Choondal B. Sobhan
National Institute of Technology Calicut 673601, India; Cooling Technologies Research Consortium School of Mechanical Engineering, Purdue University West Lafayette, Indiana 47907-1288 USA
Suresh V. Garimella
NSF Cooling Technologies Research Center, School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907-2088 USA
Abstrakt
The extremely high rates of heat transfer obtained by employing microchannels makes them an attractive alternative to conventional methods of heat dissipation, especially in applications related to the cooling of microelectronics. A compilation and analysis of the results from investigations on fluid flow and heat transfer in micro- and mini-channels and microtubes in the literature is presented in this review, with a special emphasis on quantitative experimental results and theoretical predictions. Anomalies and deviations from the behavior expected for conventional channels, both in terms of the frictional and heat transfer characteristics, are discussed.