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This paper presents a perturbation and numerical analysis of the flow and
mass transfer characteristics of Newtonian fluid flowing in a horizontal channel
with lower side being a stretching sheet and upper being permeable plate bounded
by porous medium in presence of transverse magnetic field. The governing non-
linear equations and their associated boundary conditions are first cast into dimen-
sionless forms by a local non-similar transformation. The resulting equations are
then solved using perturbation method and the finite difference scheme. Numeri-
cal results for flow and concentration distribution and the skin-friction coefficient
have been obtained for different values of the governing parameters numerically
and their values are presented through table and graphs. The effects of various
physical parameters Hartman number, Reynolds number, slip parameter etc. on
dimensionless horizontal and vertical velocities and also on mass transfer charac-
teristics are discussed in detail. In particular, the effect of slip velocity at inter-
facial surface on skin friction factor is found to be more pronounced in a system
for higher value of magnetic field. The results also show that the magnetic field
parameter has a significant influence on the fluid flow and mass transfer charac-
teristics.

* * *

Nomenclature

B magnetic induction intensity vector;
B0 magnetic intensity;
C dimensionless concentration;
Cf skin friction coefficient;
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c stretching parameter;
c0 uniform concentration;
cw unknown solute concentration;
D diffusion coefficient;
E electric field intensity vector;
h width of the channel;
J electric current density vector;
k the porous permeability parameter;
M Hartmann number;
q the velocity vector;
Re stretching Reynolds number;
Rec = Rc cross-flow Reynolds number;
Reent entrance Reynolds number;
u∗ velocity component along x∗-axis;
uslip slip velocity at porous wall;
u0 uniform inlet velocity;
v∗ velocity component along y∗-axis;
vw vertical velocity at the porous layer;
x∗ distances along the plate;
x dimensionless distances along the plate;
y∗ distances perpendicular to the plate;
y dimensionless distances perpendicular to the plate.

Greek symbols

α slip parameter depends on structure of the porous medium;
µ dynamic viscosity;
µm magnetic permeability;
ν kinematic viscosity;
φ porous parameter;
ρ density;
σ magnetic conductivity;
τ friction coefficient.

Superscripts

′ differentiation with respect to y;
∗ dimensional properties.

Subscripts

j grid point along x direction;
m grid point along y direction;
w wall condition.

Introduction

In recent years considerable attention has been given to study boundary layer flows of viscous
fluids over a stretching sheet. This is due to its important applications in engineering, such as the
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aerodynamic extrusion of plastic sheets, the boundary layer along a liquid film condensation pro-
cess, the cooling process of metallic plate in a cooling bath, and in glass and polymer industries. In
1961 Sakiadis [1] initiated the study of boundary layer flows over a flat plate. He considered the
boundary layer flow over a flat surface moving with a constant velocity and formulated a bound-
ary layer equation for two-dimensional and axisymmetric flows. The Sakiadis study was further
extended to the stretching flat plate by Crane [2]. The work of Sakiadis and Crane was further
extended by many researchers to include many other physical investigations such as; suction or
injection, heat or mass transfer analysis and magnetohydrodynamic flows etc. The study of bound-
ary layer flows over a stretching surface for impermeable plate was done by Banks [3], Banks and
Zaturska [4], Grubka and Bobba [5], Ali [6], and Ariel [7] whereas studied for the permeable plate
were done by Erickson [8], Gupta and Gupta [9], Chen and Char [10], Chaudhary et al. [11], El-
bashbeshy [12] and Magyari and Keller [13]. In all the above research work, the authors have
considered the flows due to stretching of the wall over an infinite plate with unbounded domain.

Magneto-hydrodynamics (MHD) is the branch of continuum mechanics which deals with the
flow of electrically conducting fluids in electric and magnetic fields. Magneto-hydrodynamic equa-
tions are ordinary electromagnetic and hydrodynamic equations modified to take into account the
interaction between the motion of the fluid and the electromagnetic field. The formulation of the
electromagnetic theory in a mathematical form is known as Maxwell’s equation. Hartmann flow is
a classical problem that has important applications in magnetohydrodynamic (MHD) power genera-
tors and pumps, accelerators, aerodynamic heating, electrostatic precipitation, polymer technology,
the petroleum industry, and purification of crude oil and fluid droplets and sprays. Hartmann and
Lazarus [14] studied the influence of a transverse uniform magnetic field on the flow of a viscous
incompressible electrically conducting fluid between two infinite parallel stationary and insulating
plates. The problem was then extended in numerous ways.

A very little attention has been given to the channel flows driven due to stretching surface.
In 1983, Borkakoti and Bharali [15] studied the hydromagnetic flow and heat transfer in a fluid
bounded by two parallel plates where the lower plate is stretching at a different temperature and
the upper plate is subjected to uniform injection. The effects of rotation on the hydromagnetic
flow between two parallel plates studied by Banerjee [16], where the upper plate is porous and
solid, and the lower plate is a stretching sheet by using perturbation technique up to first-order of
approximation. These perturbation results are only valid for small values of the Reynolds number.
Vajravelu and Kumar [17] obtained analytic (perturbation) as well as numerical solutions of the
nonlinear coupled system arising in axially symmetric hydromagnetic flow between two horizontal
plates in a rotating system where the lower plate being a stretching sheet and the upper plate is
subjected to uniform injection.

The no-slip boundary condition is widely used for flows involving Newtonian fluids past solid
boundaries. However, it has been found that a large class of polymeric materials slip or stick-slip
on solid boundaries. For instance, when polymeric melts flow due to an applied pressure gradient,
there is a sudden increase in the throughput at a critical pressure gradient. Berman [18] was the
first to study flows in composite layers under a uniform withdrawal of flux through the walls. He
obtained a solution by a perturbation technique for velocity field using the no-slip condition. No-slip
boundary conditions are a convenient idealization of the behavior of viscous fluids near walls. The
boundary conditions relevant to flowing fluids are very important in predicting fluid flows in many
applications. Since most naturally occurring media are porous in structure, a study of convection
in porous media is important. Beavers and Joseph [19] found experimentally that when fluid flows
in a parallel plate channel, one of whose walls is a porous medium, there is a velocity slip at the
porous wall. They have shown that the shear effects are transmitted into the permeable medium
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through a boundary layer region and proposed a slip condition at the fluid-porous medium boundary.
Similar kinds of problems were further studied by Blythe and Simpkins [20] and Richardson [21].
Saffman [22] showed that for small permeability the following expression is sufficient to calculate
the slip velocity uslip, as being proportional to the shear rate:

uslip =

√
k

α

(
∂u

∂y

)
+ O(k), (1)

where k is the permeability and α is a porous parameter depending upon the structure of the porous
medium.

The study of mass transfer, in such a type of flow in a porous channel is of great importance
in geophysics and engineering science. In recent years a considerable amount of work has been de-
voted to the study of natural and mixed convection in porous media/channels. It seems reasonable
to investigate the effect of slip boundary conditions (assuming that the slip velocity depends on the
shear stress only) on the dynamics of fluids in porous media by studying the flow of a Newtonian
fluid in a parallel plate channel. The effect of the shear stress on the slip velocity was studied by
Rao and Rajagopal [23]. They studied the effect of slip boundary conditions on the flow of the
fluids in a channel. They investigated the flow of a linearly viscous fluid when the slip depends on
both the shear stress and the normal stress. If the shear stress at the wall is greater than the critical
shear stress, the flow slips at the wall and conversely if the shear stress is not large enough, then the
classical Poiseulle solution with no-slip is observed. Singh and Laurence [24] studied the concen-
tration polarization in a composite layer using the BJ -slip condition. Rudraiah and Musuoka [25]
have investigated the effect of slip and magnetic field on composite systems analytically and numer-
ically. They obtained important characteristics of the conducting flow as well as the concentration
fields in the composite layer. In real systems there is always a certain amount of slip, which, how-
ever, is hard to detect experimentally because of the required space resolution. Later, Shivakumara
et al. [26] studied concentration polarization in MHD flow in composite systems using BJ -slip
condition analytically and numerically.

In the present work, the steady Hartmann flow of a viscous incompressible electrically con-
ducting fluid is studied with mass transfer. The fluid is flowing between two electrically insulating
plates, lower being stretching sheet and upper is covered by a porous media, and uniform suction
and injection is applied through the permeable surface. An external uniform magnetic field is ap-
plied perpendicular to the stretching sheet. The magnetic Reynolds number is assumed small so that
the induced magnetic field is neglected (Sutton and Sherman [27]). Chakraborty and Gupta [28] in-
vestigated on the motion of an electrically conducting fluid past a horizontal plate in the motion
being caused solely by the stretching of the plate. Thus in this paper the effects of slip on the
hydromagnetic flow and mass transfer between two horizontal plates, the lower being a stretching
sheet and the upper a porous solid plate have been studied. The coupled set of the equations of mo-
tion and the diffusion equation including the viscous nonlinear equations are solved analytically and
numerically using finite-difference approximations to obtain the velocity and concentration distribu-
tions. We consider a problem analogous to the forced convection where the momentum equation is
independent of concentration distribution and the diffusion equation is coupled with the velocity dis-
tribution. The momentum equation is solved analytically, under the assumption of two-dimensional
motion, for velocity distribution. A first-order perturbation technique satisfying the slip velocity at
the porous surface is used. Knowing the velocity field, we solve the diffusion equation numerically
by employing a finite-difference method.
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1. Formulation of the Problem

Consider the steady flow of an electrically conducting viscous fluid in a porous medium which
is bounded by two horizontal non-conducting plates where the lower plate is taken as stretching
sheet and upper is a permeable porous plate which is shown in Fig. 1. The fluid is assumed to
be flowing between two horizontal plates located at the y∗ = 0, h planes. The two plates are
assumed to be electrically insulating and a uniform magnetic field Bo is applied in the positive y-
direction.The fluid is permeated by a strong magnetic field B = [0; B0(x∗); 0]. MHD equations are
the usual electromagnetic and hydrodynamic equations, but they are modified to take account of the
interaction between the motion and the magnetic field. As in most problems involving conductors,
Maxwell’s displacement currents are ignored so that electric currents are regarded as flowing in
closed circuits. Assuming that the velocity of flow is too small compared to the velocity of light,
that is, the relativistic effects are ignored. The system of Maxwell’s equations can be written in the
form:

∇×B = µJ , ∇ · J = 0,

∇×E = 0, ∇ ·B = 0.

(2)

When magnetic field is not strong then electric field and magnetic field obey Ohm’s law which can
be written in the form

J = σ(E + q ×B), (3)

where B is the magnetic induction intensity, E is the electric field intensity, J is the electric current
density, µ is the magnetic permeability, and σ is the electrical conductivity. In the equation of
motion, the body force J ×B per unit volume is added. This body force represents the coupling
between the magnetic field and the fluid motion which is called Lorentz force. The induced magnetic
field is assumed to be negligible. This assumption is justified by the fact that the magnetic Reynolds
number is very small. This is a rather important case for some practical engineering problems where
the conductivity is not large in the absence of an externally applied field and with negligible effects
of polarization of the ionized gas. It has been taken that E = 0. That is, in the absence of convection
outside the boundary layer, B = B0 and ∇×B = µJ = 0, then Eq. (2) leads to E = 0. Thus, the
Lorentz force becomes

J ×B = σ(E + q ×B)×B.

In what follows, the induced magnetic field will be neglected. This is justified if the magnetic
Reynolds number is small. Hence, to get a better degree of approximation, the Lorentz force can be

Fig. 1. Physical configuration of the problem.
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replaced by
σ(E + u×B)×B = −σB2

0u,

where u is used for velocity vector.

The equations of motion can be put into the following forms for steady flow:

∂u∗

∂x∗
+

∂v∗

∂y∗
= 0, (4)

u∗
∂u∗

∂x∗
+ v∗

∂p∗

∂y∗
= −1

ρ

∂p∗

∂x∗
+ ν

(
∂2u∗

∂x∗2
+

∂2u∗

∂y∗2

)
− σB2

0

ρ
u∗, (5)

u∗
∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
= −1

ρ

∂p∗

∂y∗
+ ν

(
∂2v∗

∂x∗2
+

∂2v∗

∂y∗2

)
, (6)

where u∗, v∗ are the fluid velocity components along the x∗- and y∗-axes; ρ is the density; ν is the
kinematic viscosity; σ is the magnetic conductivity; B0 is the magnetic intensity.

The boundary conditions are:

y∗ = 0, u∗ = cx∗, v∗ = 0,

y∗ = h, u∗ = uslip = −
√

k

αh

∂u∗

∂y∗
, v∗ = vw,

(7)

where c is the stretching parameter vw is the vertical velocity in the porous layer, k the permeability
of the porous medium, α is the slip parameter, h is the width of the channel.

2. Formulation of the Problem and Method of Solution

2.1. Flow analysis. To solve the governing equations (5) and (6), we use the following non-
dimensional quantities:

u∗ = cx∗f ′(y), v∗ = −chf(y), p∗ =
µu0p

h
, x =

x∗

h
, y =

y∗

h
, (8)

where f ′(y) is the dimensionless stream function.

Using Eq. (8), we get from Eqs. (5) and (6) as

−1
ρ

µu0

h2

∂p

∂x
= c2xh

[
f ′2 − ff ′′ − f ′′′

Re
+

M2

Re
f ′

]
, (9)

−1
ρ

µu0

h2

∂p

∂y
= c2h

[
ff ′ − f ′′

Re

]
, (10)

where Re = ch2/ν is the stretching Reynolds number; M =
√

σ/(νρ)B0h is the Hartmann
number; c is stretching parameter.

Eliminating p between Eqs. (5) and (6), we get

f ′′′ − Re(f ′2 − ff ′′)−M2f ′ = A, (11)

where A is a constant to be determined.
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The corresponding boundary conditions are obtained from Eq. (7) using Eq. (8) as

y = 0 : f ′ = 1, f = 0,

y = 1 : f ′ = −
√

k

αh2
= −φf ′′, f = −vw

ch
= Rec,

(12)

where Rec(= vw/ch) the cross-flow Reynolds number.

For small values of Re (stretching Reynolds number), the regular perturbation technique for f
and A can be expressed in the following form:

f =
∑
n=0

Renfn, A =
∑
n=0

RenAn. (13)

Substituting Eq. (8) in Eq. (11) and comparing like powers of Re, we have

f ′′′0 −M2f ′0 = A0, (14)

f ′′′1 −M2f ′1 = A1 + (f ′0
2 − f0f

′′
0 ). (15)

The corresponding boundary conditions are obtained from Eq. (12) as

y = 0 : f0 = 0, f ′0 = 1, fn = f ′n = 0, n > 1,

y = 1 : f0 = Rec, fn = 0, f ′n = −φf ′′n , n ≥ 0.

(16)

Through straight forward algebra, the solution of f0, f1 are obtained from Eqs. (14) and (15)
using Eqs. (16) and given by

f0 = c1 + c2e
My + c3e

−My − A0

M2
y,

f1 = c4 + c5e
My + c6e

−My − A1

M2
y − R1

M2
y − R2e

My

2M2
y

+
R3e

My

2M2

(
y2

2
− 3

2M
y

)
+

R4e
−My

2M2
y +

R5e
−My

2M2

(
y2

2
+

3
2M

y

)
,

(17)

where c1 to c6; A1; R1 to R5 are constants (see Appendix).

The velocity profile can now be written as

u(x, y) =
Re

Reent
x(f ′0 + Re f ′1) and v(y) = − 1

Rec
(f0 + Re f1),

where Reent = u0h/ν is the entrance Reynolds number.

The most important physical quantities are Skin friction coefficient Cf defined as

Cf =
(τxy)y∗=0,h

ρc2h2
=

x

Re
(f ′′)y=0,1 . (18)
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2.2. Mass transfer analysis. It is assumed that the diffusion in the axial direction is neglected
in comparison to diffusion in the transverse direction since in all tangential flow membrane system,
vw ¿ u0. Thus two-dimensional convection-diffusion equation describing the transfer of mass at
steady state of such a system is given by

u∗
∂c∗

∂x∗
+ v∗

∂c∗

∂y∗
= D

∂2c∗

∂y∗2
, (19)

where D is the diffusion coefficient of the solute and c∗ denotes the concentration of the solute.
Eq. (19) along with the boundary conditions given below constitute a complete description of mass
transfer in a membrane system.

∂c∗

∂y∗
= 0 at y∗ = 0,

D
∂c∗

∂y∗
= v∗cw at y∗ = h,

c∗ = c0 at x∗ = 0.

(20)

No-flux boundary condition at the solid wall is imposed (see the first of above relations) and
the second one is the boundary condition for a perfectly rejecting membrane, i. e., no solute passes
through the porous interface. Hence, at steady state the convective transport of solute towards the
porous wall is balanced by diffusive back transport of material in the side of the flow continuum.
This dynamic exchange of material results in a steady concentration boundary layer thickness cw

represents the unknown solute concentration at the porous wall and c0 is a free stream uniform
concentration.

2.3. Numerical solution of the mass transfer problem. We now introduce the following
non-dimensional variables:

u =
u∗

u0
, v =

v∗

vw
, C =

c∗

c0
, x =

x∗

h
, y =

y∗

h
. (21)

Using Eq. (21) in Eq. (19) and rearranging to get in dimensionless form as follows,

u
∂C

∂x
+

vw

u0
v

∂C

∂y
=

D

u0h

∂2C

∂y2
. (22)

The boundary conditions (20) are also expressed in dimensionless form as

C = 1 at x = 0, ∀ y,

∂C

∂y
= 0 at y = 0, ∀ x,

∂C

∂y
= v

vwh

D

cw

c0
at y = 1, ∀ x.

(23)

Let the channel inlet and exit be denoted by m = 1 and m = mmax respectively; the solid
and porous walls are represented by j = 1 and j = jmax. Introduce the backward difference
approximation for the derivatives in Eq. (22) and rearrange the finite difference equation:

AjCj−1,m + BjCj,m + EjCj+1,m = Fj for 2 ≤ j ≤ jmax − 1, (24)
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where
Aj = −vj

vw

u0

1
∆λ

− D

u0h

1
(∆y)2

,

Bj =
uj

∆x
+ vj

vw

u0

1
∆y

+ 2
D

u0h

1
(∆y)2

,

Ej = − D

u0h

1
(∆y)2

,

Fj =
uj

∆x
Cj,m−1 .

These coefficient are valid for all the interior points. At the porous and solid boundaries we use
the second and the third boundary conditions of Eq. (23) and simplify to get the finite-difference
equation valid at the solid wall as follows:

B1c1,m + E1c2,m = 0 for j = 1. (25)

The coefficients B1 and E1 are

B1 = v1
vw

u0

1
∆y

+
D

u0h

1
(∆y)2

,

E1 = −v1
vw

u0

1
∆y

− D

u0h

1
(∆y)2

.

The finite-difference equation at the porous wall can be obtained similarly as

AjmaxCjmax−1,m + BjmaxCjmaxm = Fjmax for j = jmax. (26)

The coefficients are as given below:

Ajmax = −vjmax

vw

u0

1
∆y

− 2
D

u0h

1
(∆y)2

,

Bjmax =
ujmax

∆x
− vjmax

vw

u0

1
∆y

+ 2
D

u0h

1
(∆y)2

,

Fjmax =
ujmax

∆x
Cjmaxm−1 ,

These cofficients constitute a tridiagonal system of the form



B1 E1

A2 B2 E2

A3 B3 E3

. . . . . . . . . . . . . . . . . .
Ai Bi Ei

. . . . . . . . . . . . . . . . . .
Ajm−1 Bjm−1 Ejm−1

Ajm Bjm







C1

C2

C3

.

.

.
Cjm−1

Cjm




=




F1

F2

F3

.

.

.
Fjm−1

Fjm




, (27)

where Fjm−1 = Fjmax−1, Fjm = Fjmax .

The system of linear equations (24), (25) and (26) is then solved more effectively using Thomas
algorithm for tridiagonal matrix.
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3. Results and Discussions

Analytical and numerical solutions of the flow and mass transfer characteristics of Newtonian
fluid in a horizontal channel bounded below by stretching sheet and above with a porous wall are
presented. The effects of various physical parameters on velocity and mass transfer are analyzed
with the help of graphs and tables.The variation of velocity distribution with y for different values
of the porous parameter φ in the boundary layer are shown in Fig. 2. It is seen that the velocity
distribution in the boundary layer decreases with increasing the value of porous parameter. The
effect of porous parameter φ on variation of transverse velocity in the boundary layer for fixed
values of M, Re and Rec is shown in Fig. 3. It is interesting to note that the effect of φ is to
decrease the transverse velocity in the boundary layer. This is due to the fact that the presence of
porous medium is to increase the resistance to the flows which causes the horizontal fluid velocity
to decrease. The variation of horizontal and vertical velocity profiles for different values of Rec in
the boundary layer are shown in Figs. 4 and 5, respectively. From these figures, it is clearly seen
that horizontal and vertical velocity decreases with decreasing the value of the parameter Rec.

Fig. 6 shows that the variation of horizontal velocity with y for various values of M. It is
seen that horizontal velocity increases with increase in the values of M closer to the stretching sheet
whereas it decreases near to the porous wall. It is interesting to note that the effect of M is to increase
vertical velocity in the boundary layer and this effect is more prominent close to the wall as shown
in Fig. 7. The variation of horizontal and vertical velocities for various values of Re is depicted in
Figs. 8 and 9. It is clearly seen from these figures that the increasing the value of Re, the vertical
velocity increases in the channel. The effect is more significant near the porous boundary. Fig. 10
shows that the horizontal fluid velocity increases due to increase in stretching Reynolds number
Re and on the other hand it decreases with increase in Hartmann number near to the porous wall
and reverse trend is seen closer to the stretching sheet. Further, it is observed that the longitudinal
velocity increases with cross-flow Reynolds number Rec near the lower stretching plate and the
reverse effect is noted near the upper porous plate for a fixed porous parameter φ = 0.001. From
Fig. 11 it is seen that the transverse velocity distribution across the boundary layer increases due to
increase in Hartmann number M and cross-flow Reynolds number Rec for small values of porous
parameter φ.

Fig. 12 depicts the variation of concentration distribution in the channel for different values of
Hartmann number. From this figure it is observed that the concentration decreases with Hartmann
number. This is due to the fact that by increasing the value of Hartmann number, there is increase
in the vertical velocity of the fluid in the channel. Fig. 13 is the plot of concentration distribution
in the channel for various values of porous permeability parameter φ. It is interesting to note that
the concentration increases with increase in the porous permeability parameter because the velocity
of the fluid decreases in presence of porous medium since resistance is offered to the fluid by the
porous medium.

In Fig. 14 the variation of the concentration distribution with y for various values of cross-flow
Reynolds number is shown. It is clearly seen from this figure that the concentration increases with
increase in Rec. Fig. 15 depicts the concentration distribution in the channel in x-direction for var-
ious values of porous permeability parameter φ. It is observed that concentration increases with
increase in the porous permeability parameter along the channel, this is due to the fact the pres-
ence of the porous medium opposes the fluid motion which results in lower value of concentration.
Fig. 16 illustrates the concentration distribution in the channel in x-direction for various values of
Hartmann number M. It is clearly seen from this figure that concentration decreases with M along
the channel. Fig. 17 displays the concentration distribution in the channel in x-direction for various
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Fig. 2. Variation of f ′(y) with y for various porous parameter φ.
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Fig. 3. Variation of transverse velocity with y for different values of φ.
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Fig. 5. Variation of transverse velocity with y for different values of Rec .
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Fig. 7. Variation of f(y) with y for different values of M.
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Fig. 12. Variation of concentration distribution with y for different values
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Fig. 16. Variation of concentration distribution with dimensionless horizontal distance x
for different values of Hartmann number M for y = 2.
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for different values of Rec for y = 2.
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Table 1.
The values of skin friction coefficient at the stretching sheet and porous plate when x = 2.0

φ M Re Rec (Cf )0 (Cf )1
0.0 1 0.25 1 0.1615920 · 102 −0.3253400 · 102

1 0.25 3 0.1202659 · 103 −0.1224411 · 103

1 0.50 1 0.8288509 · 101 −0.1600749 · 102

3 0.25 1 0.1447954 · 102 −0.4004126 · 102

0.5 1 0.25 1 0.7243129 · 101 −0.5437709 · 101

1 0.25 3 0.1838811 · 103 0.2513435 · 103

1 0.50 1 0.4675885 · 101 −0.4713058 · 10−1

3 0.25 1 0.4111741 · 101 −0.1144079 · 102

1.0 1 0.25 1 0.4182364 · 101 −0.3656477 · 101

1 0.25 3 0.1551348 · 103 0.2132638 · 103

1 0.50 1 0.2648602 · 101 −0.4359565 · 100

3 0.25 1 0.2395215 · 101 −0.6671242 · 101

2.0 1 0.25 1 0.2226558 · 101 −0.2275541 · 101

1 0.25 3 0.1335308 · 103 0.1811183 · 103

1 0.50 1 0.1376890 · 101 −0.4914478 · 100

3 0.25 1 0.1305270 · 101 −0.3637773 · 101

5.0 1 0.25 1 0.9171192 · 100 −0.1070040 · 101

1 0.25 3 0.1176574 · 103 0.1568785 · 103

1 0.50 1 0.5537134 · 100 −0.3069777 · 100

3 0.25 1 0.5518624 · 100 −0.1538701 · 101

values of cross-flow Reynolds number Rec. It is observed that concentration increases with Rec

along the channel.

The results for skin friction coefficient for various values of physical parameter are tabulated
in Table 1. It is noted from this Table that skin friction coefficient (Cf )0 at the stretching plate
increases with the increase of cross-flow Reynolds number Rec, while it decreases with the increase
of stretching Reynolds number Re and Hartmann number M. It is interesting to note that skin
friction coefficient (Cf )1 at the porous plate decreases with the increases of cross-flow Reynolds
number Rec and Hartmann number M, while it increases with increase in the stretching Reynolds
number Re. It is also noted from the table that skin friction coefficient (Cf )0 at the stretching plate
and skin friction coefficient (Cf )1 at the porous plate both decreases with increase in the porous
parameter φ.

Conclusion

Mathematical analysis has been performed to study the influence of uniform magnetic field
applied vertically in a Newtonian fluid flow over an acceleration stretching sheet bounded above by
a porous medium and flow is subjected to blowing through porous boundary. Analytical solution
of the governing boundary layer partial differential equations, which are highly non-linear and in
coupled form, have been obtained by perturbation method. Numerical solution is obtained using
finite-difference method with Thomas algorithm for dimensionless concentration distribution φ.
The specific conclusions derived from this study can be listed as follows.
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• The effect of magnetic parameter M is to decrease horizontal velocity near the stretching
sheet whereas is it increases closer to the porous wall.

• The effect of porous permeability parameter is to decrease horizontal as well as vertical ve-
locities throughout the channel but its effect is more significantly seen near the porous wall.

• The effect of cross-flow Reynolds number is to decrease the horizontal as well as transverse
velocities in the channel but more effecting closer to the porous boundary.

• The effect of stretching sheet Reynolds number is to increase both horizontal and vertical
velocities in the channel its effect is more prominently seen away from the stretching wall
when porous permeability φ = 0.2.

• The effect of transverse uniform magnetic field is to decrease concentration in flow field in
y-direction within the channel where as reverse trend is seen by increasing the value of porous
permeability parameter φ and cross-flow Reynolds number Rec.

• There is significant enhancement in the value of concentration distribution along the channel
(x-direction) by increasing the value of porous parameter φ and Rec at y = 2.

• There is significant reduction in the value of concentration due to increasing the transverse
uniform magnetic field.
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Appendix

R1 =
A2

0

M4
− 4c2c3M2, R2 =

2c2A0

M
+ c1c2M2, R3 = c2A0,
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R4 =
2c3A0

M
− c1c3M2, R5 = c3A0,

A0 = (c2M− c3M− 1)M2,

B = 2Me−M + M2e−M − 4M + 2MeM −M2eM,

B1 = −φ(M3eM + M2e−M + M3e−M −M2eM),

c1 = −(c2 + c3), c2 =
c21 + c22 + c23

B + B1
, c3 =

c31 − c32 + c33

B + B1
,

c4 = −(c5 + c6), c5 =
c51 + c52 − c53 + c54

B + B1
, c6 =

c61 + c62 + c63 + c64

B + B1
,

c21 = Rec(M−Me−M), c22 = e−M −Me−M − 1, c23 = φM2e−M(Rec − 1),

c31 = Rec(M−MeM), c32 = M−MeM − 1, c33 = −φM2eM(Rec − 1),

c51 = c511 + c512, c52 = c521 + c522, c53 = c531 + c532, c54 = c541 + c542,

c61 = c611 + c612, c62 = c621 + c622, c63 = c631 + c632, c64 = c641 + c642,

c511 =
R2

2M2

(
e−M + Me−M −M2eM + MeM + eM − 2M− 2

)
,

c512 = −φR2

2M2

(
2M + M2e−M − 2MeM + M2eM + M3eM

)
,

c521 =
R3

4M3

(
MeM + 3Me−M − 3M2eM + M3eM + 3eM + 3e−M + 2M2 − 4M− 6

)
,

c522 = −φR3

4M3

(
4M− 4M2 + 3M2e−M − 4MeM + 5M2eM −M4eM

)
,

c531 =
R4

2M2

(
M2e−M + 2e−M − 2e−2M − 1

)
,

c532 =
φR4

2M2

(
2M2e−M −M3e−M + 2Me−2M − 2Me−M

)
,

c541 =
R5

4M3

(
2Me−2M − 2Me−M −M2e−M −M3e−M − 6e−M + 3e−2M + 3

)
,

c542 = −φR5

4M3

(
2M3e−M + 4M2e−2M −M4e−M − 4Me−2M − 4Me−M

)
,
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c611 =
R2

2M2

(
M2eM + 2eM − e2M − 1

)
,

c612 =
φR2

2M2

(
2M2eM + M3eM − 2Me2M + 2MeM

)
,

c621 =
R3

4M3

(
M2eM −M3eM + 2Me2M − 2MeM + 6eM − 3e2M − 3

)
,

c622 = −φR3

4M3

(
2M3eM + M4eM + 4Me2M − 4M2e2M − 4MeM

)
,

c631 =
R4

2M2

(
M2e−M − eM + MeM − 2M− e−M + Me−M + 2

)
,

c632 =
φR4

2M2

(
M2e−M −M3e−M − 2M + M2eM + 2Me−M

)
,

c641 =
R5

4M3

(
M2e−M + M3e−M − 4M− 2M2 + Me−M + 3MeM − 3eM − 3e−M + 6

)
,

c642 =
φR5

4M3

(
5M2e−M −M4e−M − 4M− 4M2 + 3M2eM + 4Me−M

)
,
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Characterization of Sealing Ring Cavitation
in Centrifugal Pumps with Water and Viscous Oil†
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This research paper presents characterization of sealing ring cavitation in cen-
trifugal pumps with water and viscous oil. The paper discusses development of
theoretical formulation for sealing ring cavitation and simulation using software
model along with experimental validation. The pump performance test results
and its standard clearance for the sealing ring are used to simulate the theoretical
model. The study is extended for pumps with SAE-30 lubricating oil. The simu-
lation results present the variation of downstream pressure with different sealing
ring dimensions in pumps. The value of downstream pressure determines the pos-
sibility of occurrence of cavitation at the clearance. The theoretical formulation
developed is validated by using a venturi cavitation test set up. Clearances equiva-
lent to various sealing ring dimensions are made at the test section using different
hemispherical models. Theoretical formulation for downstream pressure at the
clearance of venturi test section is derived using the test set up details and pump
specification. The clearance cavitation coefficients as per K. K. Shelneves equa-
tion are obtained from theory as well as from experimentation and compared. The
phenomena of cavitation damages the sealing ring which results a fall in perfor-
mance of the pump. However this research work lead to the prediction of sealing
ring cavitation in centrifugal pumps handling water and oil enabling the replace-
ment of sealing ring before affecting cavitation damage.

* * *

Nomenclature

B radial clearance [m];
C average velocity of fluid in the clearance [m/s];
Cr peripheral velocity at the sealing ring [m/s];
C1 peripheral velocity at the inlet of the impeller [m];

†Received 07.01.2009

ISSN 1064-2277
c© 2010 Begell House, Inc.
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C2 peripheral velocity at the outlet of the impeller [m];
D diameter of impeller at inlet [m];
d1 leakage joint diameter [m];
d2 diameter of impeller at outlet [m];
Ds diameter of suction pipe [m];
f friction factor for pipe from Blasius relation [dimensionless];
H total head of the pump [m];
K volute design constant [dimensionless];
Kc1 clearance cavitation coefficient from venturi cavitation test set up;
Kc2 clearance cavitation coefficient from sealing ring of a 5 hp pump;
L length of clearance [m];
les equivalent length of suction pipe [m];
N speed of the pump [rpm];
P pressure [N/m2];
Pus upstream pressure of clearance [N/m2];
Pts pressure at the test section [N/m2];
P1/γ downstream pressure of clearance [m of fluid];
P2/γ upstream pressure of clearance [m of fluid];
Pv/γ vapour pressure of fluid [m of fluid];
Pa/γ atmospheric pressure [m of fluid];
Q discharge of the pump [m3/s];
Q1 sum total of discharge and leakage discharge [m3/s];
QL leakage flow through clearance [m3/s];
QLC critical leakage flow through clearance [m3/s];
xd static level of delivery gauge from datum.

Greek Symbols

ηv volumetric efficiency of the pump [%];
γ specific weight of the fluid [N/m3];
λ friction factor for clearance [dimensionless].

Introduction

The phenomena of formation of vapour bubbles in a fluid due to low pressure, their growth,
movement and collapse is called as cavitation.In the case of centrifugal pumps, a small clearance
exists between impeller and casing. The leakage through this joint is controlled by the sealing
ring. If the pressure at the clearance reaches vapour pressure of fluid, cavitation will occur called
sealing ring cavitaton. Sealing rings are essential to prevent leakage, but the clearance provided
at the sealing ring should be in such a way that it is free from cavitation. The ring wears and
radial clearance increases after certain years of operation. The photographic method enables the
measurement of radial clearance at the sealing ring. This research is for the prediction of sealing
ring cavitation in centrifugal pumps. For this, the volumetric efficiency range is obtained from
the pump manufacturer’s catalogue. At the same time vapour pressure of fluid varies with the
temperature, and in this work temperature variation is not considered, which one limitation of using
this approach is. However in pumps working at normal conditions, temperature variation will be
negligible for fluids other than cryogenic fluids. In this work, pumps with water and SAE-30 oil are
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assumed to operate at normal temperatures.

Present work mainly analyzed the clearance cavitaton for various design and operating condi-
tions of the pump. As per Knapp [1], sealing ring cavitation is of vortex-core type. Satoshi Watanabe
and Tatsuya Hidaka [2] analyzed thermodynamic effects on cavitation instabilities. Thermodynamic
effects are not considered in this work because the objective is to model and simulate the cavitation
in a clearance. Ruggeri R. S. and Moore R. D. [3] developed method for prediction of pump cavi-
tation with performance for various fluids at various temperatures and speeds. They mainly studied
the impeller cavitation and this work is specific to sealing ring cavitation. Kumaraswamy [4] stud-
ied cavitation in pumps considering noise as parameter. He studied mainly at the impeller due to
insufficient NPSH, but not at the sealing ring.

Many studies [5–22] have been done on impeller cavitation with its various aspects, but a little
work is concentrated at the clearance space at the sealing ring. Gangadharan Nair K. [13] conducted
correlation studies between cavitation in a clearance and cavitation noise related to the sealing ring
of a radial flow pump. The prediction of clearance cavitation in centrifugal pumps is of much
important but tedious, compared to other types of cavitation. In this work an entirely new method is
developed for the prediction and analysis of sealing ring cavitation. A venturi cavitation test set up
with proper models at the test section is used for validating the theoretical formulation. Clearance
cavitation is generated at the test section and clearance cavitation coefficients are found out for
validation of theory.

In the coming sections theoretical formulation, modeling and simulation are discussed. Results
between theoretical and experimental values of clearance cavitation coefficients are also discussed
for validation. Finally results and conclusion of the work are included.

1. Methodology

Theoretical formulation for sealing ring cavitation is developed for centrifugal pumps handling
fluids. Conditions for occurrence of sealing ring cavitation are established theoretically for vari-
ous sealing ring dimensions with water and SAE-30 oil for various operating conditions. A typical
centrifugal pump and its test data and standard clearances are taken for the theoretical simulation
analysis. For lubricating oil, viscosity correction factors are applied for head and discharge. The ex-
perimental set up and models for the generation of clearance cavitation are designed and fabricated.
A venturi test set up with six hemispherical models is used to generate clearance cavitation. The
equation for downstream pressure at the venturi test section of the set up is derived and formulated.
The experiments are planned with water and SAE-30 oil with various size hemispherical models.
But due to practical limitations, experiments are conducted only with water. This is sufficient since,
theoretical simulation results follow same trend for water and viscous oil. Hence the trend obtained
for clearance cavitation coefficients with water follow in a similar sense for the oil selected. The
generated cavitation at the clearance is measured by means of clearance cavitation coefficients and
compared that with theoretical value of coefficients.

2. Theoretical Formulation (Developed)

The sealing ring provides an easily and economically removable leakage joint between the
impeller and casing. Due to high velocity through the clearance, pressure may reach vapour pressure
at that temperature, causing sealing ring cavitation.

Fig. 1 shows the fluid flow in the clearance space in a centrifugal pump between casing and
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Fig. 1. Fluid flow through clearance.

impeller [19]. Due to a pressure difference of ∆P across the clearance, a leakage flow equal to QL

occurs towards the eye of the impeller. Due to losses occurring in the clearance, the static pressure
of fluid reduces, sometimes reaches the vapour pressure of the fluid, leading to clearance cavitation
at or near the downstream side of the clearance. In this work, the following theoretical formulations
are developed for critical leakage flow and downstream pressure at the clearance of sealing ring
from the fundamentals of fluid flow and cavitation theory.

The head necessary to produce a flow through the slot with an average velocity, C is

h1 =
C2

2g
. (1a)

Head loss for the sharp-edged entry to the slot is

h2 =
C2

4g
. (1b)

Head loss in flow through a slot of width B and length L is given by

h3 =
λLC2

dh2g
, (1c)

where λ is friction factor for the clearance. In the case of an annular slot as shown in Fig. 1, the
hydraulic diameter dh will be approximately equal to half of the radial clearance [13]. The total
head loss at the clearance is derived and given as

∆h =
[
1.5 +

2λL

B

]
C2

2g
. (2)

The mean velocity through the slot is given by

C =

√√√√
2g∆h

1.5 + 2λ
L

B

. (3a)

The mean velocity through the slot is also equal to

C = CD

√
2g∆h . (3b)
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Comparing the values of C from Eqs. (3a) and (3b) the flow coefficient is given by

CD =
1√

1.5 + 2λ
L

B

.

Leakage flow is
QL = ACD

√
2g∆h . (4)

If volumetric efficiency of the pump, ηv is known at the operating point, leakage flow, QL can be
found using the equation

ηv =
Q

Q + QL
. (5)

Due to the leakage flow through the clearance, the pressure at the downstream end of the slot may
be calculated as

P1

γ
=

P2

γ
−∆h. (6)

Hence, the velocity of fluid flowing through the clearance is

C =

√√√√√√√
2g

(
P2

γ
− P1

γ

)

1.5 + 2λ
L

B

. (7)

When the downstream pressure is equal to vapour pressure, critical velocity Cc may be calculated
as,

Cc =

√√√√√√√
2g

(
P2

γ
− Pv

γ

)

1.5 + 2λ
L

B

. (8a)

For this condition leakage flow can be calculated as

QLC = πDB

√√√√√√√
2g

(
P2

γ
− Pv

γ

)

1.5 + 2λ
L

B

. (8b)

Hence, optimum value of leakage flow, QLC is computed. For the volumetric efficiency of the
pump, the leakage flow QL also can be computed. If QL ≥ QLC , sealing ring cavitation will occur.

As per Stepanoff [15], the pressure at the upstream end of sealing ring is given by

P2

γ
= Hd(1−K2)− C2

2 − C2
r

8g
. (9)

The total head for a pump is given by the sum of pressure head, dynamic head and datum head. For
the same diameter of suction and delivery pipes dynamic head difference will be zero. Using these
guidelines the value of Hd is derived.

As per Stephen Lazarkiewicz and Troskolanski [17], Hd is finally derived and simplified as

Hd =
Pd

γ
= H +

Pa

γ
−

(
1 +

fles

Ds

)
8Q2

π2gD4
s

− xd. (10)
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Using above Eqs. (6), (9) and (10), the downstream pressure equation is developed as

P1

γ
=

{
H +

Pa

γ
−

(
1 +

fles

Ds

) ∣∣∣∣
8Q2

π2gD4
s

∣∣∣∣− xd

}
(1−K2)

−C2
2 − C2

r

8g
−

(
1.5 +

2λL

B

)(
QL

πDB

)2 1
2g

.

(11)

From the performance test conducted on the pump, the best efficiency point (b. e. p.) is determined.
The required dimensions of the pump are taken from the manufacturers supply catalogue. Using
Eq. (11), the downstream pressure is calculated and compared with the vapour pressure of fluid to
check the occurrence of clearance cavitation at that temperature. Clearance dimension is selected
based on the design of the impeller of the pump. For the volumetric efficiency of the pump, the effect
of change of length of clearance as well as radial clearance on clearance cavitation are analyzed
separately at best efficiency point. In the same manner the clearance cavitation is analyzed above
and below the best efficiency point also (at off-design points). Eq. (11) is used for developing
software model to compute the downstream pressure to predict and analyze sealing ring cavitation
for various operating conditions in any centrifugal pump.

3. Modeling for Simulation with Water and Lubricating Oil

A typical centrifugal pump is selected and performance test is conducted. The best efficiency
point is obtained as, Head is 5.1 m, Discharge is 0.5 l/s, at a speed of 2880 rpm. The design
chart [13] is used to select the radial clearance corresponding to the leakage joint diameter. From
the manufacturing limitations the radial clearance is chosen as 0.15 mm.The length of clearance is
selected as 6 mm [13]. The data and other parameters obtained from the pump system are given in
Table 1.

For lubricating oil, the thermo physical properties are taken in to account for the computation of
data and parameters similar to water. Thermo physical properties of SAE-30 oil at 30◦C are taken
from [20].

The head x discharge characteristic curve equation for the pump with water is fitted as

H = 6.011 + 0.875 · 103Q− 53.89Q2,

where H is in m and Q is in m3/sec.

Using the above data, Eqs. (8b) and (11) are simplified as

QLC = 0.5426B

√√√√10.89 + 0.677Q− 4.42 · 106Q2

1.5 + 0.02
L

B

, (12)

P1

γ
= 11.306 + 0.677 · 103Q− 4.422 · 106Q2 −

[
5.1 + 0.068

L

B

](
1− ηv

ηv

)2 (
Q

B

)2

. (13)

If the same pump is used for other oils, the viscosity of oil affects the pump performance. Viscos-
ity correction is done by using performance correction factors for oil obtained from performance
correction chart [20] as shown in Table 2.

The ranges for length of clearance, radial clearance, discharge and volumetric efficiency for
simulation and computation are selected reasonably. Formulation and modeling similar to Eqs. (12)
and (13) are done with SAE-30 oil.
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4. Simulation Results (C-Program)

Taking standard clearance, the value of critical leakage flow is 0.171 l/s and leakage flow for
volumetric efficiency of 60 % is 0.333 l/s at best efficiency point. The downstream pressure is
−27.54 m of water. At the operating point less than b. e. p. (5.97 m, 0.2 l/s), critical leakage flow
and downstream pressure are given by 0.178 l/s and 5.17 m of water respectively. At the operating
point greater than b. e. p. (3.26 m, 0.8 l/s), the critical leakage flow is 0.157 l/s and downstream
pressure is −88.33 m of water with a volumetric efficiency of 60 %. The length of clearance is
changed from 6 to 4, 8, 10, and 12 mm, keeping radial clearance as constant at 0.15 mm for
three operating points. Similarly radial clearance is changed from 0.15 to 0.125, 0.175, 0.2, and
0.225 mm, keeping length of clearance as constant. Tabulation for downstream pressure and critical
leakage flow for various length of clearance is given in Tables 3 (tabulation for radial clearance is
not shown here). The variation of downstream pressure and volumetric efficiency with change of
length of clearance and radial clearance are given in Fig. 2 and 3 respectively.

The tabulations for downstream pressure with oil is also prepared and given below. The vari-
ation of downstream pressure and volumetric efficiency with radial clearance values with SAE-30
oil is shown in Fig. 4.

5. Experimental Validation of Theoretical Formulation

The theoretical formulation for sealing ring cavitation is validated by using a venturi cavitation
experimental set up. A schematic representation of test set up is shown in Fig. 5. It consisted of:
pump of 3 kw/2880 rpm/30 m/5 l/s; venturi; model; chamber for hydrophone; oil sump; support;
support for pump; foot valve; stay rods.

For validation of theory, a comparison is made between the clearance cavitation coefficients
obtained from theory and experimentation.

K. K Shelneves [13] equation for clearance cavitation coefficient is given as

Kc =
2(Pus − Pts)

ρC2
, (14)

where Kc1 is taken as the clearance cavitation coefficient from theoretical formulation and Kc2 the
coefficient obtained using experimentation.

Theoretical formulation for downstream pressure at the clearance of venturi test section is de-
rived separately (derivation not shown here) using all data of the test set up and pump used. In the
case of piping and fittings, equivalent length calculation is adopted. Pump specification is used for
getting the upstream pressure of the clearance. The downstream pressure is computed for any oper-
ating point of the pump for all above mentioned sealing ring clearances. The test section pressure
is approximated using the computed value of downstream pressure from the derived equation and
upstream pressure. Downstream pressure at the venturi test section is derived as [13]

P1

γ
= H + 9.35−

[
5.164 · 10−3 1.5 + 0.036(L/B)

(d1B)2
+ 31144

]
Q2. (15)

With the upstream pressure and test section pressure (computation not shown here), the clearance
cavitation coefficient is computed theoretically.

The measurement of pressure at the sealing ring clearance is difficult and complicated. Hence
clearances equivalent to sealing ring clearances of various size pumps are made at the test section
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Fig. 5. Experimental set up for clearance cavitation studies
(PG1 is pressure gauge for upstream pressure; PG2 is suction pressure gauge;

PG3 is pressure gauge for test section; M1 is manometer; G1–G2 are gate valves; F1–F6 are flanges).

by the design and assembly of various hemispherical models. The models used at the test section
make the clearances of 1.6, 1.8, 2, 2.2, 2.4, and 2.6 mm (L = 55 mm) corresponding to various
size models. The clearance cavitation is generated at the test section at the concentric clearances
and measured using clearance cavitation coefficients (observation not shown here).

The theoretical and experimental values of clearance cavitation coefficients for different dis-
charge values are found, plotted and compared. Such plots for clearance cavitation coefficients Kc1

and Kc2 with radial clearance B (mm) are prepared at various discharges 2, 2.5, 3, 3.5, and 4 l/s.
The comparison shows that a little deviation, only about an average of 4 % exist between the two
coefficients for theory and experiments.

The variation of Kc1 and Kc2 with radial clearance for a discharge of 4 l/s (constant) is shown
in Fig. 6. The results show that similar trend is followed in the case of other discharge values. The
simulation results (same trend for all oil) reveal that same kind of validation results are expected
with SAE-30 oil as that with water.

6. Results and Discussion

Referring to Fig. 2, the result is that, as the length of clearance is increased the down stream
pressure is increased. Referring to Fig. 3, it is found that as the radial clearance is increased, the
down stream pressure is decreased. It is also observed that the value of downstream pressure reduces
much for discharge higher than that at best efficiency point. The trends obtained for downstream
pressure in the case of oil considered here are similar to that obtained with water. This is explained
in Fig. 4. The theoretical and experimental values of clearance cavitation coefficients obtained show
that the two coefficients have a little deviation, of an average of 4 % for the same values of clearance
velocities as shown in Fig. 6.
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Conclusions

The influence of sealing ring dimensions on sealing ring cavitation is studied. The theoretical
modeling is validated with the experimentation results using a venturi cavitation test set up. The
following conclusions are made.

1. A method for prediction and analysis of sealing ring cavitation in centrifugal pump is devel-
oped.

2. For discharge higher than b. e. p., possibility of occurring sealing ring cavitation is more.

3. If the radial clearance increases, the possibility of occurring sealing ring cavitation is more.

4. If the length of clearance increases, the possibility of occurring sealing ring cavitation is less.

5. The wear of sealing ring lead to increase in radial clearance which will lead to severe sealing
ring cavitation.

6. The investigation results lead to the prediction of sealing ring cavitation in centrifugal pumps
handling water and oil so that the pump engineer can replace the sealing ring in time without
affecting cavitation damage.
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In the present study, the onset of thermo-solutal convection in a liquid layer
overlaying a porous layer where the system is being laterally heated is inves-
tigated. The non-linear two-dimensional Navier – Stokes equations, the energy
equation, the mass balance equation and the continuity equation are solved for
the liquid layer and the Brinkman model is used for the porous layer. The partial
differential equations are solved numerically using the finite element technique.
Two different cases are analyzed in this study. In the case of the thermo-solutal
convection without thermodiffusion or Soret effect, multi-convective cells appear
in the liquid layer and as the thickness of the liquid layer decreases (i. e. higher
thickness ratio), the flow covers the entire cavity. In the presence of Soret effect,
it has been found that the isopropanol component goes either towards the hot or
cold walls depending on the Soret sign.

* * *

Nomenclature

c mass fraction of the fluid [−];
C non-dimensional concentration of the fluid;
d thickness ratio, d2/L [−];
d1 liquid layer thickness [m];
d2 porous layer thickness [m];
DM solutal diffusion coefficient [m2/s];
DT thermal diffusion coefficient [m2/(sK)];
g gravitational acceleration [m/s2];
G non-dimensional overall thermal conductivity;
H length of the cavity [m];
ke effective thermal conductivity [W/(mK)];
kf conductivity of the fluid [W/(mK)];
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ks conductivity of the solid glass beads [W/(mK)];
L height of the cavity [m];
p pressure [Pa];
P non-dimensional pressure;
q separation ratio [−];
ST Soret coefficient, DT /DM [1/K];
t time [s];
T temperature [K];
∆c concentration difference [−];
∆T temperature difference, (TH − TC) [K];
u velocity component in the x-direction [m/s];
U non-dimensional velocity component in the X-direction
uo characteristic velocity,

√
gβT ∆TL [m/s];

v velocity component in the y-direction [m/s];
V non-dimensional velocity component in the Y -direction;
Vt total volume [m3];
Vf volume occupied by the fluid [m3];
Vs volume occupied by the solid [m3].

Non-Dimensional Numbers

Da Darcy number,
κ

L2
;

Pr Prandtl number,
ν

α
;

RaLC solutal Rayleigh number for liquid layer,
gβC∆Cd3

1

να
;

RaLL thermal Rayleigh number for liquid layer,
gβT ∆Td3

1

να
;

RaPC solutal Rayleigh number for porous layer,
gβC∆Cd2κ

να
;

RaPL thermal Rayleigh number for porous layer,
gβT ∆Td2κ

να
;

Re Reynolds number,
ρouoL

µ
;

Sc Schmidt number,
ν

DM
.

Greek Symbols

α thermal diffusivity [m2/s];
αT thermal diffusion factor, TST [−];
βC solutal expansion [−];
βT thermal volume expansion [1/K];
θ non-dimensional temperature, (T − TC)/∆T ;
κ permeability [m2];
τ non-dimensional time;
µ dynamic viscosity [kg/(m s)];
ν kinematic viscosity [m2/s];

238



ρo density of the fluid at reference temperature To [kg/m3];
φ porosity [−].

Subscripts

C cold;
e effective;
f fluid;
H hot;
o reference;
s solid.

Introduction

The thermo-solutal or double-diffusive convection is the heat and species transfer due to the
presence of both temperature and concentration gradients. The thermodiffusion effect or the Soret
effect is the mass flux in a mixture due to a temperature gradient [1]. This effect is very weak but
can be important in the analysis of compositional variation in hydrocarbon reservoirs [2–7].

A liquid layer superimpose a porous layer, with heat and mass transfer taking place through
the interface is related to many natural phenomena and various industrial applications [8]. Nield
and Bejan [9] collected number of works in the area of convection in porous media. They defined
a porous medium as a material consisting of a solid matrix with an interconnected void. The solid
matrix is either rigid or undergoes small deformations. The interconnectedness of the void (the
pores) allows the flow of one or more fluids through the material. They defined the porosity φ, as
the fraction of total volume of the medium that is occupied by void space, or the liquid in this present
case. So, (1−φ) is the fraction occupied by the solid beads. Within Vt, let Vf represent the volume
occupied by the fluid and Vs represent the volume occupied by the solid, so that Vt = Vf + Vs.
Then the porosity of the porous medium can be defined as φ = Vf/Vt.

Saghir et al. [10] found that the double diffusive convection plays a major role in the intrusion
of the salted water into fresh water and the temperature and salinity induce a strong convection.
Benano-Melly et al. [11] modeled a thermo-gravitational experiment in a laterally heated porous
medium. They showed that, when solutal and thermal buoyancy forces oppose each other, multiple
convection-roll flow patterns develop.

Jiang et al. [12] further studied thermo-gravitational convection for a binary mixture of methane
and n-butane in a vertical porous column. Their numerical results revealed that the lighter fluid
component migrated to the hot side of the cavity. They explained the convection effect on the
thermodiffusion in a hydrocarbon binary system in terms of the characteristic times. When the
characteristic time of the convective flow is larger than the characteristic time of the thermodiffusion,
the Soret effect is the dominant force for the composition separation in the cavity, and maximum
separation is reached when the characteristic time is equal to the time of thermodiffusion. And when
the characteristic time is less than the time of thermodiffusion, the buoyancy convection becomes
dominant and that corresponds to permeability greater than 10 md.

In the present paper the thermo-solutal convection for the water – isopropanol binary mixtures
in the presence of thermodiffusion is investigated. Section 1 presents the governing equation in
a non dimensional form. Section 2 shows the numerical procedure followed by Section 3 where
the mesh sensitivity is discussed. Section 4 presents the thermodiffusion phenomenon and finally
Section 5 highlights the discussion.
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1. Governing Equations and Boundary Conditions

The schematic diagram of the model for this study is illustrated in Fig. 1. It represents a two-
dimensional square cavity splitted into a liquid layer and a porous layer. The incompressible liquid
layer, whose solutal expansion coefficient is βC and thermal expansion coefficient is βT , has a
height of d1 = 0.005 m and a width of H = 0.01 m. The physical properties of the liquid are
assumed constant. The liquid layer overlays a homogeneous and rectangular porous layer that is
saturated with the same liquid. It is assumed that the liquid and the porous layer are in thermal
equilibrium. The porous matrix has a porosity φ = 0.39, which corresponds to a glass bead of
diameter 3.25 mm. The Darcy number in this study is Da = 10−5. The porous layer has the same
width of H and a height of d2 = 0.005 m. The total thickness is defined by L = d1 + d2. For the
entire analysis, the height of the cavity is set as L = 0.01 m. The gravitational acceleration term is
set to act in the negative y-direction.

The flow under consideration is assumed laminar and incompressible. The complete continu-
ity, momentum balance, energy balance and mass balance equations are solved simultaneously in
order to study the convection patterns. Using the finite element technique, the equations are solved
numerically for both the liquid layer and the porous layer of the cavity. The governing equations
were rendered dimensionless by using the following non-dimensional groups:

U =
u

uo
, V =

v

uo
, X =

x

L
, Y =

y

L
, P =

pL

µu0
,

τ =
tuo

L
, θ =

T − TC

∆T
, C =

c− co

∆c
, L = d1 + d2.

(1)

Following are the nondimensional governing equations and boundary conditions used for the various
cases in this study.

1.1. Liquid layer.

Conservation of mass. The equation of continuity is a partial differential equation which
represents the conservation of mass for an infinitesimal control volume. The continuity equation for
an incompressible fluid is given by

∂U

∂X
+

∂V

∂Y
= 0. (2)

d1

d2 g 

L 

Liquid layer

Porous layer

H

Fig. 1. Geometrical model of the two-dimensional cavity.
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Mass transfer equation. If the fluid consists of more than one component, the principle of
mass conservation applies to each individual component (or species) in the mixture as well as to
the mixture whole. For each component, the principle of mass conservation of species in non-
dimensional form is given by

∂C

∂τ
+ U

∂C

∂X
+ V

∂C

∂Y
=

1
Sc

√
Pr

RaLL

(
1 +

d2

d1

)−3/2

×
{

∂2C

∂X2
+

∂2C

∂Y 2
+ αT

[
∂2θ

∂X2
+

∂2θ

∂Y 2

]}
,

(3)

where τ is the non-dimensional time, Sc is the Schmidt number, Pr is the Prandtl number and RaLL

is the thermal Raleigh number for the liquid layer.

Momentum equation. For the liquid layer, the momentum balance equation is represented by
the Navier – Stokes equations. The flow model is Newtonian, incompressible and transient. In the
X-direction, the momentum conservation equation is expressed as

Re
[
∂U

∂τ
+ U

∂U

∂X
+ V

∂U

∂Y

]
= − ∂P

∂X
+

∂2U

∂X2
+

∂2U

∂Y 2
. (4)

In the Y -direction, the momentum conservation equation is written as

Re
[
∂V

∂τ
+ U

∂V

∂X
+ V

∂V

∂Y

]
= −∂P

∂Y
+

∂2V

∂X2
+

∂2V

∂Y 2

− 1
PrRe

(
1 +

d2

d1

)3

[RaLLθ − RaLCC] ,

(5)

where Re is the Reynolds number, RaLL is the thermal Raleigh number for the liquid layer, RaLC

is the solutal Raleigh number for the liquid layer, θ is the non-dimensional temperature and C is the
non-dimensional concentration.

Energy equation. The thermal energy equation for the liquid layer is expressed as

RePr
[

∂θ

∂τ
+ U

∂θ

∂X
+ V

∂θ

∂Y

]
=

∂2θ

∂X2
+

∂2θ

∂Y 2
. (6)

1.2. Porous layer.

Conservation of mass and mass transfer equation. The equation of continuity for the porous
layer and the mass transfer equation are the same as for the liquid layer.

Momentum equation. Darcy was the first to formulate the basic equation of flow in porous
media based on the proportionality between the flow rate and the applied pressure difference that
was revealed from experiment. Conventionally, Darcy’s law was used as the momentum balance
equation in a porous medium. However, as noted by Desaive et al. [13], it suffers from mathemat-
ical inaccuracy due to the inability to impose a no-slip boundary condition. Consequently, in this
study, the Brinkman equation is used to represent the momentum equation. In the X-direction, the
momentum conservation equation is written as follows,

Re
φ

∂U

∂τ
+

1
Da

U = − ∂P

∂X
+

∂2U

∂X2
+

∂2U

∂Y 2
. (7)
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In the Y -direction, the momentum conservation equation is represented by

Re
φ

∂V

∂τ
+

1
Da

V = −∂P

∂Y
+

∂2V

∂X2
+

∂2V

∂Y 2
− 1

PrRe Da

(
1 +

d2

d1

)3

[RaPLθ − RaPCC] , (8)

where φ is the porosity, RaPL is the thermal Rayleigh number for the porous layer and RaPC is the
solutal Rayleigh number for the porous layer.

Energy equation. The thermal energy equation for the porous layer is given by

Re Pr
[

∂θ

∂τ
+ U

∂θ

∂X
+ V

∂θ

∂Y

]
= G

[
∂2θ

∂X2
+

∂2θ

∂Y 2

]
, (9)

where

G =
ke

kf
=

φkf + (1− φ)ks

kf
= φ + (1− φ)

ks

kf
;

ke is the effective thermal conductivity; kf is conductivity of the fluid; ks is the conductivity of the
solid; G is the ratio between ke and kf .

In the above equations, an appropriate relationship between the thermal liquid Rayleigh number
and the thermal porous Rayleigh number has been obtained which can be expressed as:

RaPL = RaLL Da
(

1 +
d1

d2

)2
d2

d1
. (10)

In order to analyze the fluid motion properly, the basic conservation laws have to be applied along
with the appropriate boundary conditions on each segment of the boundary. In the present case, the
cavity is laterally heated and the left vertical wall is fixed at a cold temperature TC , while the right
vertical wall is maintained at a hot temperature TH . The top and the bottom surfaces are insulated.
The boundary conditions for the four walls of the cavity are presented in Fig. 2. As noted by Kozak
et al. [8], at the liquid-porous interface, the continuities of the velocities, the temperature and the
mass flux are imposed.

 

U = 0,   = 0 U = 0,   = 1 

U = V = 0, 

  = 0 

U = V = 0, 
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U = V = 0, 0 
!

!

n

"
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!

!

n

"
 

Fig. 2. Lateral heating boundary condition.
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Fig. 3. Calculated Nusselt numbers for mesh sensitivity.

2. Numerical Procedure

The numerical procedure consisted of solving the non-dimensional Eqs. (2) to (9) using the
finite element technique [14]. To achieve greater accuracy in the results, a finer mesh was applied
to the vertical walls of the square cavity and at the upper surface where the driving force of the flow
is located. The five degrees of freedom (velocities, temperature, pressure and species) are unknown
and are numerically calculated at each node in the meshed cavity. The convergence criterion for the
iterative solution of symmetric and non-symmetric linear equation systems is 1.0 · 10−6.

3. Mesh Sensitivity Analysis

Since a lateral heating scheme was employed for this study, it was assumed that a high temper-
ature gradient occurs parallel to the upper surface. So, for the mesh sensitivity analysis, the number
of elements in the Y -axis was kept constant at 120 and the mesh was varied from 40 to 140 elements
in the X-direction in increments of 20. Then the Nusselt number is calculated at the hot and cold
wall. The equations are expressed as follows,

NuH =

L∫

0

∂θ

∂Y

∣∣∣
X=1

dY, NuC =

L∫

0

∂θ

∂Y

∣∣∣
X=0

dY. (11)

The overall averaged Nusselt number is

Nu =
NuH + NuC

2
. (12)

The Nusselt number is compared for the various mesh gradients. The results for the analysis
are given in Fig. 3. From this figure one can notice that, when the number of elements in the X-axis
is more than 120, the Nusselt number remains unchanged. Thus for the present study a mesh of 120
elements in the X-axis by 120 elements in the Y -axis is selected.
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4. Thermodiffusion

The separation of the components of a mixture subjected to a temperature difference is mea-
sured by the Soret coefficient ST = DT /DM . For the water – isopropanol binary mixture, the
sign of the Soret coefficient is strongly dependent on the concentration. Fig. 4 shows the Soret
coefficients for the water – isopropanol binary mixtures. From Fig. 4, it can be seen that the Soret
coefficient is positive (ST > 0) if the water content is less than 75 %, otherwise the Soret coefficient
is negative. So, to analyze the effect of thermodiffusion or the Soret on thermo-solutal convection,
two water – isopropanol mixtures having negative and positive Soret coefficient have been chosen.
One of the liquid mixtures is 90 % water – 10 % isopropanol and another one is 50 % water – 50 %
isopropanol. The physical properties of water – isopropanol mixtures are given in Table 1.

5. Results and Discussion

Two different cases are studied in this paper. In the first case, the thermo-solutal convection is
studied separately for two different water – isopropanol mixtures. Then, the thermo-solutal convec-
tion with the thermodiffusion or Soret effect is studied.

5.1. Thermo-solutal convection. As noted by Saghir et al. [10], when heat and species
transfer exist within a fluid layer, the temperature and concentration gradients create a convection
mode. This convection is called thermo-solutal or double diffusive convection. To see the effects
of thermo-solutal convection with respect to time, transient condition has been used for this present
study. To solve the problems using the finite element method in the transient condition, we used
the backward Euler time integration method with a variable time increment option. The first 5 time
steps have been kept as fixed with a time step increment dt = 1.0 · 10−6 s. After 5 time steps, the
calculation switches from the fixed time increment method to the variable time increment method.

Fig. 5 represents the streamlines and isotherms for the time step t = 975 s and the thickness
ratio d = 0.50. Fig. 5a shows the streamlines and isotherms for the case with 90 % water – 10 %
isopropanol in the entire cavity. For this case, the calculated thermal Rayleigh number RaLL is
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Table 1.
Physical properties of water – isopropanol

for two different mass fraction compositions

Physical properties Symbol 90 % water – 50 % water –
10 % isopropanol 50 % isopropanol

Viscosity [m2/s] ν 1.41 · 10−6 4.18 · 10−6

Thermal diffusivity [m2/s] α 1.30 · 10−7 8.50 · 10−8

Diffusion coefficient [m2/s] DM 8.70 · 10−10 1.80 · 10−10

Density [kg/m3] ρ 984 905
Soret coefficient [1/K] ST −1.06 · 10−2 5.45 · 10−3

Thermal expansion [1/K] βT 3.10 · 10−4 7.70 · 10−4

Solutal expansion [−] βc 0.14 −0.25
Concentration of water [−] c 0.90 0.50

Pr [−] ν/α 10.846 49.165
A [−] Gr/g 1559.278 440.906
Sc [−] ν/D 1620.690 23216.667

Thermal conductivity [W/(m K)] k 0.522 0.2866

1.036 ·104 and solutal Rayleigh number RaLC = 9.36 ·105. As in the present case RaLC > RaLL,
multicells appear in the liquid layer. However, the streamlines for the case with 50 % water – 50 %
isopropanol, reveal a single cell in the liquid layer. For this case, the calculated thermal Rayleigh
number is RaLL = 1.062 · 105 and the solutal Rayleigh number is RaLC = 8.62 · 105. As, the two
different Rayleigh numbers are close to each other, only a single cell appears in the liquid layer. For
both liquid mixtures, we can also see that the flow in the porous layer is not negligible but too weak
as compared to the flow in the liquid layer. It is clearly observed from the isotherms in the porous
layer which are slightly distorted from their vertical positions.

Fig. 6 shows the streamlines and isotherms for the liquid mixture of 90 % water – 10 % iso-
propanol for the thickness ratio d = 0.90. Now, the flow dominates the porous layer of the cavity
with the cell within the porous layer itself. This phenomenon was predicted by the linear stability
analysis of Desaive et al. [13]. If one compares Figs. 5 and 6, it is observed that as the thickness
ratio increases, the streamline values decrease since the flow covers the entire cavity.

5.2. Thermodiffusion effect. In the previous section, the thermo-solutal convection was
studied. A further study is performed to investigate the convection in the presence of thermodiffu-
sion or the Soret effect. It is known that in the earth gravity condition, the buoyancy effect dom-
inates the convection [15]. So, to investigate the thermodiffusion effect, a microgravity condition
(g = 9.8 · 10−7 m/s2) is used.

Fig. 7 reflects the isopropanol distribution for different time steps along the horizontal direction
of the cavity. From Fig. 7a, we can see that, at the initial time step t = 0 s, the concentration of
isopropanol is 0.1. But as the time increases, the concentration near the cold wall (at H = 0 m)
increases and the concentration near the hot wall (at H = 0.01 m) decreases. For all the time steps,
the concentration varies linearly with distance. Fig. 7b shows the isopropanol distribution for the
liquid mixture having 50 % water – 50 % isopropanol. From this figure it can be seen that, at t = 0 s,
the concentration of isopropanol is 0.5. But as the time increases, the concentration near the cold
wall (H = 0 m) decreases and the concentration near the hot wall (H = 0.01 m) increases. For both
liquid mixtures, at the time t = 500000 s the isopropanol distribution line appears completely linear.
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a)

1

2

b)

3

4

Fig. 5. Streamlines (left) and isotherms (right) for the thermo-solutal convection (d = 0.5):
a) 90 % water-10 % isopropanol, b) 50 % water-50 % isopropanol;

1) Ψ = 1.66 · 10−2, ∆Ψ = 2.28 · 10−3; 2) T = 302.75 K, ∆T = 0.5 K;
3) Ψ = 6.10 · 10−3, ∆Ψ = 6.48 · 10−4; 4) T = 302.75 K, ∆T = 0.5 K .

1

2

Fig. 6. Streamlines (left) and isotherms (right) for the thermo-solutal convection (d = 0.5):
1) Ψ = 1.06 · 10−4, ∆Ψ = 1.14 · 10−5; 2) T = 302.75 K, ∆T = 0.5 K.
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Fig. 7. Isopropanol distributions along the horizontal direction of the cavity at height 0.003 m (d = 0.5):
a) 90 % water – 10 % isopropanol, b) 50 % water – 50 % isopropanol.

By comparing Figs. 7a and b, one can see that two figures have quite opposite behaviours. For the
thermodiffusion with liquid 90 % water – 10 % isopropanol, the isopropanol component migrates
to the cold side wall. But for the thermodiffusion with liquid 50 % water – 50 % isopropanol, the
isopropanol component migrates to the hot side wall. The reason is that the two liquid mixtures
have two opposite Soret coefficients. The Soret coefficient of 90 % water – 10 % isopropanol is
negative but the Soret coefficient of 50 % water – 50 % isopropanol is positive.

5.3. Separation ratio. To measure the thermodiffusion effect on binary mixture, the separation
ratio is calculated. The separation ratio is a very good indicator of the mass transfer process due to
the thermodiffusion convection. The separation ratio of each component can be defined as follows,

q =
(c/(1− c))max

(c/(1− c))min

, (13)

where c is the mass fraction of the species.

Fig. 8 shows the calculated separation ratios for different gravitational accelerations at the time
step t = 500000 s. This figure clearly shows that the separation ratio decreases with increasing

247



a)

1,60

1,80

2,00

2,20

2,40

2,60

2,80

9,8E-7 9,8E-5 9,8E-3 9,8E-1

S
e
p

e
r
a

ti
o

n
 r

a
ti

o
, 
q

Gravitational acceleration, g (m/s2)

b)

1,11

1,13

1,15

1,17

1,19

1,21

9,80E-07 9,80E-05 9,80E-03 9,80E-01

S
e
p

e
r
a
ti

o
n

 r
a
ti

o
, 
q

Gravitational acceleration, g (m/s2)

Fig. 8. Separation ratios for different gravity levels:
a) 90 % water – 10 % isopropanol, b) 50 % water – 50 % isopropanol.

gravitational acceleration whereas the minimum separation appears at the earth gravity condition
(g = 9.8 m/s2) due to mixing. As we know, the gravitational force is the main accelerating factor
for the buoyancy body force term. Therefore, the buoyancy force increases with increasing grav-
itational acceleration and reduces the thermodiffusion effect. However, the separation ratio of the
liquid mixture having negative ST (90 % water – 10 % isopropanol) is more sensitive to the gravi-
tational force than that of the liquid mixture having positive ST (50 % water – 50 % isopropanol).

Conclusions

In this paper, thermo-solutal convection is studied in detail. For the thermo-solutal convection
with the thickness ratio 0.5, multi cells are observed in the liquid layer for the liquid mixture having
90 % water – 10 % isopropanol. However, for the same thickness ratio, single cell is found for the
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liquid mixture having 50 % water – 50 % isopropanol. Also, for the case with the thickness ratio
0.9, the flow penetrates into the porous layer. In the presence of thermodiffusion or the Soret effect,
it is found that isopropanol components migrate either to the hot or to the cold wall, depending
on the sign of the Soret coefficient of the liquid mixtures. In addition, gravitational acceleration is
shown to have a strong effect on thermodiffusion convection.
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Unsteady oscillatory Couette flow between two infinite horizontal parallel
plates in a rotating system has been studied when one of the plate is held at rest
and the other oscillates in its own plane .The effects of rotation and frequency
parameter on the velocities and the shear stresses for steady and unsteady flow
have been studied. It is found that the unsteady shear stress due to primary flow
has a phase lag for 2K2 ≤ λ and a phase lead for λ < 2K2 over the plate
oscillation. On the other hand, the unsteady shear stress due to secondary flow
has a phase lag over the oscillations of the plate either for 2K2 ≤ λ or λ < 2K2,
where K2 is the rotation parameter and λ is the frequency parameter.

* * *

Introduction

The study of fluid flow in a rotating environment has considerable bearing on the problems of
geophysial, astrophysical and fluid engineering applications. An extensive literature exists on the
flow of fluids in a rotating frame. Nanda and Mohanty [1] have studied the hydromagnetic steady
flow in a rotating channel with constant pressure gradient. Majumder [2] has studied the effect
of wall conductances on the hydromagnetic flow in a rotating system. Datta and Jana [3] have
discussed the effect of rotation and Hall current on the hydromagnetic flow using non-conducting
walls. Jana et al. [4] have studied the MHD Couette flow in rotating frame of referance when the
fixed plate of the channel was a perfect conductor, the moving one was non-conducting . Recently
Nagy and Demendy [5] have studied the hydromagnetic flow under general wall conditions. The
combined effects of Hall current and rotation on the flow structure and heat transfer in a generalised
hydromagnetic flow have been studied by Nagy and Demendy [6]. Guria et al. [7] have studied the
hydromagnetic flow in a rotating channel in the presence of inclined magnetic field. The unsteady
Couette flow in a rotating system have been studied by Guria et al. [8]. The unsteady hydromag-
netic Couette flow in a rotating system under boundary layer approximation has been studied by
Majumder [9], Ganapaty [10] and Guria et al. [11].
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The present investigation is devoted to study the hydromagnetic Couette flow through a hori-
zontal channel when one of the plate is oscillating about the mean velocity and the other is held at
rest in a rotating system under boundary layer approximations. It is found that the unsteady part
of the primary velocity increases while that part of the secondary velocity decreases with increase
in Hartmann number M . It is also found that phase of the shear stress due to unsteady part of the
primary flow at the plate η = 0 has always a phase lead for 2k2 < λ and a phase lag for 2K2 > λ.
On the other hand, phase of the shear stress due to the unsteady secondary secondary has a phase
lead over the plate oscillation.

1. Mathematical Formulation and its Solution

Consider the unsteady viscous incompressible electrically conducting fluid bounded by two
infinitely long horizontal parallel plates separated by a distance d, the lower plate is held at rest and
the upper plate is oscillating in its own plane with a velocity U(t) about a constant mean velocity U0

in the direction of x-axis where x-axis is taken on the lower plate in the direction of the flow. The
y-axis is normal to the plates and the z-axis perpendicular to the xy-plane. A uniform magnetic field
H0 is applied perpendicular to the plates. Since the plates are infinitely long, all physical variables,
except pressure, depend on y and t only.

We shall assume that the induced magnetic field produced by the motion of the conducting
fluid is negligible so that H ≡ (0,H0, 0). In the absence of an external electric field the effect of
polarisation of the fluid is negligible.We shall also assume that the electric field E = 0, Mayer [12].

The Navier – Stokes equations of motion for a conducting fluid are

∂vx

∂t
− 2Ωvy = −1

ρ

∂p

∂x
+ ν

∂2vx

∂y2
− σB2

0

ρ
vx, (1)

∂vy

∂t
+ 2Ωvx = −1

ρ

∂p

∂x
+ ν

∂2vy

∂y2
− σB2

0

ρ
vy, (2)

0 = −1
ρ

∂p

∂z
, (3)

where ρ, ν, Ω and p are respectively the fluid density, kinematic viscosity, angular velocity and fluid
pressure.

The boundary conditions are

vx = 0, vy = 0 at y = 0,

vx = U(t), vy = 0 at y = d.

(4)

Under usual boundary layer approximations, Eqs. (1) and (2) become

∂vx

∂t
− 2Ωvy =

∂U

∂t
+ ν

∂2vx

∂y2
− σB2

0

ρ
(vx − U), (5)

∂vy

∂t
+ 2Ω(vx − U) = −1

ρ

∂p

∂x
+ ν

∂2vy

∂y2
− σB2

0

ρ
vy. (6)
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Introducing non-dimensional variables

η =
y

d
, u =

vx

U0
, v =

vy

U0
, U = U0f(τ),

τ =
νt

d2
, M2 =

σµ2
eH

2
0d2

ρν
K2 =

Ωd2

ν
,

(7)

Eqs. (5) and (6) become

∂u

∂τ
− 2K2v =

∂f

∂τ
+

∂2u

∂η2
−M2(u− f), (8)

∂v

∂τ
+ 2K2(u− f) =

∂2v

∂η2
−M2v. (9)

The boundary conditions Eq. (4) reduce to

u = 0, v = 0 at η = 0

u = f(τ), v = 0 at η = 1.
(10)

We assume the plate velocity in the form of a Fourier series as

f(τ) = U0 +
∞∑

n=1

[
Un cosnλτ + U∗

n sin nλτ
]

= U0 + Re
∞∑

n=1

Ūn exp(inλτ), (11)

where Ūn = Un − iU∗
n and Re denotes the real part.

The coefficients U0, Un, U∗
n are the dimensionless Fourier constants of the function f(τ) when

expressed in its fundamental period 2π/λ, where λ = ωd2/ν being the dimensionless frequency of
the oscillations. These may be interpreted as dimensionless constants representing the amplitudes
of the oscillating plate velocity superposed upon the constant mean velocity U0.

In view of Eq. (11), solution of the Eqs. (8) and (9) can be written in the following form:

u = u0(η) + Re
∞∑

n=1

un(η) exp(inλτ), (12)

v = v0(η) + Re
∞∑

n=1

vn(η) exp(inλτ). (13)

On the use of Eqs. (11) – (13), Eqs. (8) and (9) become

inλun − 2K2vn = inλŪn + u′′n −M2(un − Ūn), (14)

inλvn + 2K2(un − Ū) = v′′n −M2vn, (15)

where n = 0, 1, 2, . . ..

The boundary conditions Eq. (10) become

un = 0, vn = 0 at η = 0

un = Ūn, vn = 0 at η = 1.
(16)
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Eqs. (14) and (15) subjected to the boundary conditions Eq. (16) can easily be solved and the
solution for the primary and secondary velocities can be written as

u(η, τ) = u0(η) + Re
∞∑

n=1

Ūn

[
1− 1

2

{
cosh(α1 ± iβ1)η + cosh(α2 + iβ2)η

−cosh(α1 ± iβ1)
sinh(α1 ± iβ1)

sinh(α1 ± iβ1)η − cosh(α2 + iβ2)
sinh(α2 + iβ2)

sinh(α2 + iβ2)η
}]

eiλτ ,

(17)

v(η, τ) = v0(η) + Re
∞∑

n=1

i

2
Ūn

[
cosh(α1 ± iβ1)η − cosh(α2 + iβ2)η

−cosh(α1 ± iβ1)
sinh(α1 ± iβ1)

sinh(α1 ± iβ1)η +
cosh(α2 + iβ2)
sinh(α2 + iβ2)

sinh(α2 + iβ2)η
]
eiλτ ,

(18)

where the upper sign for nλ > 2K2 and the lower sign for nλ < 2K2.

Further, u0(η) and v0(η) are the velocity components corresponding to the steady uniform
velocity U0 and are given by

u0 + iv0 = U0

[
1− cosh(α + iβ)η +

cosh(α + iβ)η
sinh(α + iβ)

sinh(α + iβ)η
]

, (19)

where

α , β =
1√
2

[(
M4 + 4K4

)1/2 ±M2
]1/2

,

α1, β1 =
1√
2

[{
M4 +

(
nλ + 2K2

)2
}1/2

±M2

]1/2

,

α2, β2 =
1√
2

[{
M4 +

(
nλ− 2K2

)2
}1/2

±M2

]1/2

.

(20)

We shall now discuss a few particular cases of interest.

Case I: when nλ À 1, K2 ¿ 1 and M2 ¿ 1.
When nλ is large order of magnitude then one can expect boundary layer type flow near the plates.
For nλ À 1, K2 ¿ 1 and M2 ¿ 1, the velocity distribution are given by

u = u0(η) +
∞∑

n=1

{
[Un cos nλτ + U∗

n sin nλτ ]

−1
2

[
e−α1η [Un cos(nλτ − β1η) + U∗

n sin(nλτ − β1η)]

+e−α2η [Un cos(nλτ − β2η) + U∗
n sin(nλτ − β2η)]

]}
,

(21)

v = v0(η) +
1
2

∞∑
n=1

{
e−α1η [U∗

n cos(nλτ − β1η)− Un sin(nλτ − β1η)]

−e−α2η [U∗
n cos(nλτ − β2η)− Un sin(nλτ − β2η)]

}
,

(22)
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where

α1,2 =
(

nλ

2

)1/2 (
1± K2

nλ
+

M2

2nλ

)
, β1,2 =

(
nλ

2

)1/2 (
1± K2

nλ
− M2

2nλ

)
. (23)

Eqs. (21) and (22) show the existence of double-decker boundary layers of thicknesses

O

{(
nλ

2

)1/2 (
1 +

K2

nλ
+

M2

2nλ

)}−1

and O

{(
nλ

2

)1/2 (
1− K2

nλ
+

M2

2nλ

)}−1

near the plate η = 0. These layers may be identified as modified Stokes – Ekman – Hartmann layers
as modified by the rotation parameter and magnetic field. It is seen that for each mode of pulsation,
i. e. for fixed n, there are two associated layers. The thicknesses of these boundary layers decrease
with the increase in n. The boundary layers arising due to higher mode of pulsation (n > 1) are
confined inside the boundary layer due to fundamental mode of pulsation (n = 1).

The exponential terms in the above expressions damp out quickly as η increases. When

η ≥
(

nλ

2

)1/2 (
1± K2

nλ
+

M2

2nλ

)
,

we have

u = u0(η) +
∞∑

n=1

[Un cos nλτ + U∗
n sin nλτ ] , v = v0(η). (24)

The above equation shows that for large frequency parameter nλ, the fluctuating part of the primary
flow will be in phase with the plate oscillations while the unsteady part of the secondary flow
vanishes.

Case II: when nλ ¿ 1, M2 ¿ 1 and K2 À 1.
In this case, the velocity components are given by

u = u0(η) +
∞∑

n=1

{
[Un cos nλτ + U∗

n sin nλτ ]

−1
2

[
e−α1η [Un cos(nλτ − β1η) + U∗

n sin(nλτ − β1η)]

+e−α2η [Un cos(nλτ − β2η) + U∗
n sin(nλτ − β2η)]

]}
,

(25)

v = v0(η) +
1
2

∞∑
n=1

{
e−α1η [U∗

n cos(nλτ − β1η)− Un sin(nλτ − β1η)]

−e−α2η [U∗
n cos(nλτ − β2η)− Un sin(nλτ − β2η)]

}
,

(26)

where

α1,2 = K

(
1± nλ

4K2
+

M2

4K2

)
, β1,2 = K

(
1± nλ

4K2
− M2

4K2

)
. (27)
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It is seen from above Eqs. (25) and (26) that for large rotation, that is for large values of 2K2 there
exist double-deck boundary layers near the plate η = 0. The thicknesses of these boundary layers
are of order

O
{

K

(
1 +

nλ

4K2
+

M2

4K2

)}−1

and O
{

K

(
1 +

nλ

4K2
+

M2

4K2

)}−1

near the plate η = 0. These layers may be identified as the Ekman layers.

The exponential terms in the above expressions damp out quickly as η increases. When

η ≥ K

(
1± nλ

4K2
+

M2

4K2

)
,

we get

u = u0(η) +
∞∑

n=1

[Un cos nλτ + U∗
n sin nλτ ] , v = v0(η). (28)

Similar to the above Case I, it is observed from the above equation that for large rotation parameter
K2, the fluctuating part of the primary flow will be in phase with the plate oscillations while the
unsteady part of the secondary flow vanishes.

Case III: when M2 À 1, K2 ¿ 1 and nλ ¿ 1.
When M2 À 1, K2 ¿ 1 and nλ ¿ 1, in this case also the flow field is of boundary layer type

and we obtain the velocity distribution as

u = u0(η) +
∞∑

n=1

{
[Un cos nλτ + U∗

n sin nλτ ]

−1
2

[
e−Mη [Un cos(nλτ − β1η) + U∗

n sin(nλτ − β1η)]

+e−Mη [Un cos(nλτ − β2η) + U∗
n sin(nλτ − β2η)]

]}
,

(29)

v = v0(η) +
1
2

∞∑
n=1

{
e−Mη [U∗

n cos(nλτ − β1η)− Un sin(nλτ − β1η)]

−e−Mη [U∗
n cos(nλτ − β2η)− Un sin(nλτ − β2η)]

}
,

(30)

where
β1, β2 =

1
2M

(nλ± 2K2).

The above expressions show the existence of a single boundary layer of thickness of order of
O(M)−1. This layer decreases with increase in M . It is interesting to note that this boundary
layer thickness is independent of both M2 and K2. It is seen that in certain core η ≥ 1/M , the
exponential terms in Eqs. (29) and (30) damp out and the velocity field reduces to

u = u0(η) +
∞∑

n=1

[Un cos(nλτ) + U∗
n sin(nλτ)] , v = v0(η). (31)

Similar to the above Cases I and II, in this case also we observed from above equation that for
large Hartmann number M , the fluctuating part of the primary flow will be in phase with the plate
oscillations while the unsteady part of the secondary flow vanishes.
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2. Single Plate Oscillation

In the limit d →∞, Eqs. (18) and (19) become

u = u0(η) +
∞∑

n=1

{
[Un cosnωt + U∗

n sin nωt]

−1
2

(
U2

n + U∗
n

2
)[

e−α∗1y/
√

2ν cos
(

nωt∓ β∗1y√
2ν
− θ

)

+e−α∗2y/
√

2ν

[
Un cos

(
nωt− β2

∗y√
2ν

)
+ U∗

n sin
(

nωt− β2
∗y√
2ν

)]]}
,

(32)

v = v0(η) +
1
2

(
U2

n + U∗
n

2
) ∞∑

n=1

{
e−α∗1y/

√
2ν sin

(
nωt∓ β∗1y√

2ν
− θ

)

−e−α∗2y/
√

2ν sin
(

nωt− β∗1y√
2ν
− θ

)}
,

(33)

where u0(η) and v0(η) are the velocity fields corresponding to the steady uniform velocity U0 and
are given by

u0(η) = 1− eα∗y/
√

2ν cos
(

β∗y√
2ν

)
, v0(η) = −eα∗y/

√
2ν sin

(
β∗y√

2ν

)
, (34)

where
θ = tan−1 (U∗

n/Un) ,

α∗, β∗ =

{[(
σµ2

eH
2
0

ρ

)2

+ 4Ω2

]1/2

± σµ2
eH

2
0

ρ

}1/2

,

α∗1, β
∗
1 =

{[(
σµ2

eH
2
0

ρ

)2

+ (nω + 2Ω)2
]1/2

± σµ2
eH

2
0

ρ

}1/2

,

α∗2, β
∗
2 =

{[(
σµ2

eH
2
0

ρ

)2

+ (nω − 2Ω)2
]1/2

± σµ2
eH

2
0

ρ

}1/2

.

(35)

The above Eqs. (32) and (33) represent the velocity components in the presence of a uniform trans-
verse magnetic field in a rotating system when the free-stream velocity oscillates with velocity

U0 +
∞∑

n=1

(Un cos nωt + U∗
n sin nωt) .

Eqs. (32) and (33) show that the unsteady velocities consists of two parts, one oscillates with am-
plitude

1
2

(
U2

n + U∗
n

2
)

e−α∗1y/
√

2 ν

and the other with
1
2

(
U2

n + U∗
n

2
)

e−α∗2y/
√

2 ν ,
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where α∗1 and α∗2 are given by Eq. (35). The boundary layer corresponding to the amplitude

1
2

(
U2

n + U∗
n

2
)

e−α∗1y/
√

2ν

at a distance y from the plate oscillates with phase lag of (β∗2y/
√

2ν + θ) for nω > 2Ω and phase
advance (β∗2y/

√
2ν − θ) for nω < 2Ω while the layer corresponding to the amplitude

1
2

(
U2

n + U∗
n

2
)

e−α∗2y/
√

2ν

oscillates with phase lag of (β∗2y/
√

2ν + θ) either for nω > 2Ω or nω < 2Ω. If Un = U∗
n = 0,

then u(η) and v(η) are given by Eq. (34). This results are identical with the result obtained by
Batchelor [13].

3. Flow Under Harmonic Oscillations of the Plate

In this section, we shall consider the particular case when the plate velocity is given by

f(τ) = U0 + U1 cosλτ. (36)

The flow field is then ccharacterized by

u(η, τ) = u0(η) + Re

{
U1

[
1− 1

2

{
cosh(α1 ± iβ1)η + cosh(α2 + iβ2)η

−cosh(α1 ± iβ1)
sinh(α1 ± iβ1)

sinh(α1 ± iβ1)η − cosh(α2 + iβ2)
sinh(α2 + iβ2)

sinh(α2 + iβ2)η
}]

eiλτ

}
,

(37)

v(η, τ) = v0(η) + Re

{
i

2
U1

[
cosh(α1 ± iβ1)η − cosh(α2 + iβ2)η

−cosh(α1 ± iβ1)
sinh(α1 ± iβ1)

sinh(α1 ± iβ1)η +
cosh(α2 + iβ2)
sinh(α2 + iβ2)

sinh(α2 + iβ2)η
]
eiλτ

}
,

(38)

where α1, α2, β1, β2 are obtained from Eq. (21) by putting n = 1.

The steady primary velocity u0 and the secondary velocity v0 have been drawn against η for
different values of M2 and K2 in Figs. 1 and 2. It is seen that for fixed M2, the primary velocity
u0 increases with increase in K2. It is also seen that secondary velocity v0 at any point increases
for small values of K2 while for large values of K2, it increases near the plate η = 0 and decreases
away form the plate η = 0. It is seen from Fig. 2 that the steady primary velocity u0 increases with
increase in M2 while the steady secondary velocity v0 decreases with increase in M2.

For the discussion of the oscillatory part of the flow, the Figs. 3 – 7 have been drawn against η

for the unsteady primary velocity uuns and the secondary velocity vuns for various values of K2, λ
and λτ with M2 = 5 and U1 = 1. It is observed from Fig. 3 that the unsteady primary velocity at
any point increases with increase in rotation parameter K2. Fig. 4 shows that the unsteady secondary
velocity steadily increases for 2K2 ≤ λ while for 2K2 > λ it increases near the plate η = 0 and
decreases away from the plate η = 0. It is seen from Fig. 5 that for fixed values of M2, K2 and
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λτ the unsteady primary velocity decreases with increase in frequency parameter λ. It is observed
from Fig. 6 that the unsteady secondary velocity increases with increase in λ for 2K2 ≥ λ. On the
other hand, for λ > 2K2, it increases near the plate η = 0 and decreases away from the plate η = 0.
Fig. 7 shows that the unsteady primary velocity decreases while the unsteady secondary velocity
increases with increase in λτ .

The non-dimensional components of the shear stresses at the plate η = 0 are given by

τu =
(

du0

dη

)

η=0

+ εR1 cos(λt + φ1),

τv =
(

dv0

dη

)

η=0

+ εR2 cos(λt + φ2),

(39)

where
[
du0

dη

]

η=0

=
α sinh 2α + β sin 2β

cosh 2α− cos 2β
,

[
dv0

dη

]

η=0

=
β sinh 2α− α sin 2β

cosh 2α− cos 2β
,

Ru =
1
2

[
(x1 + x2)2 + (y2 ± y1)2

]1/2
, tan θu =

y2 ± y1

x2 + x1
,

Rw =
1
2

[
(y1 ∓ y2)2 + (x1 − x2)2

]1/2
, tan θw =

x1 − x2

y1 ∓ y2
,

(40)

x1 =
α1 sinh 2α1 + β1 sin 2β1

cosh 2α1 − cos 2β1
, y1 =

β1 sinh 2α1 − α1 sin 2β1

cosh 2α1 − cos 2β1
, (41)

x2 =
α2 sinh 2α2 + β2 sin 2β2

cosh 2α2 − cos 2β2
, y2 =

β2 sinh 2α2 − α2 sin 2β2

cosh 2α2 − cos 2β2
. (42)
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The values of u′0(0) and v′0(0) are given in Table 1 for different values of K2 and M2. It is
observed from Table 1 that u′0(0) increases with the increase in either K2 or M2. On the other
hand, v′0(0) increases with the increase in K2 but it decreases with increase in M2.

The values of R1 and R2 are entered in Tables 2 and 3 for various values of K2, λ and M2. It is
seen from Table 2 that for fixed values of K2 and 2K2 < λ, R1 first increases, reaches a maximum
and then decreases with increase in M2 while for 2K2 ≥ λ, it decreases with increase in M2. It is
also seen that for fixed values of M2 and λ, R1 decreases with increase in K2. It is observed from
Table 2 that R2 decreases with increase in M2 while it increases with increase in K2. Table 3 shows
that the amplitude R2 increases with increase in either M2 or λ. On the other hand, R2 decreases
with increase in M2 but it increases with increase in λ.

The values of tan φ1 and tanφ2 have been plotted against λ in Tables 4 and 5. It is seen that
tan φ1 has a phase a lag over the oscillation for 2K2 ≤ λ and a phase lead over the oscillation for
2K2 > λ. It is also seen that tanφ2 has always a phase lead over the oscillation either for 2K2 ≤ λ
or 2K2 > λ. Tables 4 and 5 show that the magnitude of tan φ1 and tan φ2 decreases with increase
in M2. It is observed from Table 4 that that magnitude of tan φ1 increases with increase in λ while
it decreases with increase in K2. Table 5 shows that tan φ2 increases for 2K2 ≤ λ and decrease for
2K2 > λ with increase in either λ or K2.

Conclusion

Consider the unsteady viscous incompressible electrically conducting fluid bounded by two
infinite long horizontal parallel plates separated by a distance d, the lower plate is held at rest and
the upper plate is oscillating in its own plane with a velocity U(t) about a constant mean velocity U0

in the direction of flow. It is found that either for large frequency parameter nλ or rotation parameter
K2, there exists a double-decker boundary layers whereas for large Hartmann number there exists
a single-deck boundary layer. Further, for large values of either nλ or M2 or K2, the fluctuating
part of the primary flow will be in phase with the plate oscillations while the fluctuating part of the
secondary velocity is identically equal to zero.
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Computer extended series solution is used to analyze the problem of lami-
nar flow in a channel with one porous bounding wall. The objective is to study
the effect of non-zero tangential slip velocity on the velocity field, pressure gra-
dient and mass transfer. The problem is also studied using power series method
in conjunction with an unconstrained optimization procedure. The domain and
rate of convergence of the series so generated are further increased by Padé ap-
proximants. The coupled diffusion equation in the boundary layer is solved using
a finite difference scheme. The solution presented here is valid for much larger
Reynolds number compared with earlier investigation.

* * *

Nomenclature

c solute concentration;
c0 inlet solute concentration;
cw solute concentration at the membrane surface;
C c/c0;
Cp an integration constant;
h height of the channel;
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267
ISSN 1064-2277
c© 2010 Begell House, Inc.



x the axial distance from the channel entrance;
y the coordinate axis perpendicular to the channel walls measured from the non-porous wall;
u velocity component in the x-direction;
u0 average velocity over the channel at channel inlet;
u average velocity over the channel at a given value of x, [1− (Rew/Reent) (x/h)];
u0

s normalized slip velocity, (u/u0)y=h;
us normalized slip velocity, (u/u)y=h;
U u/u0;
Rew wall Reynolds number, vwh/ν;
Reent Reynolds number for flow entering the channel, u0h/ν;
v velocity component in the y-direction;
vw velocity of the fluid through the membrane;
V v/vw;

Greek symbols

α surface characteristic of the membrane;
∆p dimensionless pressure drop, 2[p(0, λ)− p(x, λ)]/(ρu2

0);
λ dimensionless variable in the y-direction, y/h;
µ viscosity;
ν kinematic viscosity;
ρ solution density;
ϕ slip coefficient,

√
k/αh;

Ψ stream function;

Subscripts

′, ′′, ′′′, iv 1-st, 2-nd, 3-rd, and 4-th order derivatives.

Introduction

The flow of a viscous fluid confined by porous walls finds applications in a variety of physi-
cal situations such as the control of boundary layer separation with suction or injection, filtration,
membrane separation process and biological transport in living systems etc. Many research workers
have investigated the steady, incompressible laminar flow of fluid in channels with uniformly porous
walls. Berman [4] investigated the problem of steady laminar flow of a viscous incompressible fluid
through a porous channel and found the solution for a small Reynolds number. Following authors
Terrill [17–20], Brady [5], Robinson [14], Zaturska et al. [23], Cox [9] and Cox and King [10]
have extended Berman’s problem and obtained solution for both small and large Reynolds numbers.
King and Cox [11] studied asymptotic analysis of the steady state and time dependent Berman Prob-
lem. In the earlier analysis majority have used no slip boundary conditions. But the experimental
investigation reveals the existence of slip velocity at the porous bounding surface and is connected
with the presence of a thin layer of streamwise moving fluid just below the surface of the porous
medium. Beavers and Joseph [1] presented mass efflux experiments and proved the existence of
a non-zero tangential (slip) velocity on the surface of a permeable boundary. Saffman [16] used
statistical approach to derive the slip velocity. Neild [12] has given the historical background to
the Beavers and Joseph condition at the interface of a porous media and a clear fluid. Recently Uri
Shevit [21] investigated transport process across the interface between fluid and porous domains.
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In the present study, the problem of laminar flow bounded by a rigid horizontal boundary on
one side and porous boundary at the other side is considered (Chellam et al. [8]). The present
work is an attempt to study the effect of non-zero tangential slip velocity on the velocity field,
pressure gradient and concentration polarization using computer extended perturbation series with
polynomial coefficient functions. Van Dyke [22] used long series analysis in laminar flow through
a heated horizontal pipe. Recently, in the analysis of internal laminar flow separation, Bujurke et
al. [6] have used series analysis in conjugation with sophisticated numerical schemes satisfactorily.
In this paper we systematically use two new types of semi-analytical numerical techniques for the
solution of the above problem and present some useful and interesting results. In the first method,
the equations of motion in two dimensions are solved by perturbation method assuming slip velocity
at the membrane for moderately large wall Reynolds number, Rew ≡ Vwh/ν and generate large
number of universal polynomial coefficient functions for velocity profiles and pressure gradient
using MATHEMATICA. Domb – Sykes plot confirms the convergence of the series for much larger
parameter. In the second method we use power series method in conjugation with unconstrained
optimization procedure and compare these computations. Later, the convection diffusion equation
is solved by a finite difference technique incorporating the results of velocity profiles obtained in
the earlier section. Padé approximants of various orders (diagonal PN

N and off diagonal PN
N+1) give

converging sum for sufficiently large Rew.

1. Mathematical Formulation

Consider the laminar flow of an incompressible fluid of density ρ and kinematic viscosity ν in a
channel of rectangular cross section having one permeable boundary and another one as rigid. The
width of the channel is assumed to be very large relative to the height, thus the flow will be assumed
to be two dimensional and steady. The coordinate system used for the description of the problem
is shown in Fig. 1. The channel is of length L and height h. The axial coordinate measured from
the channel entrance is denoted by x and y the coordinate axis perpendicular to the channel walls
measured from the non-porous wall. Values of u and v represent the velocity components in x- and
y-directions respectively and p is the pressure.

The Navier – Stokes equations for steady, two dimensional, incompressible fluid motion under

u(x,y)  

                         Uslip

L

Porous  wall  

Solid Wall

h
Feed

y,  ,v

x

Fig. 1. The coordinate system used in the solution of the 2D
steady state Navier – Stokes equations (Chellam et al. [8]).
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the assumed conditions (with no external forces) are

u
∂u

∂x
+

v

h

∂u

∂λ
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+

1
h2

∂2u

∂λ2

)
, (1)

u
∂v

∂x
+

v

h

∂v

∂λ
= − 1

ρh

∂p

∂λ
+ ν

(
∂2v

∂x2
+

1
h

∂2v

∂λ2

)
, (2)

∂u

∂x
+

1
h

∂v

∂λ
= 0. (3)

The boundary conditions are

u(x, 0) = 0, v(x, 0) = 0, (4)

u(x, 1) = vw (constant), (5)

u(x, 1) = −ϕ
∂u

∂λ
, (6)

where λ = y/h is the dimensionless variable in the y-direction.

Eqs. (4) are the no-slip boundary conditions for the flow of a viscous fluid past of solid surface.
Eq. (5) mathematically describes the assumption of constant permeation rate (denotes suction rate
at the permeable wall which is constant along the length of the channel). Eq. (6) is the slip boundary
condition (Beavers and Joseph, [1]). The slip velocity at the membrane surface is proportional to
the shear rate at the permeable boundary. This slip velocity is connected with the presence of a thin
layer of streamwise moving fluid in the boundary region just below the permeable surface. The fluid
in this layer is considered to be pulled along by the flow above the porous surface. ϕ ≡

√
k/αh is

the slip coefficient, where k is the permeability of the membrane material and α is a dimensionless
constant dependent on the surface characteristics of the membrane.

By introducing a proper stream function (Berman [4]) of the form

Ψ(x, λ) = (hu0 − vwx)f(λ) (7)

into the Navier – Stokes equations (1), (2) and eliminating p, we get

d

dλ

[vw

h

[
(f ′)2 − ff ′′

]
+

ν

h2
f ′′′

]
= 0 (8)

or
Rew[f ′f ′′ − ff ′′′] + f iv = 0. (9)

Eq. (9) is one of the Falkner – Skan family of equations.

The new set of boundary conditions are

f = 0, f ′ = 0 at λ = 0, (10)

f = 1, f ′ = −ϕf ′′ at λ = 1. (11)
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2. Mass Transfer Problem

As vw ¿ u0 in all tangential membrane systems, this enables to neglect diffusion in the axial
direction in comparison to diffusion in the transverse direction. The steady convection-diffusion
equation describing the mass transfer in dimensionless form (Chellam et al. [8])

U
∂C

∂X
+ V

vwL

u0h

∂C

∂λ
=

DL

u0h2

∂2C

∂λ2
(12)

and the corresponding boundary conditions are

C = 1, X = 0 ∀ λ (13)

∂C

∂λ
= 0, λ = 0 ∀ X, (14)

∂C

∂λ
=

cw

c0

vwh

D
, λ = 1 ∀ X, (15)

where U = u/u0; V = v/vw; C = c/c0; X = x/L; λ = y/h; D is the diffusion coefficient and C
denotes the concentration of the solute. Eq. (14) specifies that there is no-flux through the solid wall.
Eq. (15) represents the boundary condition for a perfectly rejecting membrane (i. e., at steady state,
when concentration profiles are established and invariant, mass transport to and from the boundary
layer are equal thus effectively maintaining a dynamic balance). Value of c0 is the uniform inlet
concentration and is assumed to be the boundary condition at constant x, cw represents unknown
solute concentration at the porous wall.

3. Method of Solution

The Eq. (9) is solved by regular perturbation method. Towards this goal we seek a solution
of Eq. (9) in the form

f(λ) =
∞∑

n=0

Ren
wfn(λ). (16)

Substituting Eq. (16) into Eqs. (9) – (11) and equating like powers of Rew on both sides, we get

f iv
n =

n−1∑
r=0

[
frf

′′′
n−1−r − f ′rf

′′
n−1−r

]
, n = 1, 2, 3, . . . (17)

with corresponding boundary conditions

fn = 0 at λ = 0 ∀ n ≥ 0,

f ′n = 0 at λ = 0 ∀ n ≥ 0,

f0 = 1, fn = 0 at λ = 1 ∀ n ≥ 1,

f ′n + ϕf ′′n = 0 at λ = 1 ∀ n ≥ 0.

(18)
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The solution of the above equations up to the term in Re1
w is (Chellam et.al. [8])

f0 = −2(1 + ϕ)
(1 + 4ϕ)

λ3 + 3
(1 + 2ϕ)
1 + 4ϕ

λ2,

f1 = − 2(1 + ϕ)2

35(1 + 4ϕ)2
λ7 +

(1 + 3ϕ + 2ϕ2)
5(1 + 4ϕ)2

λ6 − 3(1 + 2ϕ)2

10(1 + 4ϕ)2
λ5

+
3(9 + 90ϕ + 272ϕ2 + 296ϕ3)

70(1 + 4ϕ)3
λ3 − 2(4 + 44ϕ + 139ϕ2 + 162ϕ3)

35(1 + 4ϕ)3
λ2.

(19)

4. Computer Extended Series Method

The analysis of the series Eq. (16) for its analyticity requires sufficiently large number of terms.
It is difficult to perform this manually but it can be made automatic using MATHEMATICA. We are
able to generate universal polynomial functions fn(λ), n = 1, 2, . . . , 30 of Eq. (16) and analyze the
series for its sum.
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Fig. 2. Effect of the slip coefficient on the mid-channel axial velocity for Reent = 1000:
a) Rew = 0.1, b) Rew = 0.4.
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For the velocity profiles, we have

U =
u

u0
=

(
1− Rew

Reent

x

h

) (
f ′0(λ) +

30∑
n=1

Ren
wf ′n(λ)

)
, (20)

V =
v

vw
= f0(λ) +

30∑
n=1

Ren
wfn(λ), (21)

where Reent = u0h/v is the entrance Reynolds number. Eqs. (20) and (21) represent mid channel
axial and transverse velocities normalized by local maximum values which are shown in Figs. 2
and 3.

The expression for the dimensionless pressure drop ∆P (normalized pressure gradient), along
the channel length is given by

∆p =
p(0, λ)− p(x, λ)

0.5ρu2
0

= −2CP ν

h2u2
0

(
u0x− vwx2

2h

)
, (22)
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Fig. 3. The effect of slip coefficient on the mid-channel transverse velocity for Reent = 1000:
a) Rew = 0.1, b) Rew = 3.
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where CP (integrating constant) is obtained from the Eq. (8) and is given by

CP = f ′′′(0) =
∞∑

n=0

Ren
wf ′′′n (0) =

∞∑
n=0

Ren
wan. (23)

5. Power Series Method

To confirm the accuracy of the estimated results obtained using computer extended perturbation
series, it is proposed to analyze the same problem using power series method. We assume power
series solution of Eqs. (9) and (11) in the form

f(λ) =
∞∑

n=1

anλn+1, (24)

where ∞∑
n=1

an = 1;
∞∑

n=1

(n + 1)an = −ϕ

∞∑
n=1

(n + 1)nan; (25)

a3 = 0;

an+3 =
Rew

(n + 4)(n + 3)(n + 2)(n + 1)

n∑
m=1

[an−m+1amm(m + 1)(2m− n− 3)] .
(26)

Eq. (25) comes from the boundary conditions at λ = 1 and Eq. (26) is obtained from Eq. (9). If a1

and a2 are known then the rest of {an} can be found from the recurrence equation (26). Effectively,
we have transformed a two point boundary value problem into a system of non-linear equations. To
solve this system of non-linear equations, we have used both Brown’s method(Byrne and Hall [7])
and Powell’s method of unconstrained optimization(Press et al. [13]). It is implemented in analysing
pressure gradient and other derived quantities.

6. The Finite Difference Solution

The diffusion equation (12), with the velocity obtained from Eqs. (20) and (21), is solved by a
finite difference scheme implicit in λ.

The finite difference analogues of derivatives in Eq. (12) are

∂C

∂X
=

Cj,m − Cj,m−1

∆X
, (27)

∂C

∂λ
=

Cj,m − Cj−1,m

∆λ
, (28)

∂2C

∂λ2
=

Cj+1,m − 2Cj, m + Cj−1,m

∆λ2
, (29)

where m is subscript for x direction and j is subscript for the y-direction. Substituting Eqs. (27) –
(29) into Eq. (12) gives

Aj−1Cj−1,m + BjCj,m + EjCj+1,m = Fj for 2 ≤ j ≤ nj − 1, (30)
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where

Aj−1 = −Vj

(
vwL

u0h

1
∆λ

)
−

(
DL

u0h2

)
1

∆λ2
; (31)

Bj =
Uj

∆X
+ Vj

(
vwL

u0h

)
1

∆λ
+ 2

(
DL

u0h2

)
1

(∆λ)2
; (32)

Ej = −
(

DL

u0h2

)
1
δλ

; (33)

Fj =
Uj

∆x
Cj,m−1 . (34)

Eq. (30) is implicit in λ. At the non-porous boundary, j = 1, from Eq. (14), we have

∂C

∂λ
= 0 ⇒ Cj+1,m − Cj−1,m

2∆λ
= 0 ⇒ C2,m = C0,m. (35)

Therefore from Eq. (30) we have

B1C1,m + E1C2,m = 0, (36)

where

B1 = V1

(
vwL

u0h

)
1

∆λ
+ 2

(
DL

u0h2

)
1

∆λ2
; (37)

E1 = −V1

(
vwL

u0h

)
1

∆λ
− 2

(
DL

u0h2

)
1

∆λ2
. (38)

Similarly, at the porous wall, from Eq. (15) we have

Cnj+1,m = 2∆λ

[
Vnj,mCnj,m

(
vwh

D

)]
+ Cnj−1,m. (39)

Therefore from Eq. (12), we have

Anj−1Cnj−1,m + BnjCnj,m = Fnj for j = nj, (40)

where

Anj−1 = −Vnj

(
vwL

u0h

)
1

∆λ
− 2

(
DL

u0h2

)
1

∆λ2
; (41)

Bnj =
Unj

∆X
+ Vnj

(
vwL

u0h

)
1

∆λ
+ 2

(
DL

u0h2

)
1

∆λ2
− 2

VnjvwL

hu0∆λ
; (42)

Fnj =
Unj

∆X
Cnj,m−1 . (43)

The above system of Eqs. (30), (36) and (40) representing a tridiagonal system and are solved using
Thomas algorithm.
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7. Results and Discussion

The problem of laminar flow in a channel, one of the walls being porous with velocity slip at
the porous medium is studied using computer extended series and also by power series method.
The motion of the fluid is governed by a nonlinear ordinary differential equation (9) with boundary
conditions (10), (11).

The universal polynomial functions fn(λ), n = 1, 2, . . . , 30 are obtained by a recurrence rela-
tion and use MATHEMATICA (ver. 7 ) to generate them. This enables in obtaining a large number
of universal polynomial functions fn(λ), n = 1, 2, . . . , 30 for different slip coefficient ϕ. The
series (20), (21) representing velocity profiles is analyzed using Padé approximants for different
Reynolds numbers for its sum. The effect of slip coefficient on the velocity profiles for different
Reynolds number is illustrated in Figs. 2, 3. Fig. 2 shows influence of the slip velocity on the mid
channel axial velocity profile for an entrance Reynold number Reent = 1000 and a longitudinal
position x/h = 500. These results are the curves plotted in figure for different slip coefficients
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Fig. 4. Velocity profiles for channel flow with suction:
a) Rew = 5, b) Rew = 10.
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Fig. 5. Velocity profiles for channel flow with injection:
a) Rew = −5, b) Rew = −10.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

 

u
s
o

Rew = 0.1

Rew = 1.0

Rew = 3.0

Rew = 5.0

Rew = 7.0

Fig. 6. Effect of slip coefficient on normalized slip velocity for various Rew.

277



0

2

4

6

8

10

12

14

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

1/n

|a
n
|1
/n

 !"!#$#

 !"!#$%

 !"!#$&

Fig. 7. Domb – Sykes plot for finding singularities of the series (23)
representing ∆P for various slip coefficients.
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Fig. 9. Effect of fluid slip on concentration profiles
near the porous wall at the mid-channel.

ϕ = 0, 0.01, 0.05, 0.2, 0.3. No slip case corresponds to ϕ = 0. It is seen that increasing slip leads
to flattening of profiles and reduced wall shear stresses. Fig. 3 shows the effect of axial slip veloc-
ity on the mid channel transverse velocity profile. We calculate the velocity profiles for different
Rew using Padé sum. In Figs. 4 and 5 velocity profiles for channel flow with suction and injection
respectively are given. Also, the effect of normalized slip velocity for various Rew are shown in
Fig. 6. u0

s increases with ϕ and approaches asymptotic values.

The coefficients an of the series (23) representing pressure gradient ∆P for different slip co-
efficients are decreasing in magnitude but have no regular sign pattern. Domb – Syke plots (Fig. 7)
after extrapolation, confirms radius of convergence of the series (23) to be Rew = 10.99, 10.29,
10.09 (with an error of 10−5) for ϕ = 0, 0.1, 0.3 respectively. The direct sum of the series for ∆P

is valid only up to Rew < 10.3. We use Pade approximants (Bender and Orszag [3]) for summing
the series. The Padé approximants for ∆P coincide with the earlier result for Rew = 0.1 (Chellam
et al. [8]). We are able to obtain the values ∆P for sufficiently large Rew (up to 3.0). To confirm
the accuracy and validity of the results obtained, the problem is also solved by power series method.
Here we have effectively transformed a two point boundary value problem into a system of nonlin-
ear equations, which are solved by Brown’s method as well as Powell’s method of unconstrained
optimization and the results are shown in Fig. 8 for different Reynolds numbers. Results shown in
figures reveal that the magnitude of pressure gradient ∆P , increases with x/h for fixed entrance
Reynolds number Reent = 1000. The effect of slip coefficient ϕ, at the porous (membrane) wall is
to decrease ∆P , and also the larger the values of ϕ, the greater the reduction in the value of ∆P .
This behavior is connected with the diminution in the shear stress at the membrane surface. Also it
is observed that, an increase in Rew will result in a decrease in ∆P .

The mass transfer equation (12) is analyzed using finite difference scheme and obtain concen-
tration profiles c/c0. In Fig. 9, we present the solution of the above Eq. (12), plotted for different
slip coefficients, ϕ = 0, 0.005, 0.01, 0.05. The results agree with the earlier investigation(Chellam
et al. [8]) and extend its validity for much larger values of Rew. It is noted that the presence of a
slip velocity reduces concentration polarization. Thus, the value of c/c0 when ϕ = 0.05 is lower as
compared to the one corresponding ϕ = 0. Also, it is observed that the effect of slip coefficient on
the polarization is to promote diffusive transport of solute molecules from the membrane surface to
the bulk solution. The net effect of this is to reduce polarization and increase flux rates through the
membrane. Hence, the fluid slip will be a useful tool for modeling the fluid mechanics and mass
transfer in dynamic membrane systems.
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In the present paper the forced convection flow of a viscous incompressible
fluid past a uniformly heated slotted wedge has been investigated numerically.
The equations governing the flow and heat transfer are reduced to local similarity
equations, treating ξ = βx/Re2

x, where Rex is the local Reynolds number) as
a local slip variable. The transformed boundary-layer equations are solved nu-
merically using implicit finite difference method for all values of ξ in the interval
[0, 104]. The solutions are also obtained for smaller values of ξ using the pertur-
bation method. Further transformed equations has also been obtained appropriate
for large values of ξ, which then have been integrated by the well established lo-
cal nonsimilarity method. The asymptotic solutions for both smaller and larger
values of ξ, obtained in terms of the local skin-friction and local rate of heat trans-
fer for different pressure gradient m, are found in excellent agreement with that
obtained by the finite difference solutions for all ξ.

* * *

Nomenclature

Cf skin-friction coefficient;
f non-dimensional, reduced stream function;
F non-dimensional stream function f expressed in terms of η;
G non-dimensional, reduced temperature function;
k thermal conductivity of the fluid;
Cp specific heat at constant pressure;
L characteristic length;
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m exponent;
Rel Reynolds number, U∞L/ν;
Nu local Nusselt number;
Pr Prandtl number, να;
T temperature of the fluid;
Tw surface temperature of the wedge;
Tr reference temperature;
T∞ ambient temperature;
ūe(x̄) velocity of the potential flow;
U∞ potential flow velocity;
ū, v̄ velocity components along the x̄, ȳ axes, respectively;
x̄, ȳ Cartesian coordinate measured along the surface of the wedge and normal to it respec-

tively.

Greek symbols

α thermal diffusivity;
β constant defining the included angle πβ of the wedge;
ρ fluid density;
λ ratio between Gr and Re2;
η transformed spatial variable;
µ dynamic viscosity;
ν (µ/ρ) kinematic viscosity;
ψ non-dimensional stream function;
τ non-dimensional, reduced time.

Introduction

It is well known that the skin-friction and heat transfer in two-dimensional, viscous, incom-
pressible laminar flow over wedge-shaped bodies can accurately be calculated by solving the bound-
ary layer differential equations. The momentum boundary layer equation for Falkner – Skan flow
from a wedge, with potential flow velocity ue(x) = xm, was first deduced by Falkner and Skan [1].
The similarity solutions of the flow were later investigated in detailed by Hartree [2]. He obtained
the solutions in terms of velocity distribution for different values of pressure gradient parameter. For
flow over an arbitrary body shape with known pressure or velocity distribution where there exists no
similarity, the skin-friction and heat transfer are conventionally found by an approximate method,
either the integral method or the equivalent wedge flow approximation. Both of these methods
yield sufficiently accurate results for most engineering applications. To apply the equivalent wedge
flow method for the prediction of skin-friction and heat transfer it is necessary to have the solu-
tions of the boundary layer equations for wedge type flows. Koh and Hartnett [3] have obtained
the skin-friction and heat transfer for incompressible laminar flow over porous wedges with suction
subjected to variable wall temperature.

In the boundary layer with the effect of suction/blowing similarity solution is possible only
when the suction/blowing rate is proportional to x(m−1)/2, where x is the distance from the leading
edge and m is the pressure gradient parameter. Koh and Hartnett [3] studied the incompressible
laminar flow over porous wedge with suction and variable wall temperature. The similarity solution
is obtained when the variations of the wall temperature and the suction rate are proportional to
power-law of x. From the practical point of view, the transpiration velocity may be more easily
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realized than with x(m−1)/2. Watanabe [4] investigated thermal boundary layer over a uniform wall
temperature wedge with transpiration velocity in forced flow. Yih [5] extended the above problem
by investigating the heat transfer characteristics in the forced flow over a wedge subjected to uniform
wall heat flux. Hossain et al. [6] investigated the non-Darcy forced convection boundary layer flow
over a wedge embedded in a saturated porous medium. Flow of viscous incompressible fluid with
temperature dependent viscosity and thermal conductivity past a permeable wedge with uniform
surface heat flux has been studied by Hossain et al. [7, 8].

Recently, Laplace and Arquis [9] investigated the boundary layer flow over a slotted plate;
since perforated plates and wire netting occurs in much application of fluid mechanics (such as
perforated wings in order to reduce the turbulence by suction of the boundary layer, filtration or
air-conditioning). These media are often characterized by their pressure drop coefficient which is
mostly determined experimentally. When faced with a tangential flow, no-slip hypothesis is gener-
ally taken and this assumption is no longer valid when the perforation density is sufficiently large. In
a boundary layer flow this will have consequence for the displacement thickness. Working on a ideal
two-dimensional periodic perforated media placed in a purely tangential flow it has been proved by
Laplace and Arquis [9] that the boundary condition dV/dn = βV , introduced by Navier in the
19th century and linking the shear stress at the wall and slip velocity by the coefficient β, applies
to slotted plate. By means of an experimental study, this slip condition (called the Navier condition
hereafter) was revived empirically by Beavers and Joseph [10] for a fluid-porous medium interface.
A theoretical justification for it was given by Saffman [11]. The Navier condition was also used
by Richardson [12], Hocking [13] and recently by Miksis and Davis [14], Tuck and Kouzobov [15]
and by Sarkar and Prosperetti [16] to study tangential viscous fluid flows over periodic or stochastic
rough surfaces.

The purpose of the present paper is the complement to the work of Laplace and Arquis [9] for
the forced convection flow past a uniformly heated slotted wedge. The equations that govern the
flow and heat transfer are reduced to local similarity equations, treating the local similarity variable,
ξ = βx/Re2

x, where Rex is the local Reynolds number). The transformed boundary-layer equations
are solved numerically using implicit finite difference method together with Keller box elimination
technique [17] for all values of ξ in the interval [0, 104]. The solutions are also obtained for smaller
values of ξ using the perturbation method. Inverse transformation has also been implemented to
obtain the associated equations appropriate for asymptotic solution, which then have been integrated
by the local nonsimilarity method of Sparrow et al. [18,19]. The results are expressed in terms of the
local skin-friction and local rate of heat transfer coefficients against ξ for varying pressure gradient
m and depicted graphically. The asymptotic solutions for both smaller and larger values of ξ are
found in excellent agreement with that obtained by the finite difference solutions for all ξ.

1. Formulation of the Problem

A steady two-dimensional laminar boundary-layer flow of a viscous incompressible fluid past a
symmetrical wedge having the surface as slotted (or with partial sleep condition). The inviscid flow
over the wedge develops instantaneously and its velocity is given by

ue(x) = U∞

(
x

L

)m

for m ≤ 1, (1)

where L is a characteristic length and m is pressure gradient related to the included angle πβ by
m = β/(2 − β). It is clear that for negative values of m the solution becomes singular at x = 0,
whilst for m positive the solution can be defined for all values of x, and this leads to a general
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difference between the solutions for the case of m < 0 and m ≥ 0. The physical configuration
considered is as shown in Fig. 1.

We consider that the flow is governed by the following equations:

∂u

∂x
+

∂v

∂y
= 0, (2)

u
∂u

∂x
+ v

∂u

∂y
= ue

∂ue

∂x
+ ν

∂2u

∂y2 , (3)

u
∂T

∂x
+ v

∂T

∂y
=

k

ρCp

∂2T

∂y2 , (4)

where ρ is the density; k is the thermal conductivity; Cp is the specific heat at constant pressure;
ν = µ/ρ is the kinematic viscosity, where µ is the constant viscosity of the fluid in the boundary
layer region.

The boundary conditions for the present problems are

∂u

∂y
= λu, v = 0, T = Tw(x) at y = 0

u = ue(x), T → 0 as y →∞.

(5)

In the boundary condition λ is defined as slip constant. It can be used to express the boundary
behavior of total adhesion (λ = +∞ and therefore u = 0) and of total slip (λ = 0 and that
implies ∂u/∂y = 0). This has been proved by Laplace and Arqus [9] that this partial slip boundary
condition applies to slotted surface.
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We introduce non-dimensional dependent and independent variables according to

x =
x

L
, y = Re1/2

L

y

L
, u =

u

U∞
, v = Re1/2

L

v

U∞
,

ue =
ue

U∞
, T =

Tw − T∞
Tr − T∞

, ReL =
U∞L

ν
.

(6)

The velocity over the wedge is now given by

ue(x) = xm for 0 ≤ m ≤ 1 (7)

and, sufficiently far downstream from the apex, the governing equations (2) – (4) can be written as

∂u

∂x
+

∂v

∂y
= 0, (8)

u
∂u

∂x
+ v

∂u

∂y
= ue

∂ue

∂x
+ ν

∂2u

∂y2
, (9)

u
∂T

∂x
+ v

∂T

∂y
=

1
Pr

∂2T

∂y2
, (10)

The boundary conditions then turn to

∂u

∂y
= su, v = 0, T = 1 at y = 0

u = ue(x) = xm, T → 0 as y →∞,

(11)

where s = βL/Re1/2
L is the slotted (or partial slip) parameter.

The number of independent variables in the governing Eqs. (8) – (10) can be reduced from
three to two by introducing the non-dimensional, reduced stream function F (η, τ) and the non-
dimensional, reduced temperature function G(η, τ) according to,

ψ = x(m+1)/2F (η, ξ), T = G(η, ξ),

η = x(m−1)/2y, ξ = sx(1−m)/2,

(12)

where η is a non-dimensional similarity variable, ξ is termed as the local partial slip parameter and
ψ is the stream function, which is defined in the usual way, namely

u =
∂ψ

∂y
and v = −∂ψ

∂x
.

Substituting the transformation (12) into Eqs. (9) and (10), we obtain:

F ′′′ +
m + 1

2
FF ′′ + m(1− F

′2) =
1−m

2
ξ

[
F ′

∂F ′

∂ξ
− F ′′

∂F

∂ξ

]
, (13)

1
Pr

G′′ +
m + 1

2
FG′ =

1−m

2
ξ

[
F ′

∂G

∂ξ
−G′

∂F

∂ξ

]
. (14)
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The boundary conditions to be satisfied by the above equations are

F (0, ξ) = 0, F ′′(0, ξ) = ξF ′(0, ξ), G(0, ξ) = 1

F ′(∞, ξ) = 1, G(∞, ξ) = 0.

(15)

In this above equations, prime denotes differentiation of the functions with respect to η.

Taking m = 0 and neglecting terms with ξ from the right sides of Eqs. (13) and (14) one
reaches to the equations investigated by Laplace and Arquis [9] for the case of a flat slotted surface.

In practical applications, two quantities of physical interest to be determined are surface shear
stress and the rate of heat transfer at the surface, which may be obtained in terms of the local skin
friction

Cf = 2τw(x)/ρu2
e (16)

and the local Nusselt number
Nu = qw(x)x/k(Tw − T∞), (17)

where

τw(x) = µ

(
∂u

∂y

)

y=0

and qw(x) = −k

(
∂T

∂y

)

y=0

(18)

are the surface shear stress and the surface heat flux, respectively.

By introducing the non-dimensional variables Eq. (6) and the transformation Eq. (12), the skin
friction coefficient, CfRe1/2

x and the local Nusselt number, NuRe1/2
x are given by,

1
2
CfRe1/2

x = ξF ′(0, ξ), (19)

NuRe1/2
x = −G(0, ξ). (20)

Once we know the values of F ′(0, ξ) and G′(0, ξ) from the solutions of the governing equa-
tions (13) – (15) we get the values of the skin friction coefficient and the local Nusselt number
from the relations (19) and (20).

It should be mentioned here for flat slotted surface that had been investigated by is obtained by
taking m = 0 and neglecting the right hand terms of the Eq. (13), and that is

F ′′′ +
1
2
FF ′′ = 0. (21)

The boundary conditions to be satisfied by the above equations are

F (0, ξ) = 0, F ′′(0, ξ) = ξF ′(0, ξ), F ′(∞, ξ) = 1. (22)

It can be seen that, for the slotted surface, the function does not depend not only the similarity
variable η, it also depends implicitly on ξ and that’s why in the present investigation we have con-
sidered the stream function F as a function of η and ξ and so is the case with temperature function,
G that ultimately gave better results than that had been obtained by Laplace and Arquis [9]. Here we
revisit the problem posed through Eqs. (21) and (15), than those proposed by Laplace and Arquis
and the results thus obtained in terms of local skin-friction coefficients have been compared in Fig. 2
with the solutions obtained from the present considerations. One can see that the present solutions
are better than that obtained in [9], since from the present transformed local nonsimilarity equations
one can reach to the asymptotic solution at large ξ that corresponds to the Falkner – Skan flow and
heat transfer (that one can see easily from Fig. 3.
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Fig. 2. Comparison on the solutions of Eq. (21) with that of Eq. (13),
while m = 0 satisfying the prescribed boundary conditions.
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Fig. 3. Numerical values for different values of m against ξ:
a) skin-friction coefficient F ′′(0, ξ), b) coefficient of local rate of heat transfer −G′(0, ξ).

2. Solution Methodologies

The nonlinear system of partial differential equations (16) and (17) that govern the flow have
been integrated employing the implicit finite difference method (FDM) together with the Keller-
box scheme (details of this method had been discussed elaborately by Cebeci and Bradshaw [17]).
To employ this method, the Eqs. (16) and (17), first, are written in terms of first order equations
in η, which are then expressed in finite difference form by approximating the functions and their
derivatives in terms of there central differences in both coordinate directions. Denoting the mesh
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points in the (η, ξ) plane by ξi and ηj , where i = 1, 2, 3, . . . , M and j = 1, 2, 3, . . . , N , central
difference approximations are made such that the equations involving x explicitly are centered at
(ξi−1/2, ηj−1/2) and the remainder at (ξi, ηj−1/2), where ηj−1/2 = (ηj + ηj−1)/2, etc. This
results in a set of nonlinear difference equations for the unknowns at xi in terms of their values
at ξi−1. These equations are then linearized by the Newton’s quasilinearization technique and are
solved using a block-tridiagonal algorithm, taking as the initial iteration of the converged solution
at ξ = ξi−1. Now to initiate the process at ξ = 0, we first provide guess profiles for all five variables
(arising the reduction to the first order form) and use the Keller-box method to solve the governing
ordinary differential equations. Having obtained the lower stagnation point solution it is possible
to march step by step along the boundary layer. For a given value of x, the iterative procedure is
stopped when the difference in computing the velocity and the temperature in the next iteration is
less than 10−6, i. e., when |δf i| ≤ 106, where the superscript denotes the iteration number. The
computations were not performed using a uniform grid in the η direction, but a non uniform grid was
used and defined by ηj = sinh(j − 1)/a, with j = 1, 2, . . . , 301 and a = 100 to get ηmax = 10.02.
On the otherhand in ξ direction the grid length has been chosen as ∆η = 10−5. To initiate the
solutions for increasing values of ξ the initial profile has been taken from the solution of Eqs. (25)
and (26) together with the boundary conditions given in Eq. (27).

In what follows we discuss the solutions of the present problem for small and large values
of the local slip parameter, ξ. For small values of ξ the regular perturbation method has been
employed treating ξ as small and for large ξ values the governing equations have been transformed
to a different set of partial differential equations that are suitable for large ξ values. The resulting
equations are then integrated using the local nonsimilarity method.

2.1. Solutions for small ξ. For small values of ξ we consider that the function posses the
following form

F (η, ξ) =
∞∑

i=0

ξiFi(η) and G(η, ξ) =
∞∑

i=0

ξiGi(η). (23)

For convenience, we assume that

p1 =
1 + m

2
, p2 = m, p0 =

1−m

2
. (24)

Substituting the transformation (12) into Eqs. (9) and (10), and equating the coefficients of ξi, we
may get the following sets of equations:

F ′′′0 + p1F0F
′′
0 + p2(1− F

′2
0 ) = 0, (25)

1
Pr

G′′0 + p1F0G
′
0 = 0. (26)

The boundary conditions to be satisfied by the above equations are

F0 = 0, F ′′0 (0) = 0, G0(0) = 1

F ′0(∞) = 1, G0(∞) = 0
(27)

and for i ≥ 1 the equations are

F ′′′i +
k∑

i=1

(p1 + kp0)FiF
′′
k−i −

k∑

i=1

(p2 + kp0)F ′iF
′
k−i = 0, (28)
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1
Pr

G′′i +
k∑

i=1

[
(p1 + kp0)FiG

′
k−i − kp0F

′
iGk−i

]
= 0. (29)

Corresponding boundary conditions should be as follows:

Fi(0) = 0, Fi(0)′′ = Fi−1(0), Gi(0) = 0

F ′i (∞) = 0, Gi(∞) = 0.

(30)

Solutions of the set of Eqs. (25) and (26) are obtained using the standard shooting method, and
the later sets (28) and (29) are solved using the method of superposition. For different values of
m while Pr = 1. Usually, one calculates only a few terms of a perturbation expansion, that is,
two or three. But here we have taken the terms up to 16. Results thus obtained in terms of local
skin-friction coefficient and the local heat transfer coefficients are shown graphically in the Figs. 3a
and b, respectively.

2.2. Solutions for large ξ. Now we shall give attention to the behavior of the solution of
Eqs. (13) and (15) when ξ is large. The boundary conditions Eq. (15) suggest that at large ξ the flow
should be as that of the Falkner – Skan flow. Accordingly we simply introduce the new variable
ζ = 1/ξ in place of ξ in the equations through Eqs. (13)- (15) and get the following relations:

F ′′′ +
m + 1

2
FF ′′ + m(1− F

′2) =
m− 1

2
ζ

[
F ′

∂F ′

∂ζ
− F ′′

∂F

∂ζ

]
, (31)

1
Pr

G′′ +
1 + m

2
FG′ =

m− 1
2

ζ

[
F ′

∂G

∂ζ
−G′

∂F

∂ζ

]
. (32)

The boundary conditions to be satisfied by the above equations are

F (0, ξ) = 0, F ′(0, ξ) = ζF ′′(0, ξ), G(0, ξ) = 1

F ′(∞, ξ) = 1, G(∞, ξ) = 0.

(33)

It can be seen clearly that for = 0, above set of equations take the form of that of Falkner – Skan
flow and heat transfer. To get better results, instead of perturbation solutions, with a little effort we
employ here the local non-similar method.

The local nonsimilarity method initiated by Chen and Sparrow [18] and has since been applied
by many investigators to solve various non-similarity boundary value problems, such as, Minkowycz
and Sparrow [19] and Hossain et al. [6–8]. A brief formulation of the systems of equations for the
local nonsimilarity models, with reference to the present problem, will be demonstrated below now.

Using this non-similarity approach we have the following equations:

F ′′′ + p1FF ′′ + p2(1− F
′2)− p0ζ [F ′f ′ − F ′′f ] = 0, (34)

1
Pr

G′′ + p1FG′ − p0ζ [F ′g −G′f ] = 0, (35)

f ′′′ + p1Ff ′′ + (p1 − p0)F ′′f + (2p2 − p0)F ′f ′ + p0ζ
[
f
′2 − f ′′f

]
= 0, (36)
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1
Pr

g′′ + p1Fg′ + (p1 − p0)G′f − p0ζ [f ′g − g′f ] = 0. (37)

The boundary conditions to be satisfied by the above equations are

F (0, ζ) = 0, F ′(0, ζ) = ζF ′′(0, ζ), G(0, ζ) = 1,

F ′(∞, ζ) = 1, G(∞, ζ) = 0;
(38)

f(0, ζ) = 0, f ′(0, ζ) = F ′′(0, ζ) + ζf ′′(0, ζ), g(0, ζ) = 1,

f ′(∞, ζ) = 1, g(∞, ζ) = 0.

(39)

Here we have introduced the new variables as defined below:

f =
∂F

∂ζ
and g =

∂G

∂ζ
(40)

and obtained the equations up to second level of truncation, neglecting terms of ∂f/∂ζ and ∂g/∂ζ
as well as that of the higher order derivatives for the functions F and G with respect to η.

However, solutions of the set of four equations (34) – (37) are obtained subject to bound-
ary conditions Eq. (38) using the Nachtsheim and Swigert iteration technique of Nachtsheim and
Swiegert [20] together with sixth order implicit Runge – Kutta – Butcher method. Results thus ob-
tained in terms of the coefficients of local skin-friction, F ′′(0, ξ), and local Nusselt number, G′(0, ξ)
are for different values of the potential flow parameter m.

3. Results and Discussion

Here we have investigated the problem of forced flow and heat transfer of a viscous incom-
pressible fluid past a slotted wedge with uniform surface temperature. Solutions are obtained for
fluids having Prandtl number, Pr = 1.0 against the local slotted parameter, ξ. We depicted the nu-
merical values of F (0, ξ) in Fig. 3a for m = 0, 0.25, 0.5, 0.75. In this figure we also presented the
numerical values of F (0, ξ) obtained by the extended series solutions obtained for small ξ values
and also that obtained by the local nonsimilarity method applied for the problem derived appropriate
for large values of ξ. It can be seen that these solutions are in excellent agreement, for both small
and large values of ξ, with that we obtained for entire values of ξ obtained by the implicit finite
difference for all values of the pressure gradient parameter m. The similar observation can also be
seen in case of the corresponding heat transfer case which has been depicted in Fig. 3b.

From this figure we observe that the value of the skin-friction coefficient, F (0, ξ), increases due
to the increase of pressure gradient parameter, m, for the fluid of different Prandtl number, Pr. This
is expected, since increase in the value m leads to increase the pressure gradient in the boundary
layer and thus for higher pressure gradient the surface skin-friction will rise. It may further be
observed that as the value of local slip parameter ξ increases, the numerical value of the local skin-
friction lead to increase and approaches to the asymptotic values. The asymptotic values of the
skin-friction coefficients are 0.33205, 0.6754, and 0.8997 that corresponds to the values of m = 0,
0.25, and 0.5.

For different values of the pressure gradient parameter m the numerical values of the local rate
of heat transfer coefficients G(0, ξ) are shown graphically in Fig. 3b against the values of ξ. In this
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Fig. 4. Dimensional field profiles for m = 0 and 0.25 at different values of ξ against η::
a) velocity u(η, ξ)/U , b) temperature θ(η, ξ).

case also we observe that there is an increase of the value of the rate of heat transfer coefficient
G(0, ξ), owing to increase in the pressure gradient parameter m. We further observe that, at every
value of the parameter m, the value of the rate of heat transfer coefficient G(0, ξ), decreases due to
increase in the value of local slip parameter ξ and approaches to the respective asymptotic values as
shown in the Fig. 3b. The asymptotic values of the rate of heat transfer coefficient are 0.332057 for
m = 0, 0.25, 0.5 and 0.75, respectively.

Fig. 4a depicts the velocity profile for different values of ξ (0.25, 0.5, 1.25, 2.5, 7.25) while
m = 0 and 0.25. From graph it can be seen that increase in the value of slip parameter ξ leads to
decrease in the velocity profile near the surface of the wedge but at larger values of ξ the surface
will act as slip free surface and hence the velocity field will act as that case of no-slip boundary
condition F ′(0) = 0.

Finally, we have shown the temperature profiles, for fluid having Pr = 1, for different values of
the local slip parameter ξ as mentioned before (Fig. 4b). Here one can observe that the temperature
profile decreases owing to increase in the value of the local slip parameter, ξ. We further observe,
as we have in case of velocity profile, further increase of the value of ξ will to the case of the
temperature field with non-slip boundary condition of the on the surface of the wedge. In this figure
affect of the pressure gradient parameter m on the temperature field has also been shown. This can
be observed that an increase of the parameter m leads to decrease in the temperature field in the
boundary layer region, since there is rise in the heat transfer from the surface with the increase of
the pressure gradient parameter.

Conclusions

In the present investigation, flow of a viscous fluid and heat transfer from a wedge with partial
slip (slotted) condition at the surface has been considered. The reduced equations governing the
flow have been derived as local nonsilmiarity equations with respect to the local variable, ξ, the
local slip parameters. Solutions of these equations are obtained employing three methods, namely,
the perturbation method for small ξ, asymptotic solutions for large ξ using the local nonsimilarity
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method and the finite difference method for entire region of ξ values. The present work not only
augmented to what has been presented in [9] in application of their theory for Blasius flow, it further
extends to the case of perforated wedge and includes the heat transfer phenomena due to uniformly
heating of the wedge.

Following conclusions can be obtained from the present investigation.

1. It is observed that the friction coefficient increases with increase of pressure gradient, which
is expected for the increase of m.

2. Another important observation is that with the increase of local slip parameter, the skin-
friction increases and approaches to its no-slip asymptotic values.

3. We further notice that the rate of heat transfer coefficient also increases due to increase in the
value of the local slip parameter.
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