SYMBOLS

\(A \)
- surface area

\(A_{n \rightarrow m} \)
- Einstein Coefficient of spontaneous emission

\(A_b(s) \)
- effective bandwidth

\(a \)
- mean absorption coefficient; gray-medium absorption coefficient

\(a_\lambda, a_\eta \)
- absorption coefficient

\(a_\eta^* \)
- dimensionless absorption coefficient

\(B \)
- total number of V-R bands for a given gas or gas mixture

\(B_{m \rightarrow n} \)
- Einstein coefficient of absorption

\(B_{n \rightarrow m} \)
- Einstein coefficient of stimulated emission

\(B_k(\mathbf{u}_k) \)
- quantity defined by Eqs. (19.8) - (19.9)

\(B_{k-j}(n) \)
- quantity defined by Eq. (22.33)

\(b \)
- integer indicating to which V-R bands reference is being made

\(C \)
- constant; also, symbol for a curve in the plane

\(C_s \)
- scattering cross section of a particle

\(C_a \)
- absorption cross section of a particle

\(c \)
- speed of electromagnetic wave

\(c_o \)
- speed of electromagnetic waves in free space

\(c_f \)
- factor correcting the geometric mean beam length

\(D \)
- diameter, molecular diameter, plane layer thickness

\(d \)
- unit vector indicating a particular direction in space

\(d \)
- number of diffuse surfaces in a specular enclosure

\(E \)
- electric field intensity

\(E_x, E_y, E_z \)
- components of \(E \)

\(E_0 \)
- amplitude of a sinusoidal electric field

\(E \)
- energy of a photon

\(E_{nm} \)
- \(e_n - e_m \)

\(E_{\perp}, E_{\parallel} \)
- components of \(E \) perpendicular and parallel to plane of incidence

\(E_g \)
- semiconductor’s energy gap

\(E_l \)
- photon energy associated with the \(l^{th} \) line of a band structure

\(E_n(x) \)
- exponential integral function

\(e \)
- energy of a fundamental particle

\(e_m \)
- energy of the \(m^{th} \) discrete energy level available to a particle

\(e_i \)
- energy level associated with the \(i^{th} \) quantum state of a system

\(e, \lambda \)
- emissive power

\(e_{\lambda b}, e_{\lambda b} \)
- blackbody emissive power

\(e \)
- total emissive power
total blackbody emissive power
\(\varepsilon_{\lambda k}, \varepsilon_{\eta k} \) evaluated at temperature \(T_k \)
unit vector along a line joining two points on an enclosure surface
blackbody vector; its elements are the set of \(\varepsilon_{\lambda k} \)'s
point form factor from elemental area \(d_i \) to surface \(j \)
form factor from surface \(i \) to surface \(j \)
(universal) fractional blackbody energy function
form factor matrix with elements \(F_{i-j} \)
specular form factor from surface \(k \) to surface \(j \)
specular form factor matrix with elements \(F^s_{k-j} \)
exchange factor from surface \(k \) to surface \(j \)
total exchange factor from \(k \) to \(j \), for temperature \(T \)
exchange factor matrix
specular enclosure exchange factor from \(k \) to \(j \)
specular enclosure exchange factor matrix
gaseous exchange factor matrix
fraction of \(\varepsilon_{\lambda} \) at temperature \(T \) with wavelength \(\leq \lambda \)
fraction of \(\varepsilon_{\lambda} \) at temperature \(T \) with wavelength between \(\lambda_1 \) and \(\lambda_2 \)
volume fraction of a sooty gas occupied by soot particles
gaseous point form factor (function) from area \(d_i \) to surface \(j \)
gaseous form factor (function) from surface \(k \) to surface \(j \)
solar constant
matrix of gaseous form factor functions
magnetic field intensity
components of \(\mathbf{H} \)
amplitude of a sinusoidal variation in \(\mathbf{H} \)
hemispherical solid angle bisected by \(\hat{n} \) or \(\hat{k} \)
Planck’s constant
convective heat transfer coefficient
radiative heat transfer coefficient between surfaces \(k \) and \(j \)
identity matrix
number of image surfaces in a specular enclosure
quantum state number
intensity
blackbody intensity
blackbody intensity inside medium of index of refraction \(n \)
total intensity, total blackbody intensity
unit vector along \(x \)-axis
surface factor for a parametric surface, \(= |\mathbf{J}(u,v)| \)
surface normal for a parametric surface
SYMBOLS

\(j \) integer representing a particular enclosure surface

\(\hat{j} \) unit vector along \(y \)-axis

\(K_{x\lambda} \) extinction coefficient

\(K(...) \) kernel of an integral equation

\(K, K_D \) optical depths for gray medium: \(K = ax, K_D = aD \)

\(k_B \) Boltzmann constant

\(\hat{k} \) unit vector along the \(z \)-axis

\(k \) thermal conductivity of medium

\(k \) integer representing a particular enclosure surface

\(k(...) \) kernel of a single-variable integral equation

\(L \) distance or dimension

\(l \) integer representing a particular line in a band

\(M \) molecular mass

\(N \) number of particles per unit volume

\(M \) total number of surfaces in an enclosure

\(N_p \) number of scattering particles per unit volume

\(N_c \) number of FCM surfaces in an enclosure

\(N \) normal to a surface or curve

\(N_f \) number of terms in a truncated Fourier series

\(N_1, N_2 \) conduction/radiation parameters

\(n \) index of refraction

\(n_{P,E} (n'_{P,E}) \) spectral (directional) photon density

\(\hat{n} \) unit vector normal to a surface

\(n_r \) rotational quantum number

\(n_v \) vibrational quantum number

\(P(e) \) probability that system is in quantum state of energy \(e \)

\(P \) pressure

\(\mathbf{P} \) vector of power carried by an electromagnetic wave

\(P_x, P_y, P_z \) components of \(\mathbf{P} \)

\(P_E \) equivalent-broadening pressure

\(P_A \) partial pressure of active component of a gas mixture

\(P_0 \) reference pressure equal to one atmosphere

\(P_{H_2O} \) partial pressure of \(H_2O \)

\(P_{CO_2} \) partial pressure of \(CO_2 \)

\(Q_{r\lambda} \) radiant heat flow over a finite surface

\(Q_r \) total rate at which radiative heat leaves surface \(k \)

\(Q_{\eta} \) total rate at which radiative heat leaves the gas

\(Q_{\lambda k}, Q_{\eta k} \) spectral rate at which radiative heat leaves surface \(k \)

\(q_{r\lambda}, q_{rE}, q_{r\eta} \) radiant heat flux

\(q_{r\lambda, bn} \) radiant heat flux in a medium of index of refraction \(n \), at photonic equilibrium
total radiant heat flux
partial radiant heat flux
net radiant heat flux
average radiant heat flux over surface \(k \)
vector of radiant heat fluxes
components of \(q \)
rate per unit volume at which radiant energy leaves medium
(spectral) surface heat flux
surface heat flux
outgoing radiant heat flux at surface \(k \)
average outgoing radiant heat flux at surface \(k \)
total outgoing radiant heat flux at surface \(k \)
vector of average outgoing radiant heat fluxes
vector of total average outgoing radiant heat fluxes
spectral heat flow vector
total heat flow vector
rate of spontaneous emissions \(n \rightarrow m \), per unit volume
rate of stimulated emissions \(n \rightarrow m \), per unit volume
rate of absorption transitions \(m \rightarrow n \), per unit volume
radius
directional rate of spontaneous emission transitions \(n \rightarrow m \), per unit volume
directional rate of stimulated emission transitions \(n \rightarrow m \), per unit volume
directional rate of absorption transitions \(m \rightarrow n \), per unit volume
thermal resistance between \(k \)th surface and a nearby node at \(T_{ki} \)
= \(\rho_{k} \) if \(k \) is \(T \)-specified and = 1 if it is \(q \)-specified
position vector: \(r = (x, y, z) \)
electrical resistivity, DC electrical resistivity
reflectivity matrix
position vector of a point on surface \(k \)
surface, surface \(j \)
source term in the RTE
contribution to \(S'_{\lambda} \) due to incsattering (outscattering)
line strength of \(l \)th line, average line strength
average line strength at the band center
distance measured along a ray
distance between two points \(u \) and \(u^* \) on an enclosure
SYMBOLS

s_{k-j} distance between a point on k and a point on j

\bar{s}_{k-j} mean beam length between surfaces j and k

$\bar{s}_{k-j,o}$ geometric mean beam length between j and k

T temperature

T_g gas temperature

T_s surface temperature

T_j temperature of surface j, $j = 1, 2, k, \ldots, N$

T_k temperature of surface k, $k = 1, 2, j, \ldots, N$

T_{k_i} temperature of i^{th} node exchanging nonradiative heat with k

\bar{T}_k mean temperature of surface k

t time

$t_{\lambda}(s)$ optical thickness

t_f film thickness of a composite surface

u, v parameters relevant to a parametric surface representation

$u, (u, v)$ vector with components u and v; u fixes a point on a surface

u_k u fixing a point on the kth surface

u dimensionless path length, $= \overline{s_0}/\delta$

V volume

V_p particle volume

X any extensive measure of the radiant field

x, y, z Cartesian coordinates in space

Greek Letters

α'_{λ} absorptivity of a surface

α' total absorptivity

$\alpha'_{\lambda n}$ normal absorptivity (applies when incident ray is normal)

$\alpha(T), \alpha_b(T)$ tabulated function of T, see Tables 21.4 and 21.5

$\alpha_{g,j}(s)$ total gas absorptivity

β exponential wide-band’s line width to spacing parameter

β angle measured from the x-axis

γ, γ_0 electrical permittivity, electrical permittivity of free space

γ opening angle of a V-corrugated surface

$\gamma(T), \gamma_b(T)$ tabulated function of T, see Tables 21.6, and 21.7

δ, δ_l line spacing, line spacing of l^{th} line

$\overline{\delta}_l$ mean line spacing

$\delta_{i,j}$ Kronecker delta function: $= 1$ if $i = j$; $= 0$ otherwise

ε'_{λ} emissivity

$\varepsilon_{\lambda n}$ normal emissivity

$\varepsilon_{\lambda} (\varepsilon_{\lambda k})$ hemispherical emissivity (of kth surface)

ε total hemispheric emissivity

ε_k total hemispheric emissivity of surface k
\(\epsilon' \) total directional emissivity
\(\epsilon'_{n} \) total normal emissivity
\(\epsilon \) total hemispheric emissivity
\(\epsilon_{\lambda} \) emissivity matrix
\(\epsilon_{g}(s) \) total gas emissivity
\(\epsilon_{\text{soot}} \) soot emissivity
\(\epsilon \) total emissivity matrix
\(\epsilon_{s, \text{sp}} \) emissivity matrices for enclosures with \(q \)-specified surfaces
\(\epsilon^{s} \) specular total emissivity matrix
\(\eta \) wave number
\(\eta_{l} \) wave number at center of \(l^{th} \) line
\(\eta_{b}, \eta_{c} \) wave number at center of vibration rotation band
\(\eta^{*} \) dimensionless wave number distance from center of smoothed band
\(\theta, \theta_{k} \) angle from surface normal, angle from normal to the \(k \)th surface
\(\theta \) colatitude angle; with \(\varphi \), angle specifying a direction \(\hat{d} \); angle between \(\hat{d} \) and \(\hat{k} \) or between \(\hat{d} \) and \(\hat{n} \)
\(\theta_{1}, \theta_{2} \) angle of incidence
\(\theta_{r} \) (for smooth surface) angle of reflection at interface 1-2
\(\theta_{2} \) (for smooth surface) angle of refraction
\(\theta_{B} \) Brewster angle
\(\theta_{\text{max}} \) angle of total internal reflection
\(\theta^{*} \) (for rough surface) angle of reflected direction considered, from normal
\(\theta_{1}^{*} \) function used for characterizing the smoothed band
\(\theta, \theta_{2} \) dimensionless absolute temperatures, \(\theta = T/T_{1} \); \(\theta_{2} = T_{2}/T_{1} \)
\(\kappa \) absorption index
\(\lambda_{a}, \lambda \) wavelength, free-space wavelength
\(\mu, \mu_{0} \) magnetic permeability, magnetic permeability of free space
\(\mu \cos \beta \)
\(\nu \) frequency of electromagnetic wave
\(\rho'_{\lambda} \) surface reflectivity
\(\rho'_{\lambda n} \) reflectivity for radiation incident normal to surface
\(\rho'_{\lambda k} \) bidirectional reflectivity
\(\rho' \) total reflectivity
\(\rho_{\lambda}, \rho_{\lambda k} \) hemispheric reflectivity, hemispheric reflectivity of \(k \)th surface
\(\rho, \rho_{k} \) total hemispheric reflectivity, total hemispheric reflectivity of \(k \)
\(\rho \) gas density
\(\sigma \) Stefan-Boltzmann constant
\(\sigma_{\lambda} \) scattering coefficient
\(\varphi \) azimuth angle; with \(\theta \), angle specifying a direction \(\hat{d} \)
\(\varphi_r \) azimuth angle of reflected direction considered
\(\varphi_b, \varphi_g \) dimensionless temperatures given by Eqs. (23.19) and (23.27)
\(\chi \) alternate symbol for \(\theta_{2l} \)
\(\omega, \omega_j \) solid angle, solid angle subtended by surface \(j \)
\(\omega \) bandwidth of an exponential wide band
\(\omega_0 \) wide band property tabulated in Table 21.3
\(\Phi \left(\mathbf{d}, \mathbf{d}' \right) \) phase function relevant to scattering