Home Books eBooks Journals References & Proceedings Authors, Editors, Reviewers A-Z Product Index Awards
Turbulence and Shear Flow Phenomena -1 First International Symposium

ISBN:
1-56700-135-1 (Print)

SCALAR TRANSPORT AND MIXING IN TURBULENT STRATIFIED SHEAR FLOW

Frank G. Jacobitz
Mechanical Engineering Program University of San Diego 5998 Alcala Park San Diego, California 92110, USA

Abstract

In this study, the evolution of the velocity field and scalar concentration fields in stably stratified shear flow is studied using direct numerical simulations. Two cases with vertical mean shear and horizontal mean shear are compared. In both cases, the growth of the turbulent kinetic energy weakens as the Richardson number is increased. However, the horizontal shear case shows a stronger growth of the turbulent kinetic energy than the vertical shear case for a given Richardson number. The ordering of the velocity components was found to change from streamwise > horizontal > vertical in the vertical shear case to streamwise > vertical > horizontal in the horizontal shear case. The fluctuation level of a passive species variable with a vertical mean gradient was observed to be stronger in the horizontal shear case. The ratio of the vertical turbulent eddy diffusivity to the horizontal turbulent eddy diffusivity was found to be larger in the horizontal shear case.