请登录 0 购物车
首页 图书 电子图书 期刊 参考文献及会议录 作者,编辑,审稿 A-Z 产品目录
Heat Transfer & Transport Phenomena in Microscale

ISBN 打印: 1-56700-150-5

OPTICAL MEASUREMENT OF MICROSCALE TRANSPORT PROCESSES IN DROPWISE CONDENSATION

Abstract

The optimum use of interfacial free energy gradients to control fluid flow in small regions naturally leads to simpler passive heat transfer systems. In this context, "passive" refers to the natural pressure field for fluid flow due to changes in the intermolecular force field resulting from an imposed nonisothermal temperature field. Although the particular Constrained Vapor Bubble, CVB, discussed can be viewed as a large version of a wickless heat pipe, it is a much more general heat transfer concept. Herein, it is an ideal system for the optical study of microscale transport processes in droplet condensation due to interfacial phenomena. This paper concerns the movement of a single condensed ethanol sessile drop into a concave liquid film. The intermolecular force is found to be much larger than the gravitational force and dominates condensate removal. A dimensionless force balance for viscous shear stress demonstrates the effect of changes in the contact angle and curvature. A dimensionless difference in free energy is identified as the cause of spontaneous condensate removal.
首页 Begell Digital Portal Begell数据库 期刊 图书 电子图书 参考文献及会议录 作者,编辑,审稿 A-Z 产品目录 订购及政策 关于BegellHouse 联系我们 Language English 中文 Русский 日本語 Português Deutsch Français Español