请登录 0 购物车
首页 图书 电子图书 期刊 参考文献及会议录 作者,编辑,审稿 A-Z 产品目录
Flexible Automation and Integrated Manufacturing 1994

ISBN 打印: 978-1-56700-018-4

TRAINING A NEURAL NETWORK TO LEARN THE INVERSE KINEMATIC MAPPING OF A RHINO ROBOT

Abstract

Off-line programming of robots requires the determination of the joint coordinate angles. However, inverse kinematic solutions for robot control and positioning are intended for the "ideal" robot and, therefore, do not take into account the robot's inherent deficiencies. These deficiencies include inaccuracies in the arm-element dimensions, internal play of joints, internal non-linearities of gearing, deflection of arm elements, and servo-positioning errors. Also, traditional approaches to solve such problems are computationally intensive and require frequent calibration to maintain positional accuracy. In this paper we report a technique that uses a neural network to learn the idiosyncrasies of a robot. In particular, a multi-layer feed-forward network is trained by the back propagation algorithm to learn the inverse kinematic solution that is unique to the Rhino robot used here.
首页 Begell Digital Portal Begell数据库 期刊 图书 电子图书 参考文献及会议录 作者,编辑,审稿 A-Z 产品目录 订购及政策 关于BegellHouse 联系我们 Language English 中文 Русский 日本語 Português Deutsch Français Español