radius
S	Spacing between roughness elements,
	pitch of helical channel, of twisted
	tubes, m
S_1	Pitch of tubes within a bundle, m
T	Temperature, K

viii Nomenclature

U	Potential drop, V
u, v, w	Velocity components, m/sec
u',v',w'	Velocity fluctuations, m/sec
u_0	Bulk velocity, m/sec
u_{∞}	Free-stream velocity, m/sec
u_r, u_{τ}	Radial and tangential velocity compo-
	nents, m/sec
$u_* = \sqrt{\tau_w/\rho}$	Friction velocity, m/sec
$u^+ = u/u_*$	Dimensionless velocity
\mathbf{V}	Total-velocity vector, m/sec
x, y, z	Cartesian coordinates
X	Length, distance from start of heating, m
x_0	Virtual start of turbulent boundary
	layer, m
y	Current distance along the radius, calcu-
	lated from the surface of tubes or cylin-
	der, m
$y^+ = yu_*/\nu$	Dimensionless distance
$y_R = r_0 \ln(r/r_0)$	Coordinate of axisymmetric boundary
	layer, m
$y_R^+ = r_0^+ \ln(r/r_0)$	Dimensionless coordinate
α	Heat-transfer coefficient, W/m ² · K; an-
	gle, radius
δ	Thickness of boundary layer, of wall, m
δ^*	Displacement thickness, m
δ^{**}	Momentum thickness, m
ϵ_q	Eddy thermal diffusivity, m ² /sec
$\varepsilon_{ au}$	Eddy viscosity, m ² /sec
η	Efficiency
$\vartheta = T_w - T$	Temperature differential, K
$\vartheta_* = q_w/\rho c_p u_*$	Characteristic temperature, K
$\vartheta^+ = \vartheta/\vartheta_*$	Dimensionless temperature
×	Universal constant
$\Lambda = l/\delta_x$	Normalized mixing length
λ	Thermal conductivity, W/m·K
μ	Dynamic viscosity, N · sec/m ²
ν	Kinematic viscosity, m ² /sec
ξ	Hydraulic drag coefficient
П	Channel perimeter, m
ρ	Density, kg/m ³
au	Shear stress, N/m ²
φ	Angle, degrees
$\Psi = T_w/T_f$	Temperature factor
$Fr_M = s^2/d_0 d_e$	Modified Froude number

Nomenclature ix

$Nu = \alpha d_e/\lambda$, $Nu_x = \alpha x/\lambda$	Nusselt numbers at pertinent reference parameters
$Pr = \mu c_p / \lambda$	Prandtl number
$\Pr_T = \varepsilon_{\tau}/\varepsilon_q$	Turbulent Prandtl number
$Re = u_0 d_e / \nu$	Reynolds numbers at pertinent reference
	parameters
$Re_{r_0} = u_{\infty} r_0 / \nu$ $Re_x = u_{\infty} x / \nu$	parameters
$\operatorname{Re}_{\delta^*} = u_{\infty} \delta^* / \nu$	
$St = \alpha/\rho c_p u_{\infty}$	Stanton number at pertinent reference
$= \text{Nu/Re Pr}$ $Tu_{\infty} = \sqrt{\overline{u'^2}}/u_{\infty}$	parameters
$Tu_{\infty} = \sqrt{u'^2}/u_{\infty}$	Turbulence intensity
Subscripts	
0	At the plate, for a smooth surface, for the
	channel as a whole
1	Inner tube, zone of annular channel
2	Outer tube, zone of annular channel
∞	In the free stream, in the stabilized heat- transfer region
f	In the flow
in	At the inlet
out	At the exit
S	For sand roughness
t	In the tube
tr	Upon transition from partial to complete
•	manifestation of roughness
w	At the wall
$\Psi = 1$	At constant physical properties

Averaging

Other symbols are defined in the text.