Davide Bernardi
Universita degli Studi di Bologna, Dipartimento di Ingegneria delle Costruzioni Meccaniche, Nucleari, Aeronautiche e di Metallurgia (D.I.E.M.) and C.I.R.A.M., Via Saragozza 8, 40123 Bologna, Italy
Vittorio Colombo
Dipartimento di Ingegneria delle Costruzioni Meccaniche, Nucleari, Aeronautiche e di Metallurgia (D.I.E.M.) and C.I.R.A.M., Università degli Studi di Bologna, Via Saragozza 8, 40123 Bologna, Italy
Gianni G.M. Coppa
Istituto Nazionale per la Fisica della Materia and Dipartimento di Energetica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
A. D'Angola
Università degli Studi di Bologna - Dipartimento di Ingegneria delle Costrazioni Meccaniche, Nucleari, Aeronautiche e di Metallurgia (D.I.E.M.) and C.I.R.A.M. Via Saragozza 8,40123 Bologna - Italy
Emanuele Ghedini
Università degli Studi di Bologna, Dipartimento di Ingegneria delle Costruzioni Meccaniche, Nucleari, Aeronautiche e di Metallurgia (D.I.E.M.) and C.I.R.A.M., Via Saragozza 8, 40123 Bologna
Andrea Mentrelli
Universita degli Studi di Bologna, Dipartimento di Ingegneria delle Costruzioni Meccaniche, Nucleari, Aeronautiche e di Metallurgia (D.I.E.M.) and C.I.R.A.M., Via Saragozza 8, 40123 Bologna, Italy
A new technique for the treatment of the electromagnetic field is proposed for numerically studying inductively coupled plasma torches within FLUENT© environment. The method is based on the use of a linked external routine which fully solves the electromagnetic field equations on an extended grid, allowing the fluid-dynamics domain to be limited to the torch region. The advantages of the new approach with respect to that using entirely FLUENT© are pointed out. Comparisons between results obtained employing either magnetic dipole or zero potential boundary conditions for the electromagnetic field are presented. All the calculations have been performed for a 2D axisymmetric torch under the assumptions of laminar flow for the L.T.E., optically thin argon plasma.