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With inverse problems there are often several unknown distributed parameters of which only one may be of interest.
Since assigning incorrect fixed values to the uninteresting parameters usually leads to a severely erroneous model, one
is forced to estimate all distributed parameters simultaneously. This may increase the computational complexity of the
problem significantly. In the Bayesian framework, all unknowns are generally treated as random variables and estimated
simultaneously and all uncertainties can be modeled systematically. Recently, the approximation error approach has
been proposed for handling uncertainty and model-reduction-related errors in the models. In this approach approximate
marginalization of these errors is carried out before the estimation of the interesting variables. In this paper we discuss
the adaptation of the approximation error approach to the marginalization of uninteresting distributed parameters. As
an example, we consider the marginalization of scattering coefficient in diffuse optical tomography.
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1. INTRODUCTION

There are several inverse problems in which there are many unknown distributed parameters. Often, only one or a
subset of the unknowns is of main interest. For example, in hydrogeophysics the unknown distributed parameters
may include permittivity, capillarity, and diffusivity [1, 2]. In diffuse optical tomography (DOT), the most important
distributed parameters are the scattering and absorption coefficients [3]. Of these, at least in biomedical applications,
the absorption coefficient is the one of interest since it is related to the oxygenization level of tissues [4]. In these
applications, the scattering coefficient is considered as a nuisance parameter. The scattering coefficient, however, has
to be estimated simultaneously due to the so-called crosstalk of the coefficients [3].

The simultaneous estimation of two distributed parameters is naturally a more unstable problem than estimating
either of these if the other were known. In addition, with nonlinear problems the convergence of algorithms is a further
problem. With applications which are eventually meant to be almost real time ones, such as biomedical optical tomog-
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raphy, it is of major interest to reduce the computational times as much as possible. Thus, in addition to estimating
the interesting parameters only, there is usually pressure to also use otherwise heavily reduced computational models.

The approximation error approach was introduced in [5, 6] originally to handle pure model reduction errors.
For example, in electrical impedance (resistance) tomography (EIT, ERT) and deconvolution problems, it was shown
that significant model reduction is possible without essentially sacrificing the quality of estimates. With EIT, for
example, this means that very low dimensional finite element approximations can be used. Later, the approach was
also applied to handle other kinds of approximation and modeling errors as well as other inverse problems. Model
reduction, domain truncation, and unknown anisotropy structures in diffuse optical tomography were treated in [7–
10]. Missing boundary data in the case of image processing and geophysical ERT/EIT were considered in [11] and
[12], respectively. In [13–15] the problem of recovery from simultaneous geometry errors and model reduction was
found to be possible.

The approximation error approach was extended to nonstationary inverse problems in [16] in which linear non-
stationary (heat transfer) problems were considered, and in [17] and [18] in which nonlinear problems and state space
identification problems were considered, respectively. The earliest similar but partial treatment within the framework
of nonstationary inverse problems was considered in [19], in which the the boundary data that is related to stochastic
convection diffusion models was partially unknown. A modification in which the approximation error statistics can
be updated with accumulating information was proposed in [20] and an application to hydrogeophysical monitoring
in [21].

From pure model reduction and unknown (nondistributed) parameters or boundary data, a step forward was
recently considered in [22] in which the physical forward model itself was replaced with a (computationally) much
simpler model. In [22], the radiative transfer model (Boltzmann transfer equation), which is considered to be the most
accurate model for light transfer in (turbid) media, was replaced with the diffusion approximation. It was found that
also in this kind of case, the statistical structure of the approximation errors enabled the use of a significantly less
complex model, again simultaneously with significant model reduction for the diffusion approximation. But also here,
both the absorption and scattering coefficients were estimated simultaneously.

The approximation error approach relies on the Bayesian framework of inverse problems, in which all unknowns
are explicitly modeled as random variables [5, 23, 24]. The uncertainty in the unknowns is given in the models and
measurements is reflected in the posterior (probability) distribution. In the Bayesian framework, all unknowns are
subject to inference simultaneously, which often results in excessively heavy computational loads. Generally, Markov
chain Monte Carlo algorithms have to be used to obtain a representative set of samples from the posterior distribution.
Then, after a set of samples has been computed, marginalization over the uninteresting unknowns is trivial. Only
in a few special but important cases, such as the additive error model, some of the uninteresting unknowns can be
eliminated before inference. We refer to such elimination as premarginalization.

In the present paper we consider the approximation error approach in the context of approximate premarginaliza-
tion of uninteresting distributed parameters. Furthermore, we also consider the simultaneous treatment of the errors
that are related to model reduction. As a computational example, we consider the approximate premarginalization of
the scattering coefficient in diffuse optical tomography. This example shows that at least in this case it is possible to
premarginalize over one distributed parameter and successfully estimate another.

The rest of the paper is structured as follows. In Section 2 we give a brief account of the approximation error
approach and its formulation for the case of several distributed parameters. In Section 3 we describe the diffuse
optical tomography problem. In Section 4, numerical examples of reconstructing the scattering coefficient in optical
tomography with different degrees of severity are treated.

2. APPROXIMATION ERROR APPROACH

In the Bayesian framework for inverse problems, all unknowns are treated and modeled as random variables [5, 23, 24].
Once the probabilistic models for the unknowns and the measurement process have been constructed, theposterior
distributionπ(x | y) is accessed, which reflects the uncertainty of the interesting unknownsx given the measurements
y. This distribution can then be explored to answer all questions which can be expressed in terms of probabilities. For
general discussion of Bayesian inference (see, for example, [25, 26]).

International Journal for Uncertainty Quantification



Marginalization of Uninteresting Distributed Parameters 3

Bayesian inverse problems are a special class of problems in Bayesian inference. Usually, the dimension of a
feasible representation of the unknowns is significantly larger than the number of measurements. Thus, for example,
a maximum likelihood estimate is impossible to compute. Even in cases in which the number of unknowns would be
significantly smaller than the number of measurements, the structure of the forward problem is such that maximum
likelihood estimates would still be unstable. In addition to the instability, the variances of the likelihood model are
almost invariably much smaller than the variances of the prior models. The posterior density is often extremely narrow
and, in addition, may be a nonlinear manifold.

2.1 Marginalization Over Additive Errors

In the approximation error approach, the modeling and other errors are treated as additive errors. Therefore, we review
briefly how the additive errors are formally premarginalized [5]. Let the observation model be

y = Ā(x) + e (1)

wheree are the additive errors andx 7→ Ā(x) is the deterministic forward model. With deterministic we mean that
the modelĀ does not contain any uncertainties or other model errors. Let the jointprior distributionof the unknowns
x ande beπ(x, e). Using the Bayes’ theorem repeatedly, we can decompose the joint distribution of all associated
random variables as

π(y, x, e) = π(y |x, e)π(e |x)π(x) (2)

= π(y, e |x)π(x) (3)

In the case of the additive model (1), the conditional distributionπ(y |x, e) is formally given by

π(y |x, e) = δ(y − Ā(x)− e)

which yields thelikelihood distribution

π(y |x) =
∫

π(y, e |x) de = (4)

=
∫

δ(y − Ā(x)− e)π(e |x) de (5)

= πe | x(y − Ā(x) |x) (6)

and further,1 noting that once the measurements have been obtained,π(y) > 0 is a fixed normalization constant, we
have the posterior distribution

π(x | y) ∝ π(y |x)π(x) (7)

= πe | x(y − Ā(x) |x)π(x) (8)

In the quite common case of mutually independentx ande, we haveπe | x(e |x) = πe(e). Furthermore, ife and
x are normal, we can writeπ(e) = N (e∗, Γe) andπ(x) = N (x∗, Γx) and we have the familiar form

π(x | y) ∝ exp
(
−1

2
(‖Le(y − Ā(x)− e∗)‖2 + ‖Lx(x− x∗)‖2

))
(9)

whereLT
e Le = Γ−1

e andLT
x Lx = Γ−1

x , for the posterior distribution. In the above, the unknown (uninteresting)
additive errore waspremarginalized, that is, marginalized before the inference procedure, and is not present in (8) or
(9).
1The subscripts, such ase |x in πe | x, are used to determine the actual probability density function. If the arguments, however,
coincide with the density, we drop the subscripts. For example, we writeπx(x) = π(x) andπe | x(e |x) = π(e |x), but retain the
subscript inπe | x(y − Ā(x) |x). Furthermore, we use the terms density and distribution interchangeably.
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2.2 Approximate Premarginalization Over Model Reduction Related Errors and Other Uncertainties

The problem that is generally related to uninteresting auxiliary unknownsξ is that we usually cannot perform pre-
marginalization such as in Eqs. (5) and (6). In most cases we have to estimate bothx andξ, which may be a con-
siderably more demanding undertaking than estimating justx whenξ were known. For example, if a Markov chain
Monte Carlo (MCMC) approach were used, the marginalization overξ can only be done after running the chain for
bothx andξ. Once this is carried out, however, the marginalization overξ is trivial. For MCMC methods in general
(see, for example, [27, 28]). For MCMC and inverse problems, see [29–31] for applications to EIT. In this section we
discuss the computational procedure in more detail in the case in which there are two distributed parameters of which
premarginalization over the other one is to be carried out.

Now let the unknowns be(x, z, ξ, e), where againe represents additive errors andξ represents auxiliary uncer-
tainties such as unknown boundary data, and(x, z) are two distributed parameters of whichx is of interest only. The
accurate forward model

(x, z, ξ) 7→ Ā(x, z, ξ) (10)

is usually a nonlinear one. The uncertaintiesξ can sometimes be modeled to be mutually dependent with(x, z),
especially whenξ represents boundary data on the computational domain boundary and(x, z) are modeled as random
fields. On the other hand, ifξ represents an unknown boundary shape,ξ might be modeled as mutually independent
with (x, z). In the following we consider the case in which the noisee is additive and the unknowns(x, z, ξ) are not
necessarily mutually independent.

Let

y = Ā(x̄, z, ξ) + e ∈ Rm

denote an accurate model for the relation between the measurements and the unknowns,2 and lete be mutually
independent with(x, z, ξ).

In the following we approximate the accurate representation of the primary unknownx̄ by x = Px̄, whereP
is typically a projection operator. Letπ(x, z, ξ, e) be a feasible model for the joint distribution of the unknowns. We
identify x = Px̄ with its coordinates in the associated basis when applicable.

In the approximation error approach, we proceed as follows. Instead of using the accurate forward model
(x̄, z, ξ) 7→ Ā(x̄, z, ξ)with (x̄, z, ξ) as the unknowns, we fix the random variables(z, ξ)← (z0, ξ0)and use a com-
putationally (possibly drastically reduced) approximative model

x 7→ A(x, z0, ξ0)

Thus, we write the measurement model in the form

y = Ā(x̄, z, ξ) + e (11)

= A(x, z0, ξ0) +
[
Ā(x̄, z, ξ)−A(x, z0, ξ0)

]
+ e (12)

= A(x, z0, ξ0) + ε + e (13)

where we define theapproximation errorε = ϕ(x̄, z, ξ) = Ā(x̄, z, ξ)− A(x, z0, ξ0). Thus, the approximation error
is the discrepancy of predictions of the measurements (given the unknowns) when using the accurate modelĀ(x̄, z, ξ)
and the approximate modelA(x, z0, ξ0). Note that (13) is exact.

Formally, after the models̄A andA are fixed, we haveπ(ε | x̄, z, ξ) = δ[ε−ϕ(x̄, z, ξ)]. We will later, however,
employ approximative joint distributions and therefore considerπ(ε, x̄, z, ξ) without any special structure. As the first
approximation, we approximateϕ(x̄, z, ξ) ≈ ϕ(Px, z, ξ) and thusπ(ε | x̄, z, ξ) ≈ π(ε |Px, z, ξ). This means that
we assume that the model predictions and thus the approximation error is essentially the same forx̄ asx = Px̄. This
assumption holds for inverse problems in general and for such projections in particular.

2If there are no additive errors, we writee = 0 and consider the other types of errors to be included inξ.
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Proceeding as in Section 2.1, we use the Bayes’ formula repeatedly

π(y, x, z, ξ, e, ε) = π(y |x, z, ξ, e, ε)π(x, z, ξ, e, ε) = δ[y −A(x, z0, ξ0)− e− ε]π(e, ε |x, z, ξ)π(z, ξ |x)π(x)
= π(y, z, ξ, e, ε |x)π(x)

Hence,

π(y |x) =
∫∫∫∫

π(y, z, ξ, e, ε |x)de dε dz dξ =
∫∫

δ[y −A(x, z0, ξ0)− e− ε]

·
[∫∫

π(e, ε |x, z, ξ)π(z, ξ |x)dz dξ

]
de dε =

∫∫
δ[y −A(x, z0, ξ0)− e− ε]π(e, ε|x)de dε

=
∫

πe[y −A(x, z0, ξ0)− ε]πε|x(ε |x) dε (14)

sincee andx are mutually independent, and (14) is a convolution integral with respect toε. In particular, sincee is
mutually independent with(x, z, ξ), e andε are also mutually independent.

At this stage, in the approximation error approach, bothπe andπε|x are approximated with normal distributions.
Let the normal approximation for the joint densityπ(ε, x) be

π(ε, x) ∝ exp

{
−1

2

(
ε− ε∗
x− x∗

)T (
Γεε Γεx

Γxε Γxx

)−1 (
ε− ε∗
x− x∗

)}
(15)

Thus we write
e ∼ N (e∗,Γe), ε |x ∼ N (ε∗,x,Γε|x)

where

ε∗,x = ε∗ + ΓεxΓ−1
xx (x− x∗) (16)

Γε|x = Γεε − ΓεxΓ−1
xx Γxε (17)

Define the normal random variableν so that3 ν |x = e + ε |x
ν |x ∼ N (ν∗|x,Γν|x)

where

ν∗|x = e∗ + ε∗ + ΓεxΓ−1
x (x− x∗) (18)

Γν|x = Γe + Γε − ΓεxΓ−1
x Γxε (19)

Thus, we obtain for the approximate likelihood distribution

y |x ∼ N [y −A(x, z0, ξ0)− ν∗|x,Γν|x]

Since we are after computational efficiency, a normal approximation for the prior model is also conventionally
used:

x ∼ N (x∗,Γx)

Thus, we obtain the approximation for the posterior distribution

π(x | y) ∝ π(y |x)π(x) ∝ exp
[
−1

2
V (x)

]

3With autocovariances, we may notateΓxx = Γx below.
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whereV (x) is the posterior potential

V (x) = [y −A(x, z0, ξ0)− ν∗|x]TΓ−1
ν|x[y −A(x, z0, ξ0)− ν∗|x] + (x− x∗)TΓ−1

x (x− x∗) (20)

= ‖Lν|x[y −A(x, z0, ξ0)− ν∗|x]‖2 + ‖Lx(x− x∗)‖2 (21)

whereΓ−1
ν | x = LT

ν|xLν|x andΓ−1
x = LT

x Lx.

2.3 Computational Considerations

In Section 2.2, we wrote the normal approximation (15) for the joint distribution of(x, ε). Generally, this approxi-
mation is done to make an efficient computation of the maximum a posteriori (MAP) estimate feasible. If the actual
prior model is normal, the marginal distribution ofx induced by (15) coincides with the actual prior model. The prior
modelπ(x̄, z, ξ) does not, however, have to be jointly normal and neither, in particular, does the marginal prior model
π(x̄). In practice, whatever the prior modelπ(x̄, z, ξ) is, a set of samples(x̄(`), z(`), ξ(`)) is usually to be drawn and
the approximation errors

ε(`) = ϕ(x̄(`), z(`), ξ(`)) = Ā(x(`), z(`), ξ(`))− Ā(x(`), z0, ξ0) , ` = 1 . . . nsamp

are then to be computed, wherensamp is the number of draws. The normal approximation forπ(ε, x) is then formed
by settingx(`) = Px̄(`) and computing the mean and joint covariance as sample averages over the ensemble.

In theenhanced error model, one neglects the cross covariance and setsΓεx = 0 (see, for example, [5]). With
the enhanced error model and nonlinear forward problems, we need to estimate the covarianceΓε practically always
by simulations and sample averages. If the prior modelπ(x̄) is Gaussian, however, the covarianceΓx̄ is available in
the first place and in principle, would, not have be computed as a sample average.

Irrespective of what the (original) prior model for the primary unknown is, we note the following: When the
cross covariancesΓεx are employed, the sample average has to be used in practice also forΓx. Although the prior
model covarianceΓx̄x̄ would yield a “better estimate” for the covariance of the reduced order covarianceΓx than a
sample covariance, we might be forced to use the latter because when the sample covariance is computed, the term
Γεε − ΓεxΓ−1

x Γxε is guaranteed to be non-negative definite. If, in addition,Γe has full rank,Γν|x is guaranteed to be
positive definite and the Cholesky factorLν|x exists. But if the prior model covarianceΓx = PΓx̄x̄PT is used, this
condition is not generally met. By the law of large numbers, the condition is met asymptotically but it is impossible
to specify a safe sample size. From the point of view of numerical stability, this is a problem especially when the
approximation errors clearly dominate the additive errors, that is, the case for which the approximation error approach
is targeted in the first place. It is thus advised to use the sample covariance estimate also forΓx.

It is difficult to predict how many draws are needed to compute the mean and joint covariance for(x, ε). Loosely
speaking, this depends generally on (the covariances of) the modelπ(x, z, ξ) and the degree of nonlinearity of̄A.
With relatively small covariances, few draws seem to be enough (see, for example, [12]). In the approximation error
approach, the bottleneck is the computation of the solutions of the full accurate forward modelĀ(x̄, z, ξ). As for
using the full accurate forward model in the inversion with nonlinear problems, we, of course, have to compute this
model along the iteration, but also typically compute the related Jacobian mapping. Thus, the overhead that is related
to the computation of the approximation error statistics often corresponds to the computation of a few MAP estimates
with the full accurate model.

3. DIFFUSE OPTICAL TOMOGRAPHY

Diffuse optical tomography (DOT) is a noninvasive imaging modality in which images of the optical absorption and
scattering within turbid media are derived based on measurements of near-infrared light on the surface of the body (for
reviews see [3, 32]). The DOT problem is an exceptionally challenging inverse problem due to the diffuse nature of
the forward model, and also since the measurements can span 10 orders of magnitude. Furthermore, there are several
unknown distributed parameters involved, of which theabsorption coefficientand the(reduced) scattering coefficient
are usually reconstructed. Both coefficients are usually measured inmm−1.
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The applications of DOT include the detection and classification of tumors from breast tissue, monitoring of
infant brain tissue oxygenation level, and functional brain activation studies. For reviews on clinical applications
(see [4, 33]). The absorption coefficient, which is related to the oxygenation level of blood, is usually the interesting
parameter. In most applications, the scattering coefficient is considered a nuisance parameter. In this paper, our task
is thus to employ the approximation error approach for approximate premarginalization over the inhomogeneous
scattering coefficientz(~r) and reconstruct only the inhomogeneous absorption coefficientx(~r).

In the numerical examples below, we consider cases in which there are no auxiliary unknownsξ of any type.
Thus, we only have the uninteresting distributed parameterz and additive measurement noise to deal with.

3.1 Measurements in Optical Tomography

In the experimental setup of DOT,ms optical fibers are placed on the source positions (surface patches)∂Ωs,k ⊂ ∂Ω
on the boundary of the bodyΩ. The measurements are obtained throughmd optical fibers that are placed in the
detector positions (surface patches)∂Ωm,i ⊂ ∂Ω. A collection of measurements is formed by turning on the sources
one at a time and measuring the light intensity at all measurement locations (for each source). The measurements in
DOT may consist of direct intensity measurements, frequency-modulated amplitude and phase shift measurements,
or time-resolved impulse response measurements.

In this paper, we consider the frequency domain measurement system. In the frequency domain measurements
light from a sinusoidally modulated laser source is guided via the optic fibers to one of the source locations∂Ωs,k

at a time, and the amplitudes and phase shifts of the transmitted light are measured on all the detector locations
∂Ωm,i, i = 1, . . . , md. The measurement vector is thusy ∈ Rm with m = msmd. The inverse problem in DOT is
to estimate a pair of functions(x, z), representing the (spatially inhomogeneous) optical absorption coefficientx(~r)
and the scattering coefficientsz(~r) of the tissues inΩ, given the measurementsy and the forward model for the
measurement process and noise.

3.2 Forward Model

In the context of inverse problems, the modelx 7→ A(x) is referred to as theforward model. We consider DOT
simulations in a diffusive regime where the bodyΩ consists of turbid, scattering dominated media. In such cases the
light transport is commonly modeled with the diffusion approximation (DA) of the radiative transfer equation (RTE)
[3]. The diffusion approximation is also used as transport model in this paper. For further details on the derivation and
properties of the transport models and boundary conditions (see [3, 34, 35]).

We consider the frequency domain system below. Let the light source∂Ωs,k be on andΦk(~r, ω) be the induced
photon density at~r, whereω is the modulation frequency of the light source. The frequency domain version of the
diffusion approximation with the Robin boundary condition is of the form [3, 35]

−∇ ·D(~r)∇Φk(~r, ω) + x(~r)Φk(~r, ω) +
iω
c

Φk(~r, ω) = 0, ~r ∈ Ω (22)

Φk(~r, ω) + 2ζD(~r)
∂Φk(~r, ω)

∂ν
= gk(~r, ω) ~r ∈ ∂Ω (23)

where
D(~r) =

{
3[x(~r) + z(~r)]

}−1

whereD (units [mm]) is the diffusion coefficient,c is the speed of light in the medium,ζ is a parameter that describes
reflection on the boundary,ν is the outward normal vector at∂Ω, andgk(~r, ω) is the boundary source term for source
at∂Ωs,k,

gk(~r, ω) =

{
I on ∂Ωs,k

0 on ∂Ω \ ∂Ωs,k

(24)

whereI is the intensity of the source. The complex-valued fluxρi,k(ω) at the measurement site∂Ωm,i can be written
as the surface integral
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ρi,k(ω) =
∫

∂Ωm,i

1
2ζ

Φk(~r, ω) dS (25)

The collection{ρi,k}, k = 1, . . . ,ms, i = 1, . . . , md is the raw data for the experiment. For numerical reasons,
primarily for the range of measurements, transformed data and the correspondingly transformed forward model are
typically used. Furthermore, the measurement systems are constructed according to these transformations. The exper-
imental systems for frequency domain optical tomography export the log-amplitude and phase shift of the complex
valued (demodulated) raw data. Thus, the measurements can be written

y =
(

Re log(ρ)
Im log(ρ)

)
∈ R2m (26)

and the forward model is transformed accordingly. For different end uses, data with different frequenciesω may be
acquired.

For the numerical realization of the diffusion approximation model (22)–(24), the finite element method (FEM)
is typically used (see, for example, [3, 7]). In the FEM approximation, photon density is approximated in a finite
dimensional basis as

Φh(~r) =
Nn∑

i=1

αiϕi(~r) (27)

whereϕi(~r) are the nodal basis functions of the finite element mesh andNn is the number of nodes in the FEM mesh,
andh is mesh element size parameter.

The absorption and scattering coefficients are written as finite dimensional approximations

x(~r) =
np∑

j=1

xjχj(~r) , z(~r) =
np∑

j=1

zjχj(~r) (28)

whereχj denotes characteristic functions of disjoint elements in the reconstruction mesh. In the following, we identify
the absorption and scattering coefficients and their representations as the coordinates

x = (x1, . . . , xnp)T ∈ Rnp , z = (z1, . . . , znp)T ∈ Rnp

Thus, the solution of the forward problem amounts to the solution ofms complex valuedNn × Nn systems of
equations for one DOT experiment. The FEM-based forward model is thus of the form

y = Ah(x, z) (29)

whereh refers to the discretization level parameter in (27).

3.3 Gaussian MRF Prior Model for Scattering and Absorption Coefficients

In the following, we model(x, z) as mutually independent. As the prior model for bothπ(x) andπ(z), we used a
proper Gaussian smoothness prior, constructed similarly as in [5, 7, 8]. In this construction, the distributed parameter,
sayx, is considered in the form

x(~r) = xin(~r) + xbg(~r)

wherexin(~r) is a spatially inhomogeneous (absorption) coefficient4 with zero mean, andxbg(~r) is a spatially homo-
geneous (background) absorption coefficient with nonzero mean. For the latter, we can writexbg(~r) = qI, whereI is
a vector of ones andq is a scalar random variable with distributionq ∼ N (x∗, σ2

bg,x). With respect to the basis for
x, we have the coordinatesxin ∈ Rnp , I ∈ Rnp , and setxin ∼ N (0,Γin). We model the spatial distributionsxin and

4In the sequel, “in” refers to inhomogeneous, “bg” to background.
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qI as mutually independent, that is, the background is mutually independent with the inhomogeneities. An equivalent
construction forz was considered.

Thus, we have theΓx = Γin,x + σ2
bg,xIIT, Γz = Γin,z + σ2

bg,zIIT and

π(x) = N (x∗I, Γx) , π(z) = N (z∗I,Γz)

In the construction ofΓin,x andΓin,z, the approximate correlation lengths can be adjusted to match the size of the
expected inhomogeneities. (See [5, 7, 8] for details.)

This prior model is a proper distribution, that is, the covariance exists. Traditional smoothness prior models are
improper and samples cannot be drawn from such distributions. The approximation error approach, on the other hand,
is based on computing the statistics ofε over the prior distribution. This is not possible with a prior of unbounded
variances.

In [7] it was found that such a specific construction for the prior model for scattering and absorption coefficients
was exceptionally suitable. This was the case even without the variable background. In [8], the prior described above
with the variable background was shown to be feasible also for real data.

4. NUMERICAL STUDIES

We evaluate the approximate premarginalization by the approximation error approach with three two-dimensional
numerical examples. In the first one, we study only the errors that are related to marginalization over the scattering
coefficient using an otherwise accurate forward modelĀ(x, z0). Thus, numerical model reduction errors are not
present. The second example is similar, but the prior model for the scattering coefficient is somewhat off in the sense
that the actual background of scattering differs from the modeled one inĀ(x, z0). In the third example, the numerical
model reduction is included, that is, we use the modelA(x, z0).

In the following we explain the common details for the numerical examples.

4.1 Computational Forward Models and Prior Model

In the numerical studies, the domainΩ ⊂ R2 is a circle with radius 25 mm. The measurement setup consists of
ms = 32 sources andmd = 32 detectors, located at equispaced intervals on the boundary∂Ω. With this setup, the
number of log-amplitude and phase measurements is2m = 2048.

The simulated measurement data is computed with the FEM approximation of the diffusion approximation model
in a meshM1 which is dense enough to consider the solution as the solution of the problem (22)–(24). Two other
finite element meshes and models are constructed, the (relatively) accurate[M2, Ā(x, z)] and the radically reduced
one[M3, A(x, z)] (see Table 1). The actual simulated measurement data was obtained by adding mutually indepen-
dent (non-identically distributed) noiseσe,j = δ|y∗,j |/100 with δ = 0.5, that is, the error level was 0.5% of the
respective noiseless measurement. Thus, the (instrument) noise is additive and independent, identically distributed,
but the individual variances are not equal, that is, the covarianceΓe is diagonal but the diagonal entries are not equal.

For the reconstruction basis in (28) for the coefficients(x, z) in the inverse problem, we divide the domainΩ into
np = 1904 square pixels for both the accurate and approximate models. Thus we haveP = I, x̄ = Px = x, and the
parameter vectors̄x, z ∈ R1904. HavingP : Rn 7→ Rm wherem ¿ n has an impact mainly whenm is very small,

TABLE 1: The FEM meshes used in the simulations:Nn

is the number of nodes andNe is the number of triangular
elements in the mesh.

Mesh Use Nn Ne

M1 Simulation of measurements12,853 25,326
M2 Accurate forward model 11,329 22,302
M3 Reduced forward model 703 1326
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and less with havingm ¿ n. An exception is poor (initial) modeling, that is, if the accurate representationx̄ is a poor
approximation for the reality.

The prior model was constructed as in Section 3.3. The parameters for the prior distribution are given in Table 2.
Elementwise, this means that the values of absorption and scatter coefficients are expected to lie within the two
standard deviation intervalsx∗ ± 2σx and z∗ ± 2σz with probability of 95%, with respect to the marginal prior
distributions.

Two draws from the prior modelsπ(x) andπ(z) are shown in Fig. 1. In the draws, the variation of the background
that was part of the construction of the prior model is clearly visible.

4.2 Estimates and Approximation Error Statistics

We compute MAP estimates only by minimizing the respective posterior potentials. The following particular estimates
are computed in the three test cases:

TABLE 2: The parameters for the prior model:
means and the standard deviationsσ for the homo-
geneous background and inhomogeneities. The cor-
relation length for both coefficients was set as 8 mm.

x∗ 10.0 · 10−3 mm−1

σbg,x 1.2 · 10−3 mm−1

σin,x 3.0 · 10−3 mm−1

z∗ 1000 · 10−3 mm−1

σbg,z 120 · 10−3 mm−1

σin,z 300 · 10−3 mm−1

0.001 0.03 0.01 3   

0.001 0.03 0.01 3   

FIG. 1: Two draws from the prior distribution: (left) absorption coefficientsx(~r) and (right) scattering coefficient
z(~r).
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1. MAP-REF—Maximum a posteriori estimate for both parameters(x, z) with the conventional error modely =
Ā(x, z) + e. This estimate is obtained by computing

min
x,z

{‖Le[y − Ā(x, z)− e∗]‖2 + ‖Lx(x− x∗)‖2 + ‖Lz(z − z∗)‖2
}

(30)

and can be considered as a reference estimate in which both distributed parameters are estimated simultaneously.

2. MAP-CEM—Maximum a posteriori estimate for the primary unknownx using fixedz = z∗ and conventional
error modely = Ā(x, z∗) + e, corresponding to

min
x

{‖Le[y − Ā(x, z∗)− e∗]‖2 + ‖Lx(x− x∗)‖2
}

(31)

3. MAP-AEM—Maximum a posteriori estimate forx using fixedz = z∗ and the approximation error model,
corresponding to

min
x

{‖Lν|x[y − Ā(x, z∗)− ν∗|x]‖2 + ‖Lx(x− x∗)‖2
}

(32)

In the above functionals, when the reduced-order model is used, the modelĀ(x, ·) is to be substituted byA(x, ·) [see
the posterior potentialV (x) in (21)].

In the following numerical examples, the realizationz∗ is the mean of the prior modelπ(z). The estimates
(30)–(32) are computed with the Gauss–Newton optimization method with an explicit line search [36].

For the construction of the approximation error statistics, we proceed as follows. The statistics were used only
with MAP with the approximation error model (MAP–AEM) and were computed to correspond to the employed
forward model. The means and covariances for(x, ε) in the approximation error model (15) were estimated by Monte
Carlo simulation. For this, we draw the sets of samples{x(`), ` = 1, . . . , nsamp} and{z(`), ` = 1, . . . , nsamp} from
the prior modelsπ(x) andπ(z), respectively. Using the sets of samples, the realizations of the approximation error
are computed as

ε(`) = Ā(x(`), z(`))− Ā(x(`), z0) , ` = 1 . . . nsamp

for the case whereε is due to using fixedz = z0 only, that is, no model reduction errors are present, and

ε(`) = Ā(x(`), z(`))−A(x(`), z0) , ` = 1 . . . nsamp

for the cases in which both errors from model reduction and using fixedz = z0 are present. The meansx∗ andν∗|x
and the covariancesΓx andΓν|x are then estimated as sample averages using the samples{x(`), ε(`), ` = 1 . . . nsamp}.
In the following examples, we use sample sizensamp = 20, 000.

4.3 Reconstructions

We have three different parametersz: zbg,actual is the actual (unknown distributed) parameter,z∗ is the mean of the
modeled prior distribution, andz0 is the fixed value ofz used in the posterior model. Bothz0 andz∗ can be chosen
separately and we do not need to havez0 6= z∗. Technically, it is possible to optimizez0, but this is not considered
here.

Three reconstruction cases are considered: case 1—marginalization overz only with z0 = z∗, and furthermore,
z0 = zbg,actual; case 2—as in Case 1 but withz0 6= zbg,actual to assess the robustness toward the poor choice of
z0; and case 3—both marginalization overz and numerical model reduction errors are present. The actual spatial
distributions forx andz are blocky targets in a homogeneous background. The probability of the actualx andz with
respect to the prior models is relatively low since they are discontinuous (see top row of any of Figs. 2–4). This is one
of the ways to check the robustness of the approximation error approach against prior model design.

Case 1: Modeling errors caused by using a fixed value forz.—The results for case 1 are shown in Fig. 2. The
actual coefficients(x, z) are shown in the top row. The background values of the target distributions coincide with the
prior means. In particular,zbg,actual = z0.
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Parameters Measurement model x (mm−1) z (mm−1)

Actual

0.002 0.02 0.25 2   

(x, z) Ā(x, z) + e

0.005 0.017 0.03 1.91

x Ā(x, z0) + e

0    0.036

z0 = 1mm−1

x Ā(x, z0) + e + ε

0.006 0.015

z0 = 1mm−1

FIG. 2: Case 1. Rows from top to bottom: actual distributions, MAP-REF estimate (30) for(x, z), MAP-CEM
estimate (31) forx using fixedz0 = z∗ and conventional noise model, and MAP-AEM estimate (32) using fixed
z0 = z∗ and the approximation error model. The modeling error in MAP-CEM and MAP-AEM is caused solely by
using the (incorrect) fixed valuez0 = z∗. Herezbg,actual = z∗ = z0.

The reference estimates MAP-REF for(x, z), computed by minimization of (30), are shown in the second row.
The estimates are computed using the accurate forward modelĀ(x, z), meaning that there are no discretization-related
errors present. The MAP estimate with the conventional error model (MAP-CEM) estimate (31) forx, using the fixed
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valuez = z∗ for the scattering and the conventional noise modely = Ā(x, z∗) + e, is shown in the third row. As can
be seen, the use of incorrect valuez∗ (which is here equivalent to the background scatter) has effectively destroyed the
reconstruction of the absorption coefficientx, although the actualz differs from the modeledz0 only in three small
subdomains.

The fourth row shows the MAP-AEM estimate (32) forx using the same fixedz = z∗ and the approximation
error modely = Ā(x, z∗)+ε+e. The estimate for the absorption is similar to the MAP-REF estimate, but the circular
targets are slightly more blurred and the values of the inhomogeneous targets are slightly more off the actual values
than with the MAP-REF. This is unavoidable in most cases, since the inclusion of the statistics of the approximation
errors increases the variances of their likelihood, which in turn drives the estimates toward the mean of the prior
model.

Case 2: Tolerance against poor choice ofz0.— The results for case 2 are shown in Fig. 3. The estimates are co-
mputed and arranged as in Fig. 2, the only difference being that in Fig. 3 the actual background value of the scattering
target inzbg,actual = 1.5z0, the discrepancy of which corresponds to1.5σz with respect to the prior model.

The decrease of the quality of the MAP-REF is due to using a poor model for the prior (background) mean only.
This is still a reasonable estimate showing all five objects of the actual spatial distributions. The MAP-CEM estimate
is completely useless.

The reconstruction quality in the MAP-AEM estimate is similar to that in Fig. 2. This means that a1.5σz un-
derestimation of the scattering coefficient in the modelA(x, z0) is tolerated well. We also tested a case where the
background of the scattering target was−1.5σz and±2σz away from the meanz0. The MAP-AEM estimate ofx re-
mained similar to the estimate shown in bottom row in Fig. 3, except in the casezbg,actual = z0−2σz. In this case, the
quality of the MAP-AEM estimate decreased significantly, producing a nearly useless estimate. Such misspecification
of the background is not expected in practice, since the estimation of the best spatially homogeneous estimates forx
andz can be done readily if the approximate background values are not known (see [8]). Based on these numerical
tests, the approximate premarginalization with respect to the unknown scattering parameterz is reasonably tolerant
against a discrepancy between the prior model and the fixedz = z0.

Case 3: Combined approximation error caused by fixedz = z∗ and model reduction.— The results for case 3
are shown in Fig. 4. The estimates are computed from the same data that was used in Fig. 2. The only difference
between case 1 and case 3 is that in case 3 the estimates are computed using the reduced forward modelA(x, z0),
with the number of nodes in the FEM approximation beingNn = 1326, instead ofNn = 22, 302 in the accurate
modelĀ(x, z0).

The reference estimate MAP-REF for both unknowns(x, z) was destroyed by the unaccounted for approximation
error caused by use of the reduced FEM model. As with case 2, the MAP-CEM estimate is again useless. On the other
hand, the MAP-AEM estimate with the proposed approach remained similar to case 1, showing that simultaneous
recovery from the use of an incorrect fixed value ofz and model-reduction-related errors is feasible with the proposed
approach.

We did not consider any auxiliary uncertaintiesξ in the above example. In DOT, the principal candidate forξ

is poorly known exterior geometry, but there are also other topics. In clinical applications of optical tomography in
particular, the actual optode locations might be slightly off the modeled locations. Furthermore, the channel amplifi-
cations can only be calibrated up to a constant with, which constant is difficult to estimate.

5. CONCLUSIONS

In this paper we applied the recently proposed approximation error approach for approximate premarginalization
of uninteresting distributed parameters. The approximation error approach is based on the Bayesian framework for
inverse problems. The approximation error approach has earlier been shown to be able to deal with diverse types
of approximation and modeling errors and uncertainties, such as those related to pure model reduction, unknown
boundary data, mismodeled geometry, and use of approximative physical models.

We considered the special case of approximate premarginalization over the inhomogeneous scattering coefficient
in diffuse optical tomography. This is an example of a problem in which there are two or more unknown distributed
parameters, of which only one is of interest. The results for this example problem suggest that the approximation error
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Parameters Measurement model x (mm−1) z (mm−1)

Target

0.002 0.02 0.25 2   

(x, z) Ā(x, z) + e

0.004 0.016 0   2.20

x Ā(x, z0) + e

0   0.12

z0 = 1mm−1

x Ā(x, z0) + e + ε

0.003 0.016

z0 = 1mm−1

FIG. 3: Case 2. Misspecification ofz0. Rows as in Fig. 2. The modeling error in MAP-CEM and MAP-AEM is
caused solely by using a fixed valuez = z0. Herezbg,actual = z∗ + 1.5σz = z0 + 1.5σz.

approach is able to compensate for using an incorrect fixed value for the uninteresting distributed parameter. In this
particular example, the premarginalization was carried over the scattering coefficient, as well as the errors related to
simultaneous reduction of the computational forward model. It was also shown that at least in the studied cases, the
approach is tolerant to a reasonable misspecification of the fixed scattering coefficient.
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Parameters Measurement model x (mm−1) z (mm−1)

Actual

0.002 0.02 0.25 2   

(x, z) A(x, z) + e

0    0.026 0   2.46

x A(x, z0) + e

0    0.040

z0 = 1mm−1

x A(x, z0) + e + ε

0.006 0.016

z0 = 1mm−1

FIG. 4: Case 3. Rows as in Fig. 2. The modeling error in MAP-CEM and MAP-AEM is caused by using a fixed
valuez = z0 and the reduced-order modelA(x, z0) for the forward problem. Herezbg,actual = z∗ = z0.
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We compare the performance of two methods, the stochastic Galerkin method and the stochastic collocation method, for
solving partial differential equations (PDEs) with random data. The stochastic Galerkin method requires the solution of
a single linear system that is several orders larger than linear systems associated with deterministic PDEs. The stochastic
collocation method requires many solves of deterministic PDEs, which allows the use of existing software. However, the
total number of degrees of freedom in the stochastic collocation method can be considerably larger than the number of
degrees of freedom in the stochastic Galerkin system. We implement both methods using the Trilinos software package
and we assess their cost and performance. The implementations in Trilinos are known to be efficient, which allows for
a realistic assessment of the computational complexity of the methods. We also develop a cost model for both methods
which allows us to examine asymptotic behavior.

KEY WORDS: uncertainty quantification, stochastic partial differential equations, polynomial chaos,
stochastic Galerkin method, stochastic sparse grid collocation, Karhunen-Loève expansion

1. PROBLEM STATEMENT

We investigate the linear elliptic diffusion equation with zero Dirichlet boundary conditions, where diffusivity is given
by a random field. IfD is an open subset ofRn and(Ω,Σ, P ) is a complete probability space, then this can be written
as

−∇ · [a(x,ω)∇u(x, ω)] = f(x, ω) (x, ω) ∈ D × Ω (1)

u(x, ω) = 0 (x, ω) ∈ ∂D × Ω.

The random input field is often given as a truncated Karhunen–Loève (KL) expansion [1] or by a polynomial chaos
(PC) expansion [2]. The truncated KL expansion is given by

∗Correspond to Howard C. Elman, E-mail: elman@cs.umd.edu
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a(x,ω) ≈ âM (x, ξ(ω)) = a0(x) +
M∑

k=1

√
λkξk(ω)ak(x), (2)

where(λi, ai) are solutions to the integral equation

∫

D

C(x1, x2)ai(x2)dx2 = λiai(x1), (3)

andC is the covariance kernel of the random field. That is,(λi, ai) are eigenvalues and eigenfunctions of the covari-
ance operatorC defined by

[C(α)] (x1) =
∫

D

C(x1, x2)α(x2) dx2. (4)

The random variables are uncorrelated, mean zero, and are given by

ξk(ω) =
1√
λk

∫

D

[a(x, ω)− a0(x)] ak(x) dx. (5)

We make the further modeling assumption that the random variables{ξk} are independent and admit a joint probabil-
ity density of the formρ(ξ) =

∏M
k=1 ρk(ξk). The covariance kernel is positive semidefinite and its eigenvalues can

be ordered so thatλ1 ≥ λ2 ≥ ... ≥ 0. To ensure the existence of a unique solution to (1) it is necessary to assume that
the diffusion is uniformly bounded away from zero; we assume that there exist constantsamin andamax such that

0 < amin ≤ âM (x,ξ) ≤ amax < ∞, (6)

almost everywhereP -almost surely,̂aM (·, ξ) ∈ L2(D) P -almost surely, and̂fM ∈ L2(Ω)⊗ L2(D).
The goal of this paper is to model the computational costs and compare the performance of the stochastic Galerkin

method [3–7] and the sparse grid collocation method [8–10] for computing the solution of (1) (cf. [11] for related
work). Section 2 outlines the stochastic Galerkin method. Section 3 outlines the sparse grid collocation method.
Section 4 presents our model of the computational costs of the two methods. Section 5 explores the performance of
the methods applied to several numerical examples using theTrilinos software package [12]. Finally, in Section 6 we
draw some conclusions.

2. STOCHASTIC GALERKIN METHOD

DefineΓ = ×M
k=1Γk = ×M

k=1Im(ξk) and let

〈u, v〉 =
∫

Γ

u(ξ)v(ξ)ρ(ξ) dξ =
∫

Ω

u[ξ(ω)]v[ξ(ω)] dP (7)

be the inner product over the spaceL2(Γ) = {v(ξ) : ||v||2L2(Γ) = 〈v2〉 < ∞}. We can define a variational form of (1)
in the stochastic domain by the following: For allx ∈ D, find u(x, ξ) ∈ L2(Γ) such that

−〈∇ · (a∇u), v〉 = 〈f, v〉 (8)

for all v ∈ L2(Γ). This leads to a set of coupled second-order linear partial differential equations (PDEs) in the spatial
dimension. It is common in the literature to combine (8) with a variational formulation of the spatial component of
the problem, which after discretization of both the spatial and stochastic components, leads to the stochastic finite
element method. A variant of this approach, which we use, is to discretize in space by finite differences. Details are
as follows.
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DefineSp to be the space of multivariate polynomials inξ of total degree at mostp. This space has dimension
Nξ = [(M + p)!]/(M !p!). Let {Ψk}Nξ−1

k=0 be a basis forSp orthonormal with respect to the inner product (7).
Substituting KL-expansions fora(x,ω) andf(x,ω) and restricting (8) tov ∈ Sp gives

−
∫

Γ

∇ ·
[
âM (x, ξ)

(
Nξ−1∑

i=0

∇ui(x)Ψi

)]
Ψj dξ =

∫

Γ

f̂MΨj dξ ∀ j = 0 : Nξ − 1. (9)

This is a set of coupled second-order differential equations for the unknown functionsui(x) defined onD, which can
then be discretized using finite differences. This gives rise to a global linear system of the form

A~u = ~f. (10)

In practice the random variables appearing in the KL expansion ofa(x, ω) andf(x, ω) would be different since
the diffusivity and loading terms would typically have different correlation structures. In this case one would expand
a, f , andu as

a(x, ω) ≈ âM (x,ξ) = a0(x) +
M∑

k=1

√
λkξkak(x) (11)

f(x, ω) ≈ f̂M (x, ξ̃) = f0(x) +
M∑

k=1

√
λ̃kξ̃kfk(x) (12)

u(x,ω) ≈ u(x, ξ1, ..., ξM , ξ̃1, ..., ξ̃k), (13)

where λ̃k and ξ̃k are the eigenvalues and random variables appearing in the KL expansion off . For the sake of
simplicity we choose to ignore this issue and proceed as if the random variables appearing in the KL expansion off
anda are the same.

With orderings of~u and ~f (equivalently, the columns and rows of A, respectively) corresponding to a blocking by

spatial degrees of freedom,
(
~uT =

[
uT

1 , uT
2 , · · · , uT

Nξ

])
, the coefficient matrix and right-hand side have the tensor

product structure

A =
M∑

k=0

Gk ⊗Ak, ~f =
M∑

k=0

~gk ⊗ ~fk. (14)

The matrices{Gk} and the vectors{gk} depend only on the stochastic basis,

G0(i, j) = 〈ΨiΨj〉, g0(i) = 〈Ψi〉 = δi0, (15)

Gk(i, j) = 〈ξkΨiΨj〉, gk(i) = 〈ξkΨi〉, (k > 0).

The matrices{Ak} correspond to a standard five-point operator for−∇ · (ak∇u), and{fk} are the associated right-
hand side vectors. In the two-dimensional examples we explore below, we use a uniform mesh of widthh. The discrete
difference operators are formed by using the following five-point stencil




ak

(
x, y +

h

2

)

ak

(
x− h

2
, y

)
ak(x, y) ak

(
x +

h

2
, y

)

ak

(
x, y − h

2

)




. (16)
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The matrixAk is symmetric for allk andA is positive-definite by (6). Since the random variables appearing in (5) are
mean-zero, it also follows from (6) thatA0 is positive-definite.

The matrix A is of orderNxNξ, whereNx is the number of degrees of freedom used in the spatial discretization.
It is also sparse in the block sense due to the orthogonality of the stochastic basis functions. Specifically, since the
random variables{ξk} are assumed to be independent, we can construct the stochastic basis functions{Ψi} by taking
tensor products of univariate polynomials satisfying the orthogonality condition

〈ψi(ξk), ψj(ξk)〉k =
∫

Γk

ψi(ξk)ψj(ξk)ρk(ξk) dξk = δij . (17)

This basis is referred to as the generalized polynomial chaos of orderp. The use of this basis for representing random
fields is discussed extensively in [4] and [7]. The univariate polynomials appearing in the tensor product can be
expressed via the familiar three-term recurrence

ψi+1(ξk) = (ξk − αi)ψi(ξk)− βiψi−1(ξk), (18)

whereψ0 = 1, ψ−1 = 0. It follows that

G0(i, j) = 〈Ψi, Ψj〉 =
M∏

k=1

〈ψik
(ξk), ψjk

(ξk)〉k =
M∏

k=1

δikjk
= δij , (19)

and fork > 0 the entries inGk are

Gk(i, j) = 〈ξkΨi, Ψj〉 = 〈ξkψik
, ψjk

〉k
M∏

l=1,l 6=k

〈ψil
, ψjl

〉l

= (〈ψik+1, ψjk
〉k + αik

〈ψik
, ψjk

〉k + βik
〈ψik−1, ψj〉k)

M∏

l=1,l 6=k

〈ψil
,ψjl

〉l. (20)

ThusG0 is diagonal andGk has at most three entries per row fork > 0. Furthermore, if the density functionsρk are
symmetric with respect to the origin, i.e.,ρk(ξk) = ρk(−ξk), then the coefficientsαi in the three-term recurrence are
all zero andGk then has at most two non-zeros per row.

The stochastic Galerkin method requires the solution to the large linear system (10). Once the solution to (10)
is obtained, statistical quantities such as moments or a probability distribution associated with the solution process
can be obtained cheaply [4]. Although the Galerkin linear system is large, there are techniques available by which
this task can be performed efficiently. We elect to directly solve the large symmetric and positive-definite Galerkin
system using the conjugate gradient (CG) method. CG only requires the evaluation of matrix–vector products so
that it is unnecessary to store the assembled matrix A. The matrix–vector products can be performed implicitly fol-
lowing a procedure described in [13]. Each matrixAk is assembled and the matrix–vector product is expressed as
(Au)j =

∑Nξ−1
i=0

∑M
k=0〈ξkΨiΨj〉(Akui). The termsAkui are precomputed and then scaled as needed. This ap-

proach is efficient since most of the terms〈ξkΨiΨj〉 are zero. The cost of performing the matrix–vector product in
this manner is essentially determined by the computation ofAkui for 0 ≤ k ≤ M and0 ≤ i ≤ Nξ− 1, which entails
(M + 1)Nξ sparse matrix–vector products by matrices{Ak} of orderNx. The implicit matrix–vector product also
only requires the assembly ofM + 1 order-Nx stiffness matrices and the assembly of the components〈ξkΨiΨj〉 of
{Gk}. Alternatively, one could assemble the entire Galerkin matrix and perform the block matrix–vector product in
the obvious way. This is, of course, less efficient in terms of memory usage since it requires the assembly and storage
of many matrices of the form〈ξkΨiΨj〉(Akui). It is also shown in [13] that performing the matrix–vector products
in this way is less efficient in terms of memory bandwidth.

To obtain fast convergence, we will also use a preconditioner. In particular, it has been shown in [14] that an
effective choice is an approximation toA−1

0 ⊗G−1
0 , whereA0 is the mean stiffness matrix. Since the stochastic basis

functions are orthonormal,G0 is the identity matrix. The preconditioner then entails the approximate action ofNξ

uncoupled copies ofA−1
0 . For this we use a single iteration of an algebraic multigrid solver provided by [15].
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3. SPARSE GRID COLLOCATION

An alternative to the Galerkin scheme is the collocation method, which samples the input operator at a predetermined

set of pointsΘ =
{

ξ(1), ..., ξ(n)
}

and constructs a high-order polynomial approximation to the solution function

using discrete solutions to the deterministic PDEs

−∇ ·
[
âM

(
x, ξ(l)

)
∇u

(
x,ξ(l)

)]
= f̂M

(
x,ξ(l)

)
, (21)

where the diffusion coefficients are evaluated at the sample points. Once the polynomial approximation tou is con-
structed, statistical information can be obtained at low cost [10], as for the stochastic Galerkin method.

For simplicity of presentation, we first discuss a collocation method using the full tensor product of one-dimensional
point sets. Let{ψi} be the set of polynomials orthogonal with respect to the measureρk. Let θi = {ξ : ψi(ξ) =

0} :=
{

ξ
(j)
i,k

}i+1

j=1
for i = 1, 2, ..., andj = 1, 2, ..., i. These are the abscissas for an(i)-point Gauss quadrature rule

with respect to the measureρk. A one-dimensional(i)-point interpolation operator is given by

U i(u)(ξ) =
i∑

j=1

u
(
ξ

(j)
i

)
l
(j)
i (ξ), l

(j)
i (ξ) =

i∏

n=1,n 6=j

ξ− ξ
(n)
i

ξ
(j)
i − ξ

(n)
i

. (22)

These can be used to construct an approximation to theM -dimensional random functionu(x, ξ) by defining a tensor
interpolation operator

U i1 ⊗ · · · ⊗ U iM (u)(ξ) =
i1∑

j1=1

· · ·
iM∑

jM=1

u
(
ξ

(j1)
i1

, · · · , ξ
(jM )
iM

)(
l
(j1)
i1

⊗ · · · l(jM )
iM

)
. (23)

The evaluation of this operator requires the solution of a collection of deterministic PDEs (21), one for each sample
point inΘtensor = ×M

j=1θij .
This method suffers from the so-called curse of dimensionality, since the number of sample points|Θtensor| =∏M

j=1 |θij | =
∏M

j=1(ij) grows exponentially with the dimension of the problem. This makes tensor-product collo-
cation inappropriate for problems where the stochastic dimension is moderate or large. This cost can be significantly
reduced using sparse grid methods [10].

Sparse grid collocation methods are based on the Smolyak approximation formula. The Smolyak operatorA(p, M)
is a linear combination of the product formulas in (23). LetY (p,M) = {i ∈ NM : p + 1 ≤ |i|1 ≤ p + M}. Then the
Smolyak formula is given by

A(p,M)(u) =
∑

i∈Y (p,M)

(−1)p+M−|i|1
(

M − 1
p + M − |i|1

)
(U i1 ⊗ · · · ⊗ U iM ). (24)

The evaluation of the Smolyak formula requires the solution of deterministic PDEs (21) forξ(l) in the set of points

Θp,M =
⋃

i∈Y (p,M)

(θi1 × · · · × θiM ). (25)

For moderate or large values ofM , |Θp,M | ¿ |Θtensor|.
If Gaussian abscissas are used in the definition ofθi and if u is anM -variate polynomial of total degreep in ξ,

thenu = A(p,M)u [11]; that is, the Smolyak interpolant exactly reproduces such polynomials.1 We refer to the

1An alternative choice of sparse grid points is to use the Clenshaw–Curtis abscissas with|θ1| = 1 and |θi| = 2i−1 + 1 for
i > 1, which produces nested sparse grids [9, 10, 16]. The choice used here, non-nested Gaussian abscissas with a linear growth
rate,|θi| = i, produces grid sets of cardinalities comparable to those for the nested Clenshaw–Curtis grids, i.e.,|ΘGaussian

p,M | ≈
|ΘClenshaw−Curtis

p,M |.
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parameterp inA(p,M) as the sparse grid level. It is shown in [9] that sampling the differential operator on the sparse
grid Θp,M will produceA(p, M)(u) = up, whereup is an approximate solution to (1) of similar accuracy to the
solution obtained using an orderp stochastic Galerkin scheme. The sparse grid will have on the order of2p more
points than there are stochastic degrees of freedom in the Galerkin scheme,|Θ| ≈ 2pNξ for M À 1 [10].

For a fully nonintrusive collocation method, the diffusion coefficients of (21) would be sampled at the points in
the sparse grid, and for each sample the deterministic stiffness matrix would be constructed for the PDE,

−∇ ·
[
âM

(
x, ξ(l)

)
∇u

(
x,ξ(l)

)]
= f̂M

(
x,ξ(l)

)
. (26)

This repeated assembly can be very expensive. We elect in our implementations to take advantage of the fact that the
stiffness matrix at a given value of the random variable is a scaled sum of the stiffness matrices appearing in (14). For
a given value ofξ the deterministic stiffness matrix can be expressed as

A(ξ) = A0 +
M∑

k=1

ξiAk. (27)

In our implementation we assemble the matrices{Ak} first and then compute the scaled sum (27) at each collocation
point. This is somewhat intrusive in that this method may not be compatible with with existing deterministic solvers;
however, it greatly reduces the amount of time required to perform assembly in the collocation method.

One could construct a separate multigrid preconditioner for each of the deterministic systems. This can become
very expensive, as the cost of constructing an algebraic multigrid (AMG) preconditioner can often be of the same
order as the iterative solution. This repeated cost can be eliminated if one simply builds an algebraic preconditioner
for the mean problemA−1

0 and applies this preconditioner to all of the deterministic systems. If the variance of the
operator is small, then the mean-based AMG preconditioner is nearly as effective as doing AMG on each subproblem
and saves time in setup costs. Other techniques for developing preconditioners balancing performance with the cost
of repeated construction are considered in [16].

4. MODELING COMPUTATIONAL COSTS

From an implementation perspective, collocation is quite advantageous in that it requires only a modest modification
to existing deterministic PDE applications. Collocation samples the stochastic domain at a discrete set of points
and requires the solution of uncoupled deterministic problems. This can be accomplished by repeatedly invoking a
deterministic application with different input parameters determined by the collocation point-sampling method. A
Galerkin method, on the other hand, is much more intrusive as it requires the solution of a system of equations with
a large coefficient matrix which has been discretized in both spatial and stochastic dimensions. To better understand
the relationship between these two methods, we develop a model for the computational costs.

We begin by stating in more detail some of the computational differences between the two methods. The Galerkin
method requires the computation of the matricesG0 = 〈ΨiΨj〉 andGk = 〈ξkΨiΨj〉 associated with the stochas-
tic basis functions, the assembly of the right-hand side vector and the spatial stiffness matrices{Ak}, and finally,
the solution to the large coupled system of equations. Collocation requires the construction of a sparse grid and the
derivation of an associated sparse grid quadrature rule, and the assembly/solution of a series of deterministic subprob-
lems. Further, as observed above, the number of sample points needed for collocation tends to be much larger than the
dimension of the Galerkin system required to achieve comparable accuracy.

In this study we examine only methods which are isotropic in the stochastic dimension, allocating an equal number
of degrees of freedom to each stochastic direction. Anisotropic versions of both the sparse grid collocation method
and the stochastic Galerkin could be implemented by weighting the maximum degree of the approximation space in
each direction. This has been explored in the case of sparse grid collocation [17]. We expect a cost comparison for an
anisotropic stochastic Galerkin method and the anisotropic sparse grid collocation method to be comparable to that
of their isotropic counterparts. Additional modifications to the stochastic collocation for adaptively dealing with very
high dimensional problems are considered in [18, 19]. We do not consider these methods here.
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For a fixedM,p, let ZG be the number of preconditioned conjugate gradient (PCG) iterations required to solve
the Galerkin system, letNξα be the cost of applying the mean-based preconditioner during a single iteration of the
stochastic Galerkin method, and letNξγ be the cost of a single matrix–vector product for (10), whereα andγ are
constants. Note in particular thatα is constant because of the optimality of the multigrid computation. Then the total
cost of the Galerkin method can be modeled by

Galerkin cost = NξZG(α + γ). (28)

The parameterγ can be thought of as the number of order-Nx matrix–vector products required per block row in the
stochastic Galerkin matrix. When implementing the implicit matrix–vector product,γ is equal toM + 1.

We can model the costs of the collocation method with the mean-based multigrid preconditioner by

Collocation cost = ZC2pNξ(α + 1), (29)

wherep is the Smolyak grid level,Nξ is the number of degrees of freedom needed by an orderp Galerkin system,
ZC is the average number of PCG iterations needed to solve a single deterministic system, andα + 1 is the cost of
the preconditioning operation and a single order-Nx matrix–vector product. The factor of2p derives from the relation
between the number of degrees of freedom for the stochastic Galerkin and sparse grid collocation methods for large
M .

In our application, we fix the multigrid parameters as follows: One V-cycle is performed at each iteration and
within each V-cycle one symmetric Gauss–Seidel iteration is used for both presmoothing and postsmoothing. The
coarsest grid is assumed coarse enough so that a direct solver can be used without affecting the cost per iteration;
in our implementations we use a1 × 1 grid. These parameters were chosen to optimize the run time of a single
deterministic solve. The cost to apply a single multigrid iteration is roughly equivalent to 5–6 matrix products (two
matrix–vector products for fine-level presmoothing, another two for fine-level postsmoothing, and one matrix–vector
product for a fine-level residual calculation). Thus,α can be assumed to be5 or 6 after accounting for computational
overhead.

The relative costs of the two methods depend on the parameter values. In particular,

Collocation cost
Galerkin cost

=
(

ZC

ZG

)
2p (α + γ)

(α + 1)
. (30)

If, for example, the ratio of iteration counts(ZG/ZC) is close to1 and the preconditioning costs dominate the matrix
vector costs (i.e.,α À γ), then we can expect the stochastic Galerkin method to outperform the sparse grid collocation
method because of the factor2p. Alternatively, if γ is comparable compared toα, the preconditioning cost, then
collocation is more attractive. The cost of the two methods is identical when (29) and (28) are equal. After canceling
terms this gives2pα ≈ (ZSG/ZC)(α + γ). Table 1 gives values ofNξ and|Θ| for various values ofM andp. One
can observe that2pNξ ≈ |Θ| is a slight overestimation, but it improves asM grows larger. For reference, the number
of points used by a full tensor product grid is also shown.

In the remainder of this paper, we explore the model and assess the validity of assumptions. In particular, we
compare the accuracy of a level-p Smolyak grid with a degree-p polynomial approximation in the Galerkin approach.
We also investigate the cost of matrix–vector products and the convergence behavior of mean-based preconditioning.

5. EXPERIMENTAL RESULTS AND MODEL VALIDATION

In this section we present the results of numerical experiments with both discretization methods, with the aims of
comparing their accuracy and solution costs and validating the model developed in the previous section. First, we
investigate a problem with a known solution to verify that both methods are converging to the correct solution and to
examine the convergence of the PCG iteration. Second, we examine two problems where the diffusion coefficient is
defined using a known covariance function, and we measure the computational effort required by each method.
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TABLE 1: Degrees of freedom for various methods.
Levelp Galerkin Non-zero blocks Tensor grid

sparse grid (Gaussian) per row in
M = 2 |Θ| Nξ Galerkin matrix
p = 1 5 3 2.33 4
p = 2 13 6 3.00 9
p = 3 29 10 3.40 16
p = 4 53 15 3.67 25

M = 10
p = 1 21 11 2.82 1024
p = 2 221 66 4.33 59,049
p = 3 1581 286 5.62 1,048,576
p = 4 8761 1001 6.71 9,765,625

M = 20

p = 1 41 21 2.90 1.04× 106

p = 2 841 231 4.64 3.49× 109

p = 3 11,561 1771 6.22 1.10× 1012

5.1 Behavior of the Preconditioned Conjugate Gradient Algorithm

For well-posed Poisson problems, PCG with a multigrid preconditioner converges rapidly. Since collocation entails the
solution of multiple deterministic systems, we expect multigrid to behave well. For Galerkin systems, the performance
of mean-based preconditioning is more complicated. To understand this we investigate the problem

−∇ · [a(x, ξ)u(x, ξ)] = f(x, ξ) (31)

in the domain[−0.5, 0.5]2 with zero Dirichlet boundary conditions, where the diffusion coefficient given as a one-term
KL expansion,

a(x, ξ) = 1 + σ
1
π2

ξ cos
[π

2
(x2 + y2)

]
. (32)

We choose the function

u = exp(−|ξ|2)16(x2 − 0.25)(y2 − 0.25) (33)

as the exact solution, and the forcing termf is defined by applying (31) tou.
The diffusion coefficient must remain positive for the problem to remain well-posed. This is the case provided

∣∣∣∣σ
1
π2

ξ cos
(π

2
r2

)∣∣∣∣ < 1, (34)

which holds when|ξ| < (π2)/(σ). As a consequence of this, well-posedness cannot be guaranteed whenξ is un-
bounded. There are various ways this can be addressed. We assume here that the random variable in (32) has a
truncated Gaussian density,

ρ(ξ) =
1∫ c

−c
exp(−ξ2

2 ) dξ
exp

(
−ξ2

2

)
1[−c,c], (35)

which corresponds to taking the diffusion coefficient from a screened sample where the screening value c is chosen to
enforce the conditions (1.7) for ellipticity and boundedness. The cutoff parameterc is chosen to be equal to2.575. For
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this cutoff the area under a standard normal distribution between±c is equal to0.99. For this value ofc, |ξ| < 2.575
and the problem is guaranteed to remain well posed provided thatσ < (π2)/[max(|ξ|)] = 3.8329.

Polynomials orthogonal to a truncated Gaussian measure are referred to as Rys polynomials [20]. As the parameter
c is increased, the measure approaches the standard Gaussian measure and the Rys polynomials are observed to
approach the behavior of the Hermite polynomials. For our implementation of collocation, the sparse grids are based
on the zeros of the Rys polynomials for the measure determined by (35). This leads to an efficient multidimensional
quadrature rule using the Gaussian weights and abscissas.

The recurrence coefficients for orthogonal polynomials can be expressed explicitly as

αi =

∫
Γ

ξψi(ξ)2ρ(ξ) dξ∫
Γ

ψi(ξ)2ρ(ξ) dξ
, βi =

∫
Γ

ψi(ξ)2ρ(ξ) dξ∫
Γ

ψi−1(ξ)2ρ(ξ) dξ
. (36)

In the case of Hermite polynomials there exist closed forms for the recurrence coefficients. No such closed form is
known in general for the Rys polynomials so a numerical method must be employed. The generation of orthogonal
polynomials by numerical methods is discussed extensively in [20] and the use of generalized polynomial chaos bases
in the stochastic Galerkin method is discussed in [7]. We compute the coefficients{αi} and{βi} via the discretized
Steltjies procedure [21] where integrals in (36) are approximated by quadrature.

Testing for both the sparse grid collocation method and the stochastic Galerkin method was performed using the
truncated Gaussian PDF and Rys polynomials for several values ofσ. The linear solver in all cases was stopped when
(||rk||2)/(||b||2) < 10−12, whererk = b − Axk is the linear residual andA andb are the coefficient matrix and
right-hand side, respectively. We constructed the sparse grids using theDakotasoftware package [22].

Table 2 reports||〈ep〉||l∞ , the discretel∞-norm of the mean error〈ep〉 evaluated on the grid points. For problems
in one random variable, the stochastic collocation and stochastic Galerkin methods produce identical results. Table 3
shows the average number of iterations required by each deterministic subproblem as a function of grid level andσ.

TABLE 2: Mean error in the discretel∞ norm for the stochastic collo-
cation and stochastic Galerkin methods.

Level/p
σ

1 2 3 4 5
1 0.1856 0.1971 0.2175 0.2466 0.2807
2 0.0737 0.0811 0.0932 0.1095 0.1207
3 0.0245 0.0279 0.0331 0.0389 0.1195
4 0.0070 0.0082 0.0099 0.0121 DNC
5 0.0017 0.0021 0.0026 0.0029 DNC
6 3.7199e-4 4.6301e-4 5.7900e-4 6.7702e-4 DNC
7 7.2002e-5 9.1970e-5 1.1605e-4 4.1598e-4 DNC

TABLE 3: Iterations for the stochastic collocation (left) and stochastic Galerkin methods
(right).

Level
σ

1 2 3 4 5
1 10 10 10.5 11 11
2 10 10.33 10.67 11.33 12.67
3 10 10.5 11 12.25 22
4 10 10.6 11.2 13 DNC
5 10.17 10.5 11.33 13.83 DNC
6 10.14 10.43 11.43 15 DNC
7 10.13 10.63 11.38 16.75 DNC

p
σ

1 2 3 4 5
1 13 15 16 18 21
2 13 17 22 28 38
3 14 19 26 39 140
4 14 20 29 53 DNC
5 14 21 31 69 DNC
6 15 21 33 94 DNC
7 15 21 34 136 DNC
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Problems to the right of the double line do not satisfy (34), and some of the associated systems will be indefinite for
a high enough grid level, as some of the collocation points will be placed in the region of ill-posedness. If the solver
failed to converge for any of the individual subproblems, the method is reported as having failed using “DNC”.

Table 3 shows the PCG iteration counts for both methods. Again, problems to the right of the double line are
ill-posed, and the Galerkin linear system as well as a subset of the individual collocation systems are guaranteed
to become indefinite as the degree of polynomial approximationp (for stochastic Galerkin) or sparse grid level (for
collocation) increases [14]. Table 3 shows that the iteration counts are fairly well behaved when mean-based precon-
ditioning is used. In general, iterations grow as the degree of polynomial approximation increases.

It is well known that bounds on convergence of the conjugate gradient method are determined by the condition
number of the matrix. It is shown in [14] that if the diffusion coefficient is given by a stationary field, as in (32), then
the eigenvalues of the preconditioned stochastic Galerkin system lie in the interval[1− τ, 1 + τ], where

τ = Cmax
p+1

σ

µ

(
M∑

k=1

√
λk||ak(x)||L∞

)
, (37)

andCmax
p+1 is the magnitude of the largest zero of the degreep + 1 orthogonal polynomial. Therefore the condition

number is bounded byκ(A) ≤ [1 + τ]/[1− τ]. It is possible to bound the eigenvalues of a single system arising in
collocation in a similar manner using the relation (27). The eigenvalues of the system arising from sampling (27) atξ

lie in the bounded interval[1− τ̃(ξ), 1 + τ̃(ξ)] where

τ̃(ξ) =
σ

µ

(
M∑

k=1

√
λk||al(x)||L∞ |ξk|

)
. (38)

Likewise, the condition number for a given preconditioned collocation system can be bounded byκ[A(ξ)] ≤ (1 + τ̃)/
(1− τ̃). For both methods, asσ increases relative toµ the associated systems may become ill-conditioned and will
eventually become indefinite. Likewise, asp or the sparse grid level increases,Cmax

p+1 andmaxΘp,M
|ξ| increase and

the problems may again become indefinite. However, ifΓ is bounded then bothCmax
p+1 andmaxΘp,M

|ξ| are bounded
for all choices ofp and the sparse grid level and the systems are guaranteed to remain positive definite, providedσ is
not too large.

The effect of these bounds can be seen in the above examples since asσ increases the iteration counts for both
methods increase until finally for large choices ofσ and largep or grid level the PCG iteration fails to converge.
However, for smaller values ofσ the PCG iteration converges in a reasonable number of iterations for all tested values
of p and grid level.

5.2 Computational Cost Comparison

In this section we compare the performance of the two methods using both the model developed above and the
implementations inTrilinos. For our numerical examples, we consider a problem where only the covariance of the
diffusion field is given. We consider two problems of the form

−∇ ·
{[

µ + σ

M∑

k=1

√
λkξkfk(x)

]
∇u

}
= 1, (39)

where values ofM between3 and15 are explored and{λk, fk} are the eigenpairs associated with the covariance
kernel

C(x1, x2) = exp(−|x1 − x2| − |y1 − y2|). (40)

The KL expansion of this kernel is investigated extensively in [4]. For the first problem, the random variables{ξk} are
chosen to be identically independently distributed uniform random variables on[−1, 1]. For the second problem, the
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random variables{ξk} are chosen to be identically independently distributed truncated Gaussian random variables as
in the previous section. For the first, problemµ = 0.2 andσ = 0.1. For the second problem,µ = 1 andσ = 0.25.
These parameters were chosen to ensure that the problem remains well posed. Table 4 shows approximate values for
τ for both of the above problems. In the second case, where truncated Gaussian random variables are used,1 − τ

becomes close to zero as the stochastic dimension of the problem increases. Thus this problem could be said to be
nearly ill-posed. In terms of computational effort this should favor the sparse grid collocation method, since, as was
seen in the previous section, iteration counts for the stochastic Galerkin method increased faster than those for the
collocation method as the problem approaches ill-posedness. The spatial domain is discretized by a uniform mesh
with discretization parameterh = 1/32. Note that the mean-based preconditioning eliminates the dependence onh of
the conditioning of the problem [14], so we consider just a single value of the spatial mesh parameter.

Approximate solutions are used to measure the error since there is no analytic expression for the exact solution
to either of the above problems. To measure the error for the Galerkin method the exact solution is approximated by
a high order (p = 10) Galerkin scheme. For the collocation method we take the solution from a level-10 sparse grid
approximation as an approximation to the exact solution. These two differed by an amount on the order of the machine
precision. The error in the stochastic space is then estimated by computing the mean and variance of the approximate
solutions and comparing it to the mean and variance of the order-10 (level-10) approximations. The linear solves for
both methods stop when(||rk||2)/(||b||2) < 10−12. In measuring the time, setup costs are ignored. The times reported
are nondimensionalized by the time required to perform a single deterministic matrix vector product and compared
with the model developed above.

Figure 1 explores the accuracy obtained for the two discretizations forM = 4; the behavior was the same for
M = 3 andM = 5. In particular, it can be seen that for both sample problems, the same value ofp (corresponding to
the polynomial space for the Galerkin method and the sparse grid level for the collocation method) in the two methods

TABLE 4: Approximate values ofτ for model problems.

Uniform random variables Truncated Gaussian random variables
M Γi = [−1, 1], σ = 0.1, µ = 0.2 Γi = [−2.576, 2.576], σ = 0.25, µ = 1
3 0.533 0.686
4 0.549 0.708
5 0.566 0.729
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FIG. 1: Errors vs stochastic DOF forM = 4. Uniform random variables (left), and truncated Gaussian random
variables (right).
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produce solutions of comparable accuracy. Thus, the Galerkin method gives higher accuracy per stochastic degree of
freedom. Since the unknowns in the Galerkin scheme are coupled, the cost per degree of freedom will be higher. In
terms of computational effort, the question is whether or not the additional accuracy per degree of freedom will be
worth the additional cost.

Figures 2 and 3 compare the costs incurred by the two methods, measured in CPU time, for obtaining solutions of
comparable accuracy. The timings reflect time spent to execute the methods on an Intel Core 2 Duo machine running
at3.66 GHz with 6 Gb of RAM. In the figures these timings are nondimensionalized by dividing by the cost of a single
sparse matrix–vector product with the (five-diagonal) nonzero structure of{Ak}. This cost is measured by dividing the
total time used by the collocation method for matrix–vector products by the total number of CG iterations performed
in the collocation method. This allows the times to be compared to the cost model (28) and (29), which in turn helps
ensure that the implementations are of comparable efficiency. The model is somewhat less accurate for the collocation
method, because for these relatively low-dimensional models the approximation|Θp,M | = 2pNξ is an overestimate.
For the values ofM used for these results (M = 3, 4, and5), it can be seen that the Galerkin method requires less
CPU time than the collocation method to compute solutions of comparable accuracy, and that the gap widens as the
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FIG. 2: Solution time vs error forM = 3, 4, 5. Uniform random variables.
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FIG. 3: Solution time vs error forM = 3, 4, 5. Truncated Gaussian random variables.

dimension of the space of random variables increases. Also, it is seen in Figs. 2 and 3 that the performance of each
method is largely independent of the density functions used in defining the random variablesξk.

Table 5 expands on these results for larger values ofM , based on our expectation that the same value ofp (again,
corresponding to the polynomial space for the Galerkin method or the level for the collocation method) yields solutions
of comparable accuracy. The trends are comparable for allM and show that as the size of the approximation space
increases, the overhead for collocation associated with the increased number of degrees of freedom becomes more
significant.

6. CONCLUSION

In this study we have examined the costs of solving the linear systems of equations arising when either the stochastic
Galerkin method or the stochastic collocation method is used to discretize the diffusion equation in which the diffusion
coefficient is a random field modeled by (2). The results indicate that when mean-based preconditioners are coupled
with the conjugate gradient method to solve the systems that arise, the stochastic Galerkin method is quite competitive
with collocation. Indeed, the costs of the Galerkin method are typically lower than for collocation, and this differential
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TABLE 5: Solution (preconditioning) time in seconds for second model problem.

Stochastic Galerkin Sparse grid collocation
M = 5 M = 10 M = 15 M = 5 M = 10 M = 15

Level/p = 1 0.058139 0.147306 0.320443 0.068934 0.163258 0.285779
(0.026912) (0.051521) (0.085775) (0.036288) (0.078107) (0.123893)

2 0.269301 1.20465 3.80461 0.532407 2.13126 5.07825
(0.119066) (0.0385744) (1.04111) (0.275829) (0.98289) (2.1247)

3 1.20353 13.1382 51.448 2.41468 16.9871 57.9837
(0.372013) (2.57246) (7.40171) (1.20969) (7.54744) (23.1414)

4 3.50061 53.786 168.112 8.31068 102.595 493.042
(1.1846) (10.1633) (41.325) (4.14521) (44.0484) (193.199)

5 6.510255 117.729 24.5645 515.751
(2.89493) (36.2012) (12.0362) (221.546)

becomes more pronounced as the number of terms in the truncated KL expansion increases. We have also developed
a cost model for both methods that closely mirrors the complexity of the algorithms.

ACKNOWLEDGMENTS

Howard C. Elman was supported by the U.S. Department of Energy under grant DEFG0204ER25619, and by the U.S.
National Science Foundation under grant CCF0726017. Christopher W. Miller was supported by the U.S. Department
of Energy under grant DEFG0204ER25619. Eric T. Phipps was supported in part by the U.S. Department of Energy
National Nuclear Securety Administration through its Advanced Simulation and Computing Program. Raymond S.
Tuminaro was supported by the U.S. Department of Energy Office of Science ASCR Applied Math Research program.
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S.
Department of Energy under contract DE-AC04-94AL85000.

REFERENCES
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Soil heterogeneity and the lack of detailed site characterization are two ubiquitous factors that render predictions of flow
and transport in the vadose zone inherently uncertain. We employ the Green–Ampt model of infiltration and the Dagan–
Bresler statistical parameterization of soil properties to compute probability density functions (PDFs) of infiltration rate
and infiltration depth. By going beyond uncertainty quantification approaches based on mean and variance of system
states, these PDF solutions enable one to evaluate probabilities of rare events that are required for probabilistic risk
assessment. We investigate the temporal evolution of the PDFs of infiltration depth and corresponding infiltration rate,
the relative importance of uncertainty in various hydraulic parameters and their cross-correlation, and the impact of the
choice of a functional form of the hydraulic function.

KEY WORDS: Uncertainty quantification, stochastic, infiltration rate, Green–Ampt model

1. INTRODUCTION

Soil heterogeneity and the lack of detailed site characterization are two ubiquitous factors that hamper one’s ability to
predict flow and transport in the vadose zone. The continuing progress in data acquisition notwithstanding, measure-
ments of hydraulic properties of partially saturated media remain scarce and prone to measurement and interpretive
errors. Consequently, spatial distributions of hydraulic parameters (saturated and relative hydraulic conductivities,
and parameters in retention curves) are typically uncertain and their statistical properties are subject to considerable
debate.

Despite some reservations, e.g., [1, 2], it has become common to treat saturated hydraulic conductivityKs(x) as
a multivariate log-normal random field whose ensemble statistics (e.g., mean, variance, and correlation length) can
be inferred from spatially distributed data by means of geostatistics. No such consensus exists about statistical dis-
tributions of various hydraulic parameters entering relative hydraulic conductivity and retention curves. For example,
various data analyses concluded that spatial variability of a soil parameterαG(x) in the Gardner model of relative
conductivity, which is often referred to as the reciprocal of the macroscopic capillary length, exhibits either a normal
[3] or log-normal [4] distribution and is either correlated [5] or uncorrelated [3] withKs. We defer a more detailed
review of the statistical properties of bothαG(x) and parameters in the van Genuchten model of relative conductivity
until Section 2. Here, it suffices to say that any approach to uncertainty quantification for flow and transport in the
vadose zone must be flexible enough to accommodate arbitrary statistical distributions of soil properties.

Statistical treatment of hydraulic parameters renders corresponding flow equation stochastic. Solutions of these
equations are probability density functions (PDFs) of system states (water content, pressure, and macroscopic flow
velocity) and can be used not only to predict flow in heterogeneous partially saturated porous media but also to quantify
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predictive uncertainty. Rather than computing PDFs of system states, standard practice in subsurface hydrology is to
compute (analytically or numerically) the first two moments of system states, and to use their ensemble means as
predictors of a system’s behavior and variances (or standard deviations) as a measure of predictive uncertainty. A
large body of literature employing this approach to solve the stochastic Richards equation includes [6–11], to name
just a few. With the exception of solutions based on the Kirchhoff transformation [12–14], such analyses require one
to linearize constitutive relations in the Richards equation, introducing errors that are hard to quantify a priori. More
important, none of these solutions can be used to estimate the probability of rare events, which is of crucial importance
for uncertainty quantification and risk assessment [15].

The Green–Ampt model described in some detail in Section 2 (see also [16, Section 5.2]) provides an alternative
description of flow in partially saturated porous media. The relative simplicity of the Green–Ampt formulation makes
it easier to solve than the Richards equation, which explains its prevalence in large numerical codes—e.g., SCS de-
veloped by U.S. Environmental Protection Agency (USEPA), DR3M developed by U.S. Geological Survey (USGS),
and HIRO2 developed by U.S. Department of Agriculture (USDA)—that are routinely used to predict overland and
channel flows. The first analysis of the impact of soil heterogeneity and parametric uncertainty on solutions of the
Green–Ampt equations was carried out by Dagan and Bresler [17]. Saturated hydraulic conductivity—the sole source
of uncertainty in their analysis—was treated as a two-dimensionalrandom field, Ks(x1, x2). This enables one to
model vertical infiltration with a collection of one-dimensional (in thex3 direction) solutions each of which corre-
sponds to a differentrandom variableKs. The Dagan–Bresler statistical model [17], whose precise formulation is
provided in Section 2, was found to yield accurate predictions of infiltration into heterogeneous soils [18, 19] and has
been adopted in a number of subsequent investigations, e.g., [19–24]. These and other similar analyses aimed to derive
effective (ensemble averaged) infiltration equations, and some of them quantified predictive uncertainty by computing
variances of system states.

Driven by the needs of probabilistic risk assessment, we focus on the derivation of single-point PDFs (rather than
the first two moments) of system states describing infiltration into heterogeneous soils with uncertain hydraulic pa-
rameters. Our analysis employs the Green–Ampt model of infiltration with the Dagan–Bresler parameterization, both
of which are formulated in Section 2. This Section also contains an overview of experimentally observed statistical
properties of the coefficients entering the Gardner and van Genuchten expressions of relative hydraulic conductivity
Kr. A general framework for derivation of PDF solutions of the Green–Ampt model is presented in Section 3. In
Section 4 we investigate the temporal evolution of the PDFs of a wetting front (Setion 4.1) and corresponding infiltra-
tion rate (Section 4.2), the relative importance of uncertainty in various hydraulic parameters (Section 4.3) and their
cross-correlation (Section 4.4), and the impact of the choice of a functional form ofKr (Section 4.5). Concluding
remarks are presented in Section 5.

2. PROBLEM FORMULATION

Consider infiltration into a heterogeneous soil with saturated hydraulic conductivityKs, porosityφ, residual water
contentθr, and relative hydraulic conductivityKr(ψ; α) that varies with pressure headψ in accordance with a
constitutive model and model parametersα. While the subsequent analysis can be applied to any constitutive relation,
we focus on the Gardner model [16, Table 2.1]

Kr = eαGψ (1)

and the van Genuchten model (ibid)

Kr =
[1−ψmn

d (1 + ψn
d )−m]2

(1 + ψn
d )m/2

, ψd ≡ αvG|ψ|. (2)

The model parametersα (α ≡ αG and{αvG, n, m = 1 − 1/n} for the Gardner and van Genuchten models, respec-
tively) and the rest of the hydraulic properties mentioned above vary in space and are sparsely sampled. To quantify
uncertainty about values of these properties at pointsx = (x1, x2, x3)T where measurements are unavailable, we
treat them as random fields. Thus, a soil parameterA(x, ω) varies not only in the physical domain,x ∈ D, but also
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in the probability spaceω ∈ Ω. A probability density functionpA, which describes the latter variability, is inferred
from measurements ofA by invoking ergodicity. Experimental evidence for the selection of PDFspA for various soil
parametersA is reviewed in Section 2.1, and the Dagan–Bresler statistical model used in our analysis is formulated
in Section 2.2.

The overreaching aim of the present analysis is to quantify the impact of this parametric uncertainty on predic-
tions of both the dynamics of wetting fronts and infiltration rates. Uncertainty in the former may significantly affect
the accuracy and reliability of field-scale measurements of soil saturation [25], while uncertainty in the latter is of
fundamental importance to flood forecasting [23].

2.1 Statistics of Soil Parameters

Saturated hydraulic conductivity. In addition to the experimental studies reviewed in [12], the data analyses reported
in [4, 24], etc., support our treatment of saturated hydraulic conductivityKs as a log-normal random field.

Gardner’s constitutive parameter. The (scarce) experimental evidence reviewed in [12] suggests thatαG, the
reciprocal of the macroscopic capillary length, can be treated alternatively either as a Gaussian (normal) or as a log-
normal random field. While the approach described below is capable of handling both distributions, in the subsequent
computational examples we will treatαG as a log-normal field, which is a model adopted in more recent computational
investigations (e.g., [4, 10]).

Van Genuchten’s constitutive parameters.The van Genuchten hydraulic function (2) is a two-parameter model
obtained from its more general form by settingm = 1−1/n andl = 1/2 (hence, the powerm/2 in the denominator).
We employ this form because of its widespread use [16, Table 2.1], but the approach described below can be readily
applied to quantify uncertainty in more general formulations with arbitrarym and l. The experimental evidence
presented in [4, 26, 27] shows that the coefficient of variation ofαvG is much larger than that ofn. These data suggest
thatαvG can be treated as a log-normal field and the shape factorn as a deterministic constant.

Correlations between hydraulic parameters.Experimental evidence presented in [4, 12] suggests that the coef-
ficient of variation (CV) ofKs is generally much larger than that of eitherαG or αvG. These parameters were found
to be either perfectly correlated or uncorrelated or anticorrelated (see also [28]). Our analysis allows for an arbitrary
degree of correlation betweenKs and eitherαG or αvG.

Finally, since the difference between the full and residual saturations∆θ = φ − θr typically exhibits lower
spatial variability than bothKs andαG (or αvG), we treat it as a deterministic constant to simplify the presentation.
Our approach can be adopted to quantify uncertainty in∆θ and the shape factorn in the van Genuchten hydraulic
function, as discussed in Section 3.

2.2 Statistical Model for Soil Parameters

Following [17], we restrict our analysis to infiltration depths that do not exceed vertical correlation lengthslv of
(random) soil parametersA(x,ω). ThenA = A(x1, x2, ω), so that a heterogeneous soil can be represented by a
collection of one-dimensional (in the vertical directionx3) homogeneous columns of lengthL3, whose uncertain
hydraulic properties are modeled as random variables (rather than random fields). The restrictionlv > L3 formally
renders the Dagan–Bresler parameterization [17] suitable for heterogeneous topsoils, and thus can be used to model
surface response to rainfall events [23, 24] and transport phenomena in topsoil [21]. Yet it was also used to de-
rive effective properties of the whole vadose zone [4, 28]. Rubin and Or [19] provide an additional justification
for the Dagan–Bresler parameterization by noting that “the determination of soil hydraulic properties through field
methods. . .homogenize the properties vertically, thus eliminating the variability in the vertical direction in a practical
sense.”

Consider a three-dimensional flow domainΩ = Ωh × [0, L3], whereΩh represents its horizontal extent. A dis-
cretization ofΩh into N elements representsΩ by an assemblage ofN columns of lengthL3 and facilitates the
complete description of a random fieldA(x1, x2,ω)—in the analysis below,A stands forKs, αG, andαvG but can
also include other hydraulic properties and the ponding pressure headψ0 at the soil surfacex3 = 0—with a joint
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probability functionpA(A1, . . . , AN ). Probability density functions (PDFs) of hydraulic properties of theith column
are defined as marginal distributions,

pAi(Ai) =
∫

pA(A1, . . . , An)dA1 . . . dAi−1dAi+1 . . . dAN . (3)

Since statistical properties of soil parametersA are inferred from spatially distributed data by invoking ergodicity, the
corresponding random fields (or their fluctuations obtained by data de-trending) must be stationary so that

pAi
= pA for i = 1, . . . , N. (4)

Furthermore, if such soil parameters (e.g.,Ks andαG) are correlated, their statistical description requires the knowl-
edge of a joint distribution. For multivariate GaussianY1 = ln Ks andY2 = ln αG (or Y2 = ln αvG), their joint PDF
is given by

pY1,Y2(y1, y2) =
1

2πσY1σY2

√
1− ρ2

exp
[
− R

2(1− ρ2)

]
(5a)

where

R =
(y1 − Y 1)2

σ2
Y1

− 2ρ
y1 − Y 1

σY1

y2 − Y 2

σY2

+
(y2 − Y 2)2

σ2
Y2

; (5b)

Y i andσYi denote the mean and standard deviation ofYi (i = 1, 2), respectively; and−1 ≤ ρ ≤ 1 is the linear
correlation coefficient betweenY1 andY2. The lack of correlation betweenY1 andY2 corresponds to settingρ = 0 in
(5).

2.3 Green–Ampt Model of Infiltration

During infiltration into topsoils, the Dagan–Bresler parameterization of soil heterogeneity can be supplemented with
an assumption of vertical flow. The rationale for, and implications of, neglecting the horizontal component of flow
velocity can be found in [17, 19, 20] and other studies reviewed in the Introduction.

This assumption obviates the need to solve a three-dimensional flow problem, replacing the latter with a collection
of N one-dimensional flow problems to be solved in homogeneous soil columns with random but constant hydraulic
parameters. Such a framework was used to predict mean (ensemble averaged) flow with either the Green–Ampt
model [17, 20] or the steady-state Richards equation with the Gardner hydraulic function [19]. We employ the Green–
Ampt description because it enables one to handle transient flow and to employ arbitrary hydraulic functions, without
resorting to linearizing approximations [29].

Let I(t) denote (uncertain) cumulative infiltration due to ponding water of heightψ0 at the soil surfacex3 = 0. The
Green–Ampt model of infiltration approximates an S-shaped wetting front with a sharp interfacexf(t) that separates
fully saturated soil (saturationφ) from dry soil (saturationθr). The latter is also known as infiltration depth. If thex3

coordinate is positive downward, Darcy’s law defines macroscopic (Darcy’s) fluxq as (e.g., [16, Eq. (5.1)])

q = −Ks
ψf − xf −ψ0

xf
. (6)

Pressure headψf at the infiltration depthxf(t) is empirically set to a “capillary drive”,

ψf = −
0∫

ψin

Kr(ψ) dψ, (7)

whereψin is the initial pressure head in the dry soil.
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Mass conservation requires thatI(t) = (ω − θr)xf(t) and the infiltration ratei ≡ dI/dt equalsq. The first
condition yields

i = ∆θ
dxf

dt
, ∆θ = ω− θr, (8)

which, combined with the second condition and (6), leads to a (stochastic) ordinary differential equation for the
position of the wetting front,

∆θ
dxf

dt
= Ks

ψ0 + xf −ψf

xf
, xf(t = 0) = 0. (9)

Our goal is to relate uncertainty in hydraulic parametersKs andαG (or αvG) to predictive uncertainty about the
infiltration depthxf(t) and the infiltration ratei(t), i.e., to express the PDFs of the latter,pf(xf ; t) andpi(i; t), in
terms of the PDF of the former (5).

3. PDF SOLUTIONS

To simplify the presentation, we assume that the height of ponding water,ψ0, does not change witht during the
simulation timeT . Then an implicit solution of (9) takes the form

xf − (ψ0 −ψf) ln
(

1 +
xf

ψ0 −ψf

)
=

Ks

∆θ
t. (10)

For smallt, (10) can be approximated by an explicit relation [16, Eq. (5.12)]

xf ≈
√

2(ψ0 −ψf)Kst

∆θ
. (11)

For larget, flow becomes gravity dominated,i ∼ Ks, and [16, p. 170]

xf ≈ Ks

∆θ
t. (12)

For intermediatet, various approximations, e.g., [30] and [16, p. 170], can be used to replace the implicit solution (10)
with its explicit counterparts. We will use the implicit solution (10) to avoid unnecessary approximation errors.

Several of the simplifying assumptions made above can be easily relaxed. First, sinceKs and∆θ enter the stochas-
tic Eq. (9) and its implicit solution (10) as the ratioK?

s = Ks/∆θ, one can easily incorporate uncertainty in (random-
ness of)∆θ by replacing the PDF ofKs with the PDF ofK?

s . Second, the implicit relationF (xf ,Ks/∆θ, α; t) = 0
given by (10) and (7) allows one to express the PDF ofxf in terms of the PDFs ofanynumber of hydraulic parameters
by following the procedure described below. Third, uncertainty in, and temporal variability of, the height of ponding
waterψ0(t) can be dealt with by replacing (10) with an appropriate solution of (9).

3.1 PDF of Infiltration Depth

Let Gf(x?
f ) = P (xf ≤ x?

f ) denote the cumulative distribution function ofxf , i.e., the probability that the random
position of the wetting frontxf takes on a value not larger thanx?

f . Since (10) provides an explicit dependence of
randomKs on randomxf andα (whereα stands for eitherαG or αvG), i.e.,

Ks(xf , α) =
∆θ

t

[
xf − (ψ0 −ψf) ln

(
1 +

xf

ψ0 −ψf

)]
, (13)

it follows from the definition of a cumulative distribution function that

Gf(x?
f ) =

∞∫

0

Ks(x?
f ,α)∫

0

pY1,Y2(Ks, α)
dKsdα

Ksα
. (14)
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The denominator in (14) reflects the transition from (5), the joint Gaussian PDF forY1 andY2, to the log-normal
variablesKs = exp(Y1) andα = exp(Y2).

The PDF of the random (uncertain) infiltration depthpf(x?
f ; t) can now be obtained as

pf(x?
f ; t) =

dGf(x?
f ; t)

dx?
f

. (15)

Using Leibnitz’s rule to compute the derivative of the integral in (14) and (15), we obtain

pf(x?
f ; t) =

∞∫

0

pY1,Y2 [Ks(x?
f ,α),α]

αKs(x?
f , α)

∂Ks(x?
f ,α)

∂x?
f

dα. (16)

Equation (16) holds for an arbitrary implicit solution of the Green–Ampt equation,F (xf ,Ks/∆θ, α; t) = 0, and
hence, the PDF solution (16) is applicable to a large class of infiltration regimes that are amenable to the Green–Ampt
description. For the flow regime considered in the present analysis,Ks(x?

f , α) is given by (13), and (16) takes the
form

pf(x?
f ; t) =

∆θ

t

∞∫

0

pY1,Y2 [Ks(x?
f , α),α]

αKs(x?
f , α)

x?
f dα

ψ0 −ψf + x?
f

. (17)

3.2 PDF of Infiltration Rate

Let Gi(i?) = P (i ≤ i?) denote the cumulative distribution function ofi, i.e., the probability that the random infiltra-
tion ratei takes on a value not larger thani?. Sinceq = i, Eqs. (6) and (7) define a mappingKs = Ks(i, α). This
enables one to compute the cumulative distribution functionGi(i?) as

Gi(i?) =

∞∫

0

Ks(i?,α)∫

0

pY1,Y2(Ks, α)
dKsdα

Ksα
(18)

and the PDF of infiltration rate,pi = dGi/di?, as

pi(i?; t) =

∞∫

0

pY1,Y2 [Ks(i?, α), α]
αKs(i?,α)

∂Ks(i?, α)
∂i?

dα. (19)

The derivative∂Ks/∂i? is computed from (6) as the inverse of

∂i?

∂Ks
= 1 +

ψ0 −ψf

xf

(
1− Kst

∆θ

xf −ψf + ψ0

x2
f

)
. (20)

3.3 Dimensionless Form of PDFs

To facilitate an analysis of the effects of various sources of parametric uncertainty on the PDFpf(x?
f ; t) of the uncertain

(random) infiltration depthxf(t), given by the analytical solution (17), we introduce the following dimensionless
quantities. Let the averaged quantities(α)−1 andKs represent a characteristic length scale and a characteristic value
of saturated hydraulic conductivity, respectively. Then a characteristic time scaleτ can be defined as

τ = (αKs)−1, (21)
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and the following dimensionless quantities can be introduced,

t′ =
t

τ
, ψ′ = αψ, α′ =

α

α
, K ′

s =
Ks

Ks

. (22)

This leads to a PDF solution for the dimensionless infiltration depthx′f = αxf ,

pf(x′f ; t
′) =

∆θ

t′

∞∫

0

pY ′1 ,Y ′2 [K ′
s(x

′
f ,α

′), α′]
α′K ′

s(x′f , α′)
x′f dα′

ψ′0 −ψ′f + x′f
. (23)

Likewise, the PDF of the dimensionless infiltration ratei′ = i/Ks takes the form

pi(i′; t′) =

∞∫

0

pY ′1 ,Y ′2 [K ′
s(i

′, α′), α′]
α′K ′

s(i′,α′)
∂K ′

s(i
′, α′)

∂i′
dα′. (24)

In the following, we drop the primes to simplify the notation.

4. RESULTS AND DISCUSSION

In this Section, we explore the impact of various aspects of parametric uncertainty on the uncertainty in predictions of
infiltration ratei(t) and infiltration depthxf(t). Specifically, we investigate the temporal evolution of the PDFs of the
wetting front (Section 4.1) and the infiltration rate (Section 4.2), the relative importance of uncertainty inKs andαi

(Section 4.3), and the effects of cross-correlation between them (Section 4.4). This is done for the Gardner hydraulic
function (1), in which case (7) results in the interfacial pressure headψf = −α−1

G . In Section 4.5, we explore how
the choice of a functional form of the hydraulic function, i.e., the use of the van Genuchten model (2) instead of the
Gardner relation (1), affects the predictive uncertainty.

Unless explicitly noted otherwise, the simulations reported below correspond to the dimensionless initial pressure
headψin = −9999.9, the dimensionless height of ponding waterψ0 = 0.1, ∆θ = 0.45, the coefficients of variation
CVln K ≡ σY1/Y 1 = 3.0 andCVln α ≡ σY2/Y 2 = 0.5 with the meansY 1 = 0.25 andY 2 = 0.1, and the cross-
correlation coefficientρ = 0. (The use of the soil data in Table 1 of [26] in conjunction with these dimensionless
parameters would result in the height of ponding waterψ0 = 0.6 cm.)

4.1 PDF of Wetting Front

Since the initial position of the wetting front is assumed to be known,xf(t = 0) = 0, the PDFpf(xf ; 0) = δ(xf),
whereδ(·) denotes the Dirac delta function. As the dimensionless time becomes large (t → ∞), pf ∼ pKs in
accordance with (12). The PDFpf(xf ; t) in (23) describes the temporal evolution of predictive uncertainty between
these two asymptotes, with Fig. 1 providing snapshots at dimensionless timest = 0.01, 0.1, and0.5. (For the soil
parameters reported in Table 1 of [26], this corresponds to dimensional times1.5, 15, and75 min, respectively). The
uncertainty in predictions of infiltration depth increases rapidly, as witnessed by wider distributions with longer tails.

4.2 PDF of Infiltration Rate

Figure 2 provides snapshots, at dimensionless timest = 0.01, 0.1, and0.5, of the temporal evolution of the PDF
of infiltration ratepi(i; t) given by (24). Both the mean infiltration rate and the corresponding predictive uncertainty
decrease with time. At later times (the dimensionless timet = 5.0, for the parameters used in these simulations), the
PDF appears to become time invariant. This is to be expected on theoretical grounds, see (12), according to which
pi(i′; t′) → pK(K ′

s) as t′ → ∞. The reducedχ2 test confirmed this asymptotic behavior at dimensionless time
t = 100.0.
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FIG. 1: Temporal evolution of the PDF of infiltration depthpf(xf ; t).
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FIG. 2: Temporal evolution of the PDF of the infiltration ratepi(i; t).

4.3 Effects of Parametric Uncertainty

The degree of uncertainty in hydraulic parametersln Ks andln αG is encapsulated in their coefficients of variation
CVln K andCVα, respectively. Figure 3 demonstrates the relative effects of these two sources of uncertainty upon
the predictive uncertainty, as quantified by the infiltration depth PDFpf(xf ; t), computed att = 0.1. Uncertainty in
saturated hydraulic conductivityKs affects predictive uncertainty more than uncertainty in the Gardner parameterαG

does. Although not shown in Fig. 3, we found similar behavior at later timest = 0.5 and 1.0. These findings are in
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FIG. 3: The infiltration depth PDFpf(xf ; t = 0.1) for different levels of uncertainty in (a) saturated hydraulic
conductivityKs and (b) the Gardner parameterαG.

agreement with those reported in [17, 31], wherein variances of state variables were used to conclude that uncertain
saturated hydraulic conductivityKs is the dominant factor affecting predictive uncertainty.

4.4 Effects of Cross-Correlation

The question of whether various hydraulic parameters are correlated with each other remains open, with different
data sets supporting opposite conclusions (see Section 2.1). This suggests that the presence or absence of such cross-
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correlations is likely to be site-specific rather than universal. The general PDF solution (23) enables us to investi-
gate the impact of cross-correlations between saturated hydraulic conductivityKs and the Gardner parameterαG

on predictive uncertainty. This is done by exploring the dependence of the PDF of the wetting frontpf(xf ; t) on the
correlation coefficientρ. Figure 4 presentspf(xf ; t = 0.1) for ρ = −0.99, 0.0, and0.99, which represent perfect anti-
correlation, independence, and perfect correlation betweenKs andαG, respectively. The perfect correlation between
Ks andαG (ρ = 0.99) results in the minimum predictive uncertainty (the width of the distribution), while the perfect
anticorrelation (ρ = −0.99) leads to the maximum predictive uncertainty. Predictive uncertainty resulting from the
lack of correlation betweenKs andαG (ρ = 0.0) falls amid these two limits. The impact of cross-correlation between
soil hydraulic parameters (a value ofρ) decreases with time, falling from the maximum difference of about21% at
t = 0.01 to about3% at t = 0.1.

4.5 Effects of Selection of Hydraulic Function

Finally, we examine how the choice of a hydraulic functionKr(ψ;α) affects predictive uncertainty. Guided by the
data analyses presented in Section 2.1, we treatαvG as the only uncertain parameter in the van Genuchten hydraulic
function with n = 1.5. To make a meaningful comparison between predictions based on the Gardner (1) and van
Genuchten (2) relations, we select statistics of their respective parametersα in a way that preserves the mean effective
capillary drive defined by (7) [29, 32]. Specifically, we use the equivalence criteria to select the mean ofln αvG (-1.40,
for the parameters used in these simulations) that maintains the same mean capillary drive as the Gardner model with
ln αG = 0.1, and choose the variance ofln αvG as to maintain the original values of the coefficients of variation
CVln αvG

= CVln αG
= 0.5. Figure 5 reveals that the choice between the van Genuchten and Gardner models has

a significant effect on predictive uncertainty of the wetting front dynamics, although this influence diminishes with
time. For example, the difference between the variances is40% at t = 0.01 and23% at t = 0.1.

5. CONCLUSION

We presented an approach for computing probability density functions (PDFs) of both infiltration rates and wetting
fronts propagating through heterogeneous soils with uncertain (random) hydraulic parameters. Our analysis employs
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FIG. 4: The infiltration depth PDFpf(xf ; t = 0.1) for different levels of correlationρ between hydraulic parameters
Ks andαG.
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the Green–Ampt model of infiltration and the Dagan–Bresler statistical parameterization of soil properties. Our anal-
ysis leads to the following major conclusions.

1. The proposed approach goes beyond uncertainty quantification based on mean and variance of system states
by computing their PDFs. This enables one to evaluate probabilities of rare events, which are necessary for
probabilistic risk assessment.

2. Both the type and parameters of the PDF of a wetting front’s depth change with time. As time increases, so does
the width of the PDF, reflecting the increased predictive uncertainty.

3. Both the type and parameters of the PDF of infiltration rate change at early time. At large times, the PDF of
infiltration rate coincides with the PDF of saturated hydraulic conductivity, which can serve as the lower bound
of uncertainty associated with predictions of infiltration rate.

4. Predictive uncertainty is most sensitive to uncertainty in the saturated hydraulic conductivityKs. Tripling the
coefficient of variation ofln Ks significantly affects the shape of the infiltration depth PDF, while the effects
of tripling the coefficient of variation ofln αG (a measure of uncertainty about the Gardner parameterαG) are
relatively insignificant.

5. The degree of correlation between the hydraulic parametersKs andαG has considerable influence on predictive
uncertainty at early times and diminishes at later times.

6. The choice of a functional form of the hydraulic function (e.g., the Gardner model vs the van Genuchten model)
has a significant effect on predictive uncertainty during early stages of infiltration. This effect diminishes with
time.
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Reservoir data is usually scale dependent and exhibits multiscale features. In this paper we use the ensemble Kalman
filter (EnKF) to integrate data at different spatial scales for estimating reservoir fine-scale characteristics. Relationships
between the various scales is modeled via upscaling techniques. We propose two versions of the EnKF to assimilate the
multiscale data, (i) where all the data are assimilated together and (ii) the data are assimilated sequentially in batches.
Ensemble members obtained after assimilating one set of data are used as a prior to assimilate the next set of data. Both of
these versions are easily implementable with any other upscaling which links the fine to the coarse scales. The numerical
results with different methods are presented in a twin experiment setup using a two-dimensional, two-phase (oil and
water) flow model. Results are shown with coarse-scale permeability and coarse-scale saturation data. They indicate that
additional data provides better fine-scale estimates and fractional flow predictions. We observed that the two versions of
the EnKF differed in their estimates when coarse-scale permeability is provided, whereas their results are similar when
coarse-scale saturation is used. This behavior is thought to be due to the nonlinearity of the upscaling operator in the
case of the former data. We also tested our procedures with various precisions of the coarse-scale data to account for the
inexact relationship between the fine and coarse scale data. As expected, the results show that higher precision in the
coarse-scale data yielded improved estimates. With better coarse-scale modeling and inversion techniques as more data
at multiple coarse scales is made available, the proposed modification to the EnKF could be relevant in future studies.

KEY WORDS: Kalman filter, reservoir engineering, spatial uncertainty, multiscale estimation, parameter
estimation

1. INTRODUCTION

Broadly speaking, the measured data used for description of reservoir porosity and permeability characterization
consist of static and dynamic data. Static data such as well logs and core samples can resolve heterogeneity at a scale
of a few inches or feet with high reliability. However, dynamic data such as fractional flow or water cut (neglecting
any pre-existing mobile water in the reservoir, this could be defined as the ratio of the injection fluid to the total fluid
produced at the production wells), pressure transient, and tracer test data typically scan the length scales comparable
to the interwell distances. Additional dynamic data such as time-lapse seismic images [1] can provide improved spatial
sampling but at a lower precision. The ensemble Kalman filter (EnKF) is now being used in a number of studies for
reservoir history matching. Some of the recent studies are listed in Evensen [2]; also see Nævdal et al. [3], Wen and
Chen [4], Gu and Oliver [5], and Jafarpour and McLaughlin [6]. In general, reservoir data is often scale-dependent and
exhibits multiscale features, and integration of additional multiscale data could further reduce the uncertainty (see Lee
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et al. [7], Efendiev et al. [8, 9] and references therein). Also, it is important to resolve fine-scale heterogeneity for
various purposes such as enhanced oil recovery, environmental remediation, etc. With that perspective, integration
of data at coarse and fine scales is an important objective. Computationally efficient assimilation of multiscale data
using EnKF to estimate fine-scale fields for subsurface characterization is the main topic of this study. The main reason
we used EnKF in this paper is because it requires fewer ensemble members than the particle filters (where, rather than
updating the ensemble members model state, we update the probability assigned to each ensemble member based on
model data misfit), e.g., see [10] and references therein for further details.

In this paper, apart from the water-cut data, we consider two kinds of coarse-scale measured data as well. The
coarse-scale data are assumed to be permeability and/or saturation at some specified level of precision. The unknown
variables (permeability, at the fine scale), are estimated using a modification to the EnKF algorithm, linking the data
at different scales via upscaling (from the finest to the coarsest scales). The main idea behind upscaling is to obtain
aneffectivecoarse-scale permeability which yields the same average response as that of the underlying fine-scale field,
locally. First we consider coarse-scale permeability data, which could be obtained either from geological considera-
tions or coarse-scale inversion of dynamic, fractional flow data on a coarse grid [7, 9] or also using Markov Chain
Monte Carlo (MCMC) techniques [8]. This coarse-scale, static data could be viewed asprior information regarding
the permeability or in other words, aconstraintwhich is to be satisfied up to the prescribed variance while obtaining
the fine-scale estimates in every data assimilation cycle using the EnKF. Upscaling methods relate the solution at the
fine scale to the coarse scale; therefore, in the Kalman filtering context, it amounts to modeling a nonlinear observation
operator. In this paper we study two ways to assimilate the coarse-scale data using the EnKF. The standard EnKF [2]
could be used for assimilating all the available data in one step, or alternatively, the measured data could be used in
batches. For example, the estimate with one data becomes a prior while assimilating the other measured data; further
details are given in Section 3.

The second kind of coarse-scale observed data we consider is dynamic and is motivated based on the increasing
availability of time-lapse seismic images (or 4d seismic data). Integration of inverted 4d seismic data (at fine scale)
using the EnKF has been addressed in Dong et al. [11] and Skjervheim et al. [12]. In this article we consider the
seismic data, not to correspond to the finest scale but to a coarse scale, since time-lapse seismic data typically have a
lower spatial resolution compared to the fine-scale geologic models [13]. Since the time-lapse seismic data is collected
only at specific time intervals, we used coarse-scale fluid saturation as measured data to be available at a prescribed
level of precision (which accounts for the inaccuracies involved in inversion of 4d seismic data) and only for certain
assimilation cycles. Therefore, unlike the coarse-scale static permeability data considered earlier, the coarse-scale
saturation data is assimilated only in certain assimilation cycles (see Section 4.3 for details).

Following is the plan of this paper. For the paper to be self-contained and for notational clarity, we briefly review
the governing equations and sequential data assimilation using the EnKF in Section 2. This is followed by a description
of the EnKF for assimilation of coarse-scale data in Section 3. For our numerical results in Section 4, we consider
a five-spot pattern, with the injection well placed in the middle of a rectangular domain and four production wells
located at the vertices of the rectangle. A reference case is used to providetrue data, which is randomly perturbed to
obtain synthetic measurements in a twin experiment setup. After presenting the assimilation results with both coarse-
scale permeability and saturation data, we conclude with some directions for future work in Section 5.

2. PRELIMINARIES

2.1 Fine-Scale Model

In this paper we consider two-phase flow in a subsurface formation under the assumption that the displacement is
dominated by viscous effects. For simplicity, we neglect the effects of gravity, compressibility, and capillary pressure,
although our proposed approach is independent of the choice of physical mechanisms. Also, porosity is considered
constant. The two phases are referred to as water and oil, designated by subscriptsw ando, respectively. We write
Darcy’s law for each phase as follows:

vj = −krj(S)
µj

κf∇pr, ∇ · [λ(S)κf∇pr] = h (1)
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λ(S) =
krw(S)

µw
+

kro(S)
µo

, f(S) =
krw(S)/µw

krw(S)/µw + kro(S)/µo

v = vw + vo = −λ(S)κf · ∇pr (2a)

φ
∂S

∂t
+ v · ∇S = 0 (2b)

The above descriptions are henceforth referred to as thefine-scalemodel of the two-phase flow problem. Hereκf is
the (fine-scale) permeability of the medium,λ(S) is the total mobility,µj denotes phase viscosity,pr is the pressure,
h is the source term, andφ andS denote porosity and water saturation (volume fraction), respectively.

2.2 Sequential Estimation Using EnKF

Using dynamic measured data such as water cut, we can sequentially estimate the unknown parameters (permeabi-
lity, porosity, etc.) and state variables such as pressure, water saturation (two-phase flow) and production data at well
locations using the EnKF [3, 5, 6, 14]. The combined state-parameter to be estimated is given byΨ = [ln(κf ), pr , S,
Wc]T , whereln(·) is natural logarithm of the permeability field,Wc denotes water cut, and porosity is assumed to be
known.

The EnKF introduced by Evensen [15] is a sequential Monte Carlo method where an ensemble of model states
evolves in state-space, with the mean as the best estimate and spread of the ensemble as the error covariance, as
summarized in the following steps. Each of the ensemble members is forecasted independently,1

Ψ(i)
n+1 = F [Ψ(i)

n ] (3)

whereF [·] is the forecast operator [fine-scale model Eqs. (1) and (2b)], superscript(i) denotes theith ensemble
member; from this point we on drop the time subscript. The ensemble mean and covariance are defined as

Ψ =
1

Ne

Ne∑

i=1

Ψ(i) (4a)

Pf ≈ 1
Ne − 1

A (A)T (4b)

whereA = (b(1), b(2), . . . , b(Ne)), b(i) = Ψ(i) −Ψ, andNe is the number of ensemble members.
In a twin experiment, the observed water cutWo

c is related to the truth viaWo
c = H[Ψt], whereH[Ψt] is the true

water cut. For each ensemble member, we randomly perturbWo
c to generate observational samples,

y(i) = Wo
c︸︷︷︸

=H[Ψt]

+ν(i) (5)

whereν(i) simulates observational error sampling, obtained as independent and identically distributed (iid) sam-
ples [16] from a normal distribution with zero mean and varianceR. We note that if only the water-cut data is being
measured, the mapping from model to observational spaceH is trivially equal to[0 0 0 I], sinceΨ=[ln(κ), pr , S,Wc]T.

The forecasted ensemble Eq. (3) is updated by assimilating the observed data,

Ψ̃(i) = Ψ(i) + K(y(i) − H[Ψ(i)]) (6)

1In this work we focus primarily on assimilation of coarse-scale data using the EnKF, its feasibility, and impact on fine-scale
estimates with different kinds of coarse-scale data (Section 3); hence, we neglect modeling errors, which will be addressed in the
future.
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whereK is the Kalman gain, given by
K = Pf HT [HPf HT + R]−1

Computationally efficient implementation of the EnKF is discussed, for example, in [2] and [17] (note that the en-
semble error covariance, before or after assimilation, is not explicitly computed and we instead use the ensemble
members for obtaining the covariance information). We use the above set of assimilated ensemble states,{Ψ̃(i)}Ne

i=1,
in the fine-scale simulation model Eq. (3) for prediction until the next set of observational data is available.

3. COARSE-SCALE DATA ASSMILATION

The EnKF presented so far used only the dynamic production data (water cut)y with error ν = y − H[Ψt], ν ∼
N (0, R) to update the ensemble Eq. (6). In addition toy, we now consider another independently measured data with
independent errorsz, which isstaticand is on a coarser scale compared to the fine-scale variables in Eqs. (1) and (2b).
We assume that the corresponding measurement error is given byω = z−U[Ψt], with zero mean andQ covariance,
ω ∼ N (0, Q), andU is a mapping of fine-scale variablesΨ to coarse-scale data,z, i.e., U : Ψ 7→ z. Then the
likelihood ofz is given by

p(z|Ψ) ∝ exp
{
−1

2
(z− U[Ψ])T Q−1 (z− U[Ψ])

︸ ︷︷ ︸
Jz

}
(7)

If this static dataz corresponds to coarse-scale permeability data (as considered in [9] and [7]), thenU = [U 0 0 0],
whereU : κf 7→ κc is a nonlinear mapping that maps the fine-scale permeability field (κf ) to coarse-scale field (κc)
via an upscaling procedure (e.g., Durlofsky [18] and Durlofsky [19]). (Details are provided in Section 3.3.) Alterna-
tively, if z corresponds to coarse-scale saturation inverted from 4d seismic data (as mentioned in the Introduction), then
U = [0 0A0], such thatA is a mapping of fine-scale saturationSf to coarse-scale saturationSc = ASf . (Here we
consider a simple volume averaging forA; further details are provided in Section 4.3).

Now, our goal is to obtain an estimate which is based on both water-cut and available coarse-scale data. The
likelihood of water-cut datay is given by

p(y|Ψ) ∝ exp
{
−1

2
(y− H[Ψ])T R−1 (y− H[Ψ])

︸ ︷︷ ︸
Jy

}
(8)

The probability distribution function (pdf) of the predicted ensemble,

p(Ψ) ∝ exp
{
−1

2
(Ψ−Ψ)T (Pf )−1 (Ψ−Ψ

︸ ︷︷ ︸
Jf

)
}

(9)

whereΨ andPf are the predicted ensemble mean and covariance, respectively Eqs. (4a) and (4b). Then, using Bayes
theorem, we obtain

p(Ψ|z, y) =
p(Ψ, z, y)

p(z, y)
=

p(z, y|Ψ) p(Ψ)
p(z, y)

∝ p(z, y|Ψ)p(Ψ)︸ ︷︷ ︸
(?)

=

(†)︷ ︸︸ ︷
p(z|Ψ) p(y|Ψ) p(Ψ).︸ ︷︷ ︸

∝ p(Ψ|y)

(10)

Based on the above equation, following the(?) term, all the available data (z andy) could be assimilated in one
step (details follow in Section 3.1), whereas based on the(†) term, the measured datay andz can be assimilated in a
sequential manner. First assimilate the fractional flow (y) to obtain an ensemble conditioned ony, i.e.,p(Ψ|y), which
could then be used to assimilate the coarse-scale dataz (further explained in the following Section 3.2).
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3.1 Coarse-Scale Data Assmilation: In One-Step

All the available data,y and z, could be assimilated in one assimilation step by a modification to the model-to-
observation space operator,H. If coarse-scale permeability data at a single coarse-scale is to be assimilated,H =
[U 0 0 I]. Alternatively, if coarse-scale saturation data is available,H = [0 0A I ]. The fine-scale estimated ensemble is
obtained as in Section 2.2, with Eq. (6) modified to account for the additional coarse-scale data,

Ψ̃(i) = Ψ(i) + K([z(i), y(i)]T − H[Ψ(i)]), K = Pf HT [HPf HT + R′],−1 (11)

whereR′ =
[

Q 0
0 R

]
. From now we on refer to this one-step assimilation of coarse-scale data procedure asreg EnKF.

A consequence of the particular form ofH is that it introduces contributions for cross-correlations between upscaled
variables and production data. From a computational point of view, it has been known that EnKF is not very efficient
for assimilation of large amounts of data [20], which could arise in our case, in complex three-dimensional cases,
and also if data at multiple coarse scales is to be assimilated. In such a situation, different kinds of data could be
assimilated in batches [21], which is described in the Section 3.2.

3.2 Coarse-Scale Data Assmilation: In a Sequence

We obtain an intermediate ensemble by assimilatingy, denoted by{Ψ̃(i)}Ne
i=1,

p(Ψ̃) = p(Ψ|y) ∝ exp{−(Jf + Jy)} (12)

as discussed in Section 2.2. This intermediate ensemble and likelihood in Eq. (7) can then be combined [† term in
Eq. (10)] to obtain the final estimate{Ψ̂(i)}Ne

i=1,

p(Ψ̂) = p(Ψ|z, y) ∝ exp{−(Jf + Jy + Jz)} (13)

Therefore, in a least-squared sense, the final estimate maximizes the posterior pdfp(Ψ|z, y) and corresponds to the
minimum ofJ = Jz+Jy+Jf . See Appendix A for further details (where we show that the solutionΨ̂(i) corresponds
to the minimum ofJ , for anyith ensemble member).

If coarse-scale data is available at only one coarse scale, then the fine-scale estimated ensemble is obtained by first
assimilating production data followed by assimilation of the coarse-scale data,

Ψ̃(i) = Ψ(i) + K(y(i) − H[Ψ(i)]), K = Pf HT [HPf HT + R]−1 (14a)

Ψ̂(i) = Ψ̃(i) + K̃(z(i) − U[Ψ̃(i)]), K̃ = P̃
f
UT [UP̃

f
UT + Q]−1 (14b)

P̃
f

is approximated using the intermediate ensembleΨ̃(i); henceforth we refer to this sequential, coarse-scale EnKF
data assimilation procedure ascs-EnKF. Note that data at multiple coarse scales can be sequentially assimilated by
suitable repetition of Eq. (14b), with corresponding upscaling operators. For the coarse-scale saturation data, which
may be available at only certain times, for only those assimilation cycles is Eq. (14b) applicable, whereas in the case
of permeability data, considering it to be prior information regarding the fine-scale permeability, it is always to be
honored; hence, both of the above steps (14a) and (14b) are to be always applied. The cs-EnKF algorithm is detailed
in Appendix B, and a flow chart is given in Fig. 1. Implementation of this algorithm entails upscaling of each ensemble
member at every assimilation step, i.e.,Ne times the upscaling operatorU[·] needs to be applied. In addition, if the
dimension of the coarse-scale grid isNc = nc×nc, then we need to perform an Singular Value Decomposition (SVD)
of a rectangular matrix of sizeNc ×Ne. Hence, the total computation expense involvesNe upscales and SVD of the
Nc × Ne matrix. Note that a similar upscaling is involved in the case of the reg EnKF, but the size of the matrix to
compute SVD is now(Nc + Nwc)×Ne, whereNwc is the dimension of the water-cut data. In addition, if there are a
number of coarse scales then the size of the matrix whose SVD is to be computed will grow for the reg EnKF, since
all the data is assimilated in one step. Whereas for the cs-EnKF, coarse-scale data is assimilated in a sequence, the
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Yes

Yes

No

FIG. 1: Flowchart for assimilation of coarse-scale data using the EnKF.

estimate from one coarse scale being used as a prior for the next scale, the matrix size to compute SVD is always
Nc ×Ne. (See also remark 3 of the coarse-scale EnKF algorithm in Appendix B.)

For nonlinear upscaling operators, such asU , the final estimates from the reg EnKF would be different from those
obtained using the cs-EnKF. When both the coarse-scale and water-cut data are assimilated together as in the above
reg EnKF, it would imply fitting a multivariate normal likelihood to the different measured data together, whereas
when the different kinds of data are assimilated one after another, as in the cs-EnKF, we fit each data separately, with
a different pdf. (For further details on this topic, please see Dance [21] and references therein; also see Section 5.)

3.3 Upscaling Methods

In brief, the main idea behind upscaling of absolute fine-scale permeability is to obtain effective coarse-scale perme-
ability for each coarse-grid block.Upscaling techniques in conjunction with the upscaling of absolute permeability
have been used in groundwater applications (see, e.g., [19, 22, 23]). The link between the coarse- and the fine-scale
permeability fields is usually nontrivial, because one needs to take into account the effects of all the scales present at
the fine level. In the past simple arithmetic, harmonics, or power averages have been used to link properties at various
scales. These averages can be reasonable for low heterogeneities or for volumetric properties such as porosity. For
permeabilities, simple averaging can lead to inaccurate and misleading results. In this paper we use the flow-based
upscaling methods.

Consider the fine-scale permeability that is defined on a domain with underlying fine grid as shown in Fig. 2. On
the same plot a coarse-scale partitioning of the domain is also illustrated. To calculate the coarse-scale permeability
field at this coarse level, we need to determine it for each coarse block,Ωc. The coarse-scale permeability is computed
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Ω
c

Ω
c

φ=0φ=1

no flow

no flow

div( (x) )=0κ φ∇

FIG. 2: Schematic illustration of upscaling (not to scale). Bold lines indicate a coarse-scale partitioning, while thin
lines show a fine-scale partitioning within coarse-grid cells. In this paper we upscaled a50 × 50 fine grid to a5 × 5
coarse grid.

so that it delivers the same average response as that of the underlying fine-scale problem, locally. The calculation of
the coarse-scale permeability based on local solutions is schematically shown in Fig. 2. For each coarse domainΩc

we solve the local problems
∇ · [κf (x)∇φj ] = 0 (15)

with some coarse-scale boundary conditions. An example of such boundary conditions is given byφj = 1 andφj = 0
on the opposite sides along the directionej and no flow boundary conditions on all other sides, alternatively,φj = xj

on∂Ωc. For these boundary conditions the coarse-scale permeability (κc) is given by

κcej · el =
1
|Ωc|

∫

Ωc

κf (x)∇φj · el dx (16)

whereφj is the solution of Eq. (15) with prescribed boundary conditions. Various boundary conditions such as peri-
odic, Dirichlet, etc. can have some influence on the accuracy of the calculations. These issues have been discussed,
e.g., in [24]. In particular, for determining the coarse-scale permeability field one can choose local domains that are
larger than target coarse block,Ωc, in Eq. (15). Furthermore Eq. (16) is used in the domainΩc, whereφj are com-
puted in the larger domains with correct scaling (see [24]). This way one reduces the effects of the artificial boundary
conditions imposed onΩc (for details see [24]).

We denote byU the local operator that maps the local fine-scale permeability fieldκf onto κc, defined on the
coarse grid as in the above Eq. (16). For our computations we assume

κc = U(κf ) + ε (17)

whereε are some random fluctuations that represent inaccuracies in the coarse-scale permeability. One source of
these fluctuations is the errors associated with solving inverse problems on the coarse grid. The other source of the
inaccuracies include the fact that the inversion on the coarse grid does not take into account the adequate form of the
coarse-scale models. Indeed, the inversion on the coarse grid for flow problems often involves the same flow equations
as the underlying fine ones, for example, the same relative permeabilities are used for the coarse-scale problems as
those for the fine-scale problems or the effects of macrodispersion are neglected. It is known that the flow equations at
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the coarse level may have a different form than the underlying fine-scale equations [19, 25–27]. In general, this form
depends on the detailed nature of the heterogeneities, which are very difficult to obtain in solving inverse problems.
In our paper we use Gaussian errors in Eq. (17) and consider the impact of coarse-scale data precision (i.e., nature of
ε) by varying the variance ofε (see Section 4.2 for more details).

4. NUMERICAL RESULTS

For our numerical tests, we use a50×50 fine grid (dimensionless domain size50×50) and two kinds of coarse-scale
data in a twin experiment setup. First we consider coarse-scale permeability, which in reality, could be obtained by
coarse-scale inversion of fractional flow data on a coarse grid [9, 28]. In this study we upscaled the reference fine-
scale permeability (described below) to a5× 5 grid to obtain a coarse-scale permeability using flow based upscaling
(Section 3.3). This coarse-scale field could be thought of as static data, which is to be honored as constraint (up to the
prescribed measurement data variance) in Eq. (7); hence, we need to always assimilate it in every assimilation cycle.
In reality we never know the reference field; therefore, this experimental setting is unrealistic. However, it allows us
to compare and contrast a variety of test cases.

For the second set of results, a coarse-scale saturation is used which in practice could be obtained from inversion
of 4d seismic measurements (see Section 1). Here, the coarse-grid saturation was obtained by volume averaging
of true fine-scale saturation at some specific observation times (further details are given in Section 4.3). Therefore,
unlike coarse-scale permeability, static data constraint, which is to be always satisfied, the coarse-scale saturation
data is assumed to be available at only a few observation times. Following the flowchart in Fig. 1, we always have
coarse-scale data if it is coarse permeability, and only at those few observation times for coarse-scale saturation data.

An initial ensemble with different permeability realizations was generated using the sequential Gaussian simula-
tion (Deutsch and Journel [29]). We specified a Gaussian variogram model with a correlation length of 20 gridblocks
in thex direction and 5 gridblocks in they direction. One of the realizations is used as the “true” field (shown in Fig. 3)
and was removed from the ensemble. Porosity (φ) is assumed to be equal to 0.15 for all grid blocks. For simplicity,
relative permeabilitieskrj are assumed to be linear functions of water saturation (S): krw(S) = S, kro(S) = 1 − S.
One injection well at the center of the field (injection rate: 71.4 m3/day) and four producing wells at the four corners
(all with equal rate of 17.85 m3/day) were considered. The fine-scale model Eqs. (1)–(2b) are solved with no flow
boundary conditions, zero initial water saturation, and by discretizing the transport equation using the first-order up-
wind finite volume method. In the top panel of Fig. 4 we provide the predicted fractional flow for256 initial ensemble
members along with the true fractional flow (obtained from the true permeability field).
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FIG. 3: Natural logarithm of50× 50 “true” permeability field.
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FIG. 4: Top panel: Water-cut prediction with 256 initial ensemble members (no data assimilation); ensemble members
(cyan), ensemble mean (blue) compared with true water cut data (red). Bottom panel: Same as top panel but after
assimilating only water-cut data as described in Section 4.1.

To compare and contrast our results using coarse-scale data and different versions of EnKF, we use the follow-
ing meanL2-norm error. Since we know the true (fine- and coarse-scale) field for our synthetic problem, denoting the
true permeability field byκtrue, the error for any ensemble member is given by

e(i) = ln(κ(i))− ln(κtrue), i = 1, 2, . . . , Ne

Consider theL2 norm of the error for each member,‖e(i)‖2 =
√∑

j [e(i)
j ]

2
, by which we define the meanL2 error as

e =
1

Ne

Ne∑

i=1

‖e(i)‖2 (18)

so thate gives us an indication of thedistanceof the entire ensemble from the true solutionκtrue. Since after as-
similating any observation we updated all the ensemble members, we can monitor the variation ofe over the time of
assimilation; the success of assimilation can therefore be related to the decrease ine.

4.1 EnKF with Water Cut Data Only

We start with a presentation of results obtained with assimilation of water-cut data only. Next we discuss results with
coarse-scale data.

The water-cut data from the reference field is assumed to be available every200 days, with mean zero and standard
deviation of0.01 (thereforeR1/2 = 0.01I4, whereI4 is the unit matrix of size4 × 4, since there are four producing
wells). The observed data is assumed to be available up to2400 days; hence, we performed assimilation between200
and2400 days. A prediction beyond the interval of data assimilation, up to4000 days, is also provided.
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The choice of ensemble size (Ne) is very important for successful data assimilation using EnKF. This is because
a finite size ensemble prediction is used to estimate the prior error covariancePf Eq. (4b). For small sample sizes,
sampling errors in the covariance estimates result in insufficient variance forPf , so that observations which lie out-
side the small ensemble spread are completely ignored [17, 30]. (We are trying to sample a covariance matrix for
unknown variables:ln(κ), pr , S, Wc, i.e., an unknown of size3 × 2500 plus four fractional flow data in this case,
using sample sizes that are far lesser, resulting in severely reduced rank covariance matrices.) Different approaches
such as covariance inflation and localization have been proposed to alleviate this problem of ensembleinbreeding,
which is discussed elsewhere (see [31–34] and references therein for further details). An ensemble withsufficiently
large number of members needs to be selected so that the assimilation system would not severely suffer from the
above-described problem.2 Here we present our data assimilation results withNe = 256, and in Sections 4.2 and 4.3
we briefly discuss some important characteristics of the error covariance matrix such as variance and eigenspectrum in
the context of coarse-scale data assimilation. The issue of coarse-scale data assimilation with smaller ensemble sizes
would be tackled in the future.

In the bottom panel of Fig. 4 we plot the ensemble and true water-cut data after assimilation of only water-cut
data with the EnKF. Comparing with the initial forecast (top panel), we observe that the assimilated ensemble better
envelopes the true data. Also, the ensemble mean saturation field after 500, 1000, 2000, 3000, and4000 days of
simulation better compares with the true saturation than with no assimilation in Fig. 7. The final permeability field
after assimilation for the ensemble mean and a few members is compared with the true field in Fig. 9. Note that the
central, southeast–northwest channel is prominent, but the features at the southwest and northeast corners are not
well captured, which is reflected in the plot of mean saturation (Fig. 7), where many fine-scale features present in
the true saturation field are not present in the ensemble mean. Therefore, assimilation of only water-cut data helps in
identifying some of the important features.

4.2 EnKF with Water-Cut and Coarse-Scale Permeability Data

In addition to water-cut production data, the coarse-scale permeability data, as described in Section 3.3 was used
as additional measured data. Flow-based upscaling of the reference permeability field was used as a proxy for the
inverted coarse field. Following our previous notation, this coarse-scale permeability data is denoted byz Eq. (7).
The mapping between state variables (at fine-scale) and observations (at coarse-scale) as given byU = [U 0 0 0], U ,
denotes flow-based upscaling. For the reg EnKF,H = [U 0 0 I] in Eq. (11) of Section 3.1.

Exactly as in the previous section, we prescribed the same frequency (of availability) and precisionR for the
water-cut data. Since we use coarse-scale permeability as additional data, it is to be assimilated whenever we assimilate
water-cut data. For5×5 coarse-scale data with mean zero and variance,Q = qI25 (we present results withq = 4, 2, 1,
and0.1), so that we can consider the impact of coarse-scale data precision. In the left panel of Fig. 5 we plot the
variation of meanL2 error e Eq. (18) with observation time at the coarse scale for different values ofq and using
reg EnKF as well as cs-EnKF. In the right panel of the same figure we show the correlation between coarse-scale
ensemble mean and true fields forq = 1. The values of correlation coefficients for different values ofq are provided
in Table 1. Note that as the precision of coarse-scale data is increased, i.e., for smaller value of variance, we observe
a larger decrease in coarse-scale meanL2 error and higher correlation with true coarse-scale field. This would be
expected because smaller varianceQ implies more strict coarse-scale data constraint in Eq. (7) and hence, the coarse-
scale data is more accurately assimilated as it is made more precise. The water-cut data prediction using the final
permeability field after assimilation for different coarse-scale data precisions is plotted in Fig. 6. (The nature of results
with q = 4 is similar to those withq = 2, 1, 0.5; thus, we drop it.) Notice the improved fit of ensemble prediction to
the true data for more precise coarse-scale data and also when compared to the assimilation of only water cut in Fig. 4,
which is a consequence of the additional coarse-scale data being available. However, the water-cut prediction with the
cs-EnKF compares better with the truth than that with the reg EnKFfor higher values ofq = 2 and1; with q = 0.5,
the reg EnKF prediction is highly improved. In Fig. 7 we compare the ensemble mean with the true saturation. Once

2Our choice ofNe = 256 was based on observing the eigenspectrum and variance, discussed in Sections 4.2 and 4.3, by comparing
the results for the256 ensemble with a1000-sized ensemble; the256-sized ensemble did not suffer from the insufficient variance
problem discussed above.
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FIG. 5: Results with coarse-scale permeability and water-cut data assimilation. Left panel: Variation of meanL2

norm error at coarse scale with assimilation time and precision of coarse-scale dataq, for both reg EnKF and cs-
EnKF. Right panel: The correlation between ensemble mean permeability with the truth at coarse scale plotted for
q = 1.

TABLE 1: Correlation coefficient between ens. mean permeabilityln(κ) and
true permeabilityln(κtrue), at coarse as well as fine scales for different pre-
cisionsq of coarse-scale permeability data. The coarse scale is denoted with
subscriptc and fine-scale withf . Results with both reg EnKF and cs-EnKF are
given. For only water-cut data assimilation,corr[ln(κf ), ln(κtrue

f )] = 0.3074.

corr[ln(κc), ln(κtrue
c )] corr[ln(κf ), ln(κtrue

f )]
q reg EnKF cs-EnKF reg EnKF cs-EnKF
4 0.9887 0.9851 0.6484 0.6341
2 0.9963 0.9934 0.6573 0.6275
1 0.9974 0.9968 0.6546 0.6356
0.5 0.9971 0.9963 0.6096 0.6292

again, as the coarse-scale data constraint is more precisely imposed, the ensemble mean saturation captures most of
the features in the true field. Also, notice that the reg EnKF saturation prediction improves more markedly asq is
lowered when compared to the cs-EnKF, which could explain the better water-cut fit in Fig. 6 forq = 0.5 with the
reg EnKF.

In the left panel of Fig. 8 we plot the fine-scale meanL2 error for the permeability field with different values
of q, and in the right panel of the same figure we plotted the correlation between the ensemble mean and the true
fine-scale permeability forq = 1. The correlation coefficients are given in Table 1. (For assimilation of only water-cut
data, we obtained a correlation coefficient equal to0.3074.) Though the meanL2 error is lower with the cs-EnKF,
a slightly higher correlation is obtained with the reg EnKF. We observe that higher precision, i.e., lowerq, does not
necessarily imply highest correlation, whereas we obtained a lower meanL2 error. The final permeability field after
assimilation for the ensemble mean and a few members is shown in Fig. 9. We note that the low-permeability region at
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FIG. 7: Plot of the evolution of saturation field for the truth, ensemble mean: initial forecast (no assimilation),
assimilation of only water cut, and assimilation of both water cut and coarse-scale permeability data with various
precisions. We denote only water cut with “Wc”, and water-cut and coarse-scale permeability data with “Wc+Kc”.
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FIG. 8: Same as in Fig. 5, but for the fine scale.

the northeast and high permeability at the southwest corners are well captured. Also, the ensemble mean permeability
with the cs-EnKF has some features not very well present, in that with the reg EnKF, particularly withq = 2, 1,
e.g., the low-permeability region to the left of the central southwest–northeast channel. As we noted in Section 3.1,
the estimates obtained using the reg EnKF are expected to be different from those obtained with the cs-EnKF. We
observed that for higher values of the coarse-scale data variance (q = 2 and1), the cs-EnKF yielded better water
cut, ensemble mean saturations, and permeability estimates when compared to the reg EnKF, whereas withq = 0.5,
the results are similar (but not exactly same) with both versions of the EnKF. These results indicate that an optimal
value for the coarse-scale data variance is important, particularly for the different versions of the EnKF (reg EnKF or
cs-EnKF), and it could be obtained by a prior calculation of the uncertainty in the coarse-scale data which can be
addressed in a future study. Also, more complex, studies in coarse-scale data at more than one scale and for three-
dimensional models are needed to understand the merits and demerits of each version of the EnKF.

Regardless of the version of EnKF being used, after every assimilation cycle we can obtain an estimate of the
analysis error covariance matrix for the ensemble fine-scale permeability. Using the fine-scale assimilated permeability
fieldsκ

(i)
f we define the following ensemble mean permeability and error covariance,

κf =
1

Ne

Ne∑

i=1

κ
(i)
f (19a)
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FIG. 9: Plot of the fine-scale permeability field for the truth, ensemble mean: initial forecast (no assimilation),
assimilation of only water-cut, and assimilation of both water-cut and coarse-scale permeability data with various
precisions in the top row. For the second column onward we show selected ensemble members:50, 100, 150, and200,
respectively. We denote only water cut with “Wc”, and water-cut and coarse-scale permeability data with “Wc+Kc”.
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Pκf ,κf
≈ 1

Ne − 1

Ne∑

i=1

[κ(i)
f − κf ] [κ(i)

f − κf ]T (19b)

Minimization of variance of the covariance matrixPκf ,κf
is desired in various Kalman filtering applications [2] as it

provides a measure of uncertainity. In the top row (left panel) of Fig. 10 we plotted the normalized variance ofPκf ,κf

during assimilation with various precisions of coarse-scale data and for both reg EnKF and cs-EnKF, and also for
assimilation of only fractional flow data (we normalized using the variance from the initial ensemble). We observed
that a higher reduction in variance is obtained as coarse-scale data precision is increased, and the cs-EnKF obtains
more reduction than the reg EnKF. This trend is seen even for an ensemble of much larger size, for example, with
1000 members as shown in the bottom row (left panel) of Fig. 10.
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FIG. 10: Top row (left panel): Normalized variance of the error covariance matrix (Section 4.2) within assimilation
window (normalized with respect to variance before assimilation, using the initial ensemble), for assimilation of
only water-cut, and assimilation of both water cut and coarse-scale permeability data with various precisions. Right
panel: Eigenspectrum of the error covariance matrix for the last assimilation cycle after2400 days with256 ensemble
members. Bottom row: Same as top row but with1000 ensemble members.
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Another important property of interest, particularly for ensemble data assimilation is the eigenspectrum ofPκf ,κf
,

which is plotted in the right panels of Fig. 10; the top row represents256 ensemble members, whereas the bottom
row represents1000 members. This eigenspectrum is from the last assimilation cycle at the end of2400 days; for
other assimilation cycles, the spectrum was similar. Asmoothdistribution of eigenvalues is desired, and indeed,
we observe that, but the tails of the spectrum are steep for only water-cut data assimilation and cs-EnKF. As the
coarse-scale data precision is improved, the trailing eigenspectrum gets smoothed out, which may indicate that the
eigenvectors associated with the small eigenvalues are able to resolve some small-scale correlation features. Also,
the larger variance associated with the leading eigenvectors as obtained for only water-cut data assimilation seems
not to be the case with coarse-scale data assimilation (some of the desirable properties regarding eigenspectrum of
covariance matrices are given, e.g., by Hamill et al. [32]). We note that for an ensemble size ofNe = 1000, the spectra
are almost identical for both versions of the EnKF. In Fig. 11 we compare side-by-side the spectra withNe = 256
for the reg EnKF and cs-EnKF, with the1000 ensemble member eigenspectrum. (Since the spectra are similar for
the1000 ensemble member case, we plot and compared only with the reg EnKF.) As noted in Fig. 10, with higher
precision of coarse-scale data, the tail of the spectrum gets smoothened, but also the magnitude of trailing eigenvalues
is decreasing, which suggests that for smaller ensemble sizes there could be issues with loss of rank of the error
covariance matrix. This problem seems to be slightly more aggrevated for the cs-EnKF. When compared to the1000
member case, the leading eigenvalues seem to be slightly larger, as observed in [32]. In any case, in this study we
did not apply any covariance inflation or localization (and always used an ensemble of size256, which seems to
preserve the rank of ensemble up to about245 eigenvalues; see Fig. 11). These topics in the context of coarse-scale
data assimilation will be covered in a future study.

4.3 EnKF with Water-Cut and Coarse-Scale Saturation Data

As mentioned in the Introduction, by coarse-scale inversion of 4d-seismic data we could obtain dynamic data such as
coarse-scale pressure and saturation. In this section we attempt to assimilate such a coarse-scale saturation in a twin
experiment along with the fractional flow data using the EnKF algorithms discussed in Sections 3.2 and 3.1. To this
end, the saturation obtained by using the reference permeability is saved at three different times:200, 1200, and2400
days, which respectively correspond to the start, middle, and end of the time window of data assimilation. This saved
fine-scale saturation field is then upscaled (see Section 3.3) by volume averaging to a5 × 5 coarse-scale grid and
used as observed coarse-scale saturation data. If we denote the volume averaging by operatorA, acting on fine-scale
saturationSf , to give coarse-scale saturationSc = ASf , then the mapping between state variables at fine scale and
measured data at coarse-scale is given byU = [0 0A0]. Therefore for the reg EnKF (Section 3.1), the measured
data is related to the fine-scale variables viaH = [0 0A I ] in Eq. (11). For the cs-EnKFwe use aboveU operator to
compute the misfit:z−U[Ψ] in Eq. (14b) (i.e., steps 2.1 and 2.4 of the cs-EnKF algorithm in Appendix B). Unlike the
coarse-scale permeability data which was taken into account at every assimilation step, by construction, the coarse-
scale saturation data is available only at a few assimilation steps, in this particular case, assimilation after200, 1200,
and2400 days.

To be consistent with our previous results, the frequency (of availability) and precisionR for the water-cut data
has been kept the same. For the coarse-scale saturation data we prescribed zero mean and variance,Q = qsI25, with
qs = 0.1, 0.01, such that the precision is varied from low to high. Since the saturation ranges between 0 and 1, and
the fractional flow data is usually more accurately measured than 4d-seismic data, we pickedqs to be always larger
than the variance in fractional flow data. In the left panel of Fig. 12 we plotted the variation of meanL2 error for the
coarse-scale saturation (while assimilating) vs observation time. (For our test case, we had assumed zero initial water
saturation; therefore, the water saturation increases in time and hence, the inherent, increasing trend in this figure.)
Note that whenever the coarse-scale saturation is assimilated (200, 1200, and2400 days) the error decreases for both
values ofqs considered. The water-cut data prediction using the assimilated ensemble members is given in Fig. 13;
the fit of ensemble water-cut with the truth gets better as the coarse-scale saturation is prescibed higher precision.

We discuss the fine-scale results starting with fine-scale saturation and then the fine-scale permeability. The en-
semble mean saturation is compared to the true field at certain times in Fig. 14. By assimilating the coarse-scale
saturation data we are able to capture many of the subtle features that are present in the true saturation field, such

Volume 1, Number 1, 2011



66 Akella, Datta-Gupta, & Efendiev

50 100 150 200 250
10

−2

10
−1

10
0

10
1

10
2

10
3

Eigenvalue spectrum of P
κ
f
,κ
f

, q = 4

M
a
g
n
it
u
d
e

 

 

N
e
=1000 reg EnKF

N
e
=256 reg EnKF

N
e
=256 cs−EnKF

50 100 150 200 250
10

−2

10
−1

10
0

10
1

10
2

10
3

q = 2

50 100 150 200 250
10

−2

10
−1

10
0

10
1

10
2

10
3

q = 1

50 100 150 200 250
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

q= 0.5

N
e
 = 1000 reg EnKF

N
e
 = 256 reg EnKF

N
e
 = 256 cs  −  EnKF

FIG. 11: Comparison of the eigenspectrum of the error covariance matrix for256 and1000 ensemble members for
different precisions (q) of the coarse-scale data. As in Fig. 10, the spectrum corresponds to the last assimilation cycle.
Plot of the spectrum for cs-EnKF and reg EnKF for1000 ensemble members was very similar (bottom row of Fig. 10)
and hence, is not plotted.

as the fingers that develop off the center toward the northeast corner and sharp contrast between different levels of
saturation, throughout the entire time interval (up to4000 days) considered. Regarding the fine-scale permeability,
a comparison of the meanL2 error is shown in the right panel of Fig. 12. Note the marked reduction in error when
coarse-scale saturation data is assimilated. Also, the correlation of the ensemble mean permeability with the truth is
improved asqs is decreased, as shown in Table 2. The fine-scale permeability fields for a few ensemble members
and the mean are shown in Fig. 15. Based on the above results, we observed that unlike in the case of coarse-scale
permeability data assimilation, coarse-scale saturation data assimilation does not yield significant reduction in error
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FIG. 12: Assimilation of coarse-scale saturation and water cut. Left panel: Variation of meanL2 norm error for
coarse-scale saturation, at different precisions of coarse-scale dataqs, for both reg EnKF and cs-EnKF with coarse-
scale saturation data. Right panel: Same as in left, but for the fine-scale permeability field.

(comparing the left panel in Fig. 8 and the right panel in Fig. 12); neither are the correlations of fine-scale ensemble
mean with the truth (second column of Tables 1 and 2). The results (ensemble mean saturation and permeability) are
improved when compared to assimilation of only water-cut data, particularly withqs = 0.01, but again, not as much
improved as with coarse-scale permeability data assimilation. This could be anticipated, since the fine-scale perme-
ability is more correlated to coarse-scale permeability than to the coarse-scale saturation. Regarding the two versions
of the EnKF considered for assimilating the coarse-scale saturation data, results are very similar to each other, even
those for the variance of error covariance matrixPκf ,κf

and its eigenspectrum at the end of2400 days (Fig. 16). Note
the steepness of the trailing eigenvalues withqs = 0.1 (for both reg EnKF and cs-EnKF), which is similar to the
assimilation of only fractional flow data; however, forqs = 0.01, this undesirable effect has been smoothned out.
This is similar to the result obtained with coarse-scale permeabilty data assimilation in Fig. 10. Our observation that
both versions of EnKF performed similarly could be due to the linearity of the fine-scale to coarse-scale saturation
mappingA; however, identical results would not be possible due to the different analysis equations and sampling of
errors used in Eqs. (14b) and (11).

5. CONCLUSIONS

The EnKF is increasingly being used for subsurface characterization in various geological and groundwater applica-
tions to identify fine-scale state and parameters. Recently, dynamic data other than production data has been consid-
ered in the EnKF context [11, 12]; nevertheless, the observed data to be assimilated was assumed to be at the finest
scale. For a number of reasons, it is widely recognized that usage of additional multiscale data could further reduce the
uncertainty at the fine scale. Also, it is often important to preserve large-scale features of the permeability field. These
are coarse-scale features that can typically represent connectivity of the media. For example, facies consisting of high
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FIG. 13: Similar to Fig. 6, but assimilation of water-cut and coarse-scale saturation at different precisions. We denote
only water cut with “Wc”, and water-cut and coarse-scale saturation data with “Wc+Sc”.

International Journal for Uncertainty Quantification



Assimilation of Coarse-Scale Data Using the Ensemble Kalman Filter 69

FIG. 14: Same as in Fig. 7, but for the assimilation of coarse-scale saturation and water cut.
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TABLE 2: Same as Table 1, but for assimi-
lation of coarse-scale saturation data.

corr[ln(κf ), ln(κtrue
f )]

qs reg EnKF cs-EnKF
0.1 0.2861 0.2746
0.01 0.3149 0.3280

permeable regions are important for flow and transport. On the other hand, these features alone are not sufficient
to match water-cut data. By performing inversion on the coarse grid, we can capture these large-scale features with
more accuracy and certainty, and in turn, the coarse-scale inverted permeability could be used as a prior constraint
in EnKF data assimilation of the fine-scale fields.

Here we proposed assimilation of coarse-scale data along with water-cut production data. We showed that the
modifications to the EnKF for multiscale data assimilation are completely recursive and easily implementable. The
relation between fine and coarse scales was modeled via flow-based upscaling, which could be thought of as a nonlin-
ear observation operator linking the coarse-scale data to the unknown fine-scale variables. In addition, the proposed
methodology could be used in any other sequential data assimilation method, as well to assimilate data at multiple
coarse scales. Two versions of EnKF were suggested: (i) reg EnKF, where all the data (coarse-scale and water-cut)
were assimilated together, and (ii ) cs-EnKF, where the data were assimilated sequentially in batches. Ensemble mem-
bers obtained after assimilating water-cut data are used as a prior to assimilate coarse-scale data. Though in our
current paper we used only one coarse scale, the proposed method can be easily implemented to integrate as many
coarse scales as required by the available data. Also the methodology is independent of the upscaling operator.

The assimilation setup was tested and compared for a two-dimensional synthetic50× 50 heterogenous true field.
Two kinds of coarse-scale data were considered. In the first implementation, coarse-scale permeability data was con-
sidered and in the second, coarse-scale saturation. In our twin experiment setup, both of these data were derived from
the reference field and, in both cases a5×5 coarse grid was used. The coarse-scale data variance was varied from low
to high in order to study its impact on fine-scale assimilated fields and water-cut predictions. In all cases we observed
that the assimilated, ensemble mean coarse-scale (permeability/saturation) field for all variances was highly corre-
lated to the true coarse-scale field. In addition, lower variance in the coarse-scale data yielded higher correlation. The
water-cut data was better honored, for higher precision of coarse data. When assimilating coarse-scale permeability
we observed that the cs-EnKF gave better fit with the true saturation, water-cut, and fine-scale permeability than the
reg EnKF. It also yielded less error in an averagedL2 norm error taken with regard to the reference field, whereas
both versions of EnKF performed similarly when assimilating coarse-scale saturation. As shown in Appendix A,
for a linear observation operator, assimilation of coarse-scale data in batches (i.e., as in cs-EnKF) or in shot (as in
reg EnKF) would yield the same estimate. Then the cause for the difference in the performance of the two versions
of EnKF for assimilation of coarse-scale permeability could be either due to ensemble size or linearity/nonlinearity
of the upscaling (observation) operator. This issue has been outlined by Dance [21] and references therein. As far
as the number of ensembles is concerned, we observed that even with a larger ensemble size of1000 members, we
noticed different performance of the two versions of EnKF (Fig. 10, reduction in normalized variance ofPκf ,κf

while
having similar ranks in terms of the eigenspectrum). Certainly further study with different upscaling operators and
coarse-scale data at multiple levels would be needed to study this aspect of the two versions of EnKF considered here.
Over all, inclusion of coarse-scale data replicated many of the subtle features present in the fine-scale permeability
and saturation fields which were not present after assimilating only water-cut data.

As our results indicate that the inclusion of coarse-scale data enhances identification of the multi-scale reservoir
characteristics, it is important to study methods to obtain coarse-scale data as well as its precision. In a realistic
scenario, coarse-scale inversion [7, 28], and in the future perhaps with more computing resources, MCMC methods
[8], could be used to obtain such data. The coarse-scale saturation obtained using inversion has been shown to yield
improved estimates in a three-dimensional reservoir case by Devegowda et al. [35]. Our current and future work is
directed toward obtaining coarse-scale data with higher precision and its assimilation using ensembles of smaller size
for complex three-dimensional cases.
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FIG. 15: Same as in Fig. 9, but for the assimilation of coarse-scale saturation and water cut.
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APPENDIX A. TWO-STEP COARSE-SCALE CONSTRAINED KALMAN FILTER ESTIMATE

From Section 3,

Jf =
1
2
(Ψ−Ψ)T (Pf )−1 (Ψ−Ψ)

and

Jy =
1
2
(y− H[Ψ])T R−1 (y− H[Ψ])

For notational simplicity we denoteµΨ asµ and denotePf by B.
Step 1(minimizeJf + Jy):

First we minimize the sum,J1 = Jf + Jy. The gradient3 of the above quadratic cost functional with respect to
(w.r.t.) Ψ is given by

∇ΨJ1 = B−1 (Ψ− µ)− HT R−1 (y− H[Ψ])

Then the minimizer̃µ of J1 satisfies (we assumeH to be linear)

B−1 (µ̃− µ)− HT R−1 (y− Hµ̃) = 0

By rearranging the above equation we get

[B−1 + HT R−1H]µ̃ = B−1µ + HT R−1y (20)

Note that the Hessian ofJ1 w.r.t.Ψ is given byB−1+HT R−1H, and for linear quadratic cost functionals, the Hessian
inverse is equal to the error covariance matrix. Therefore, the error covariance matrixB̃ for µ̃ is given by

B̃ = [B−1 + HT R−1H]−1 (21)

Step 2(minimizeJg + Jz):
We useµ̃, B̃ in

Jg =
1
2
(Ψ− µ̃)T (B̃)−1 (Ψ− µ̃)

Jz =
1
2
(z− U[Ψ])T Q−1 (z− U[Ψ])

Therefore, the minimum̂µ of Jg + Jz satisfies

[(B̃)−1 + UT Q−1U]µ̂ = (B̃)−1µ̃ + UT Q−1z.

Using Eqs. (21) and (20) we can rewrite the above as

[B−1 + HT R−1H︸ ︷︷ ︸
(B̃)−1

+UT Q−1U]µ̂ = B−1µ + HT R−1y︸ ︷︷ ︸
r.h.s. of Eq. (20)

+UT Q−1z

It is trivial to show that̂µ also satisfies

∇Ψ[Jf + Jy + Jz] = 0

Therefore, the two-step method to obtain the final estimateµ̂ gives the same results as a one-shot approach of mini-
mizingJf + Jy + Jz.

3We note in passing thatB andR are covariance matrices and are positive definite by construction and hence, for our derivation
purposes, are formally invertible.

International Journal for Uncertainty Quantification



Assimilation of Coarse-Scale Data Using the Ensemble Kalman Filter 75

APPENDIX B. THE COARSE-SCALE EnKF ALGORITHM

Algorithm 1. Coarse-scale EnKF algorithm

Run the simulation model up to a particular observation time for the entire ensemble to get predicted samples:
{Ψ(i)}Ne

i=1, A =
(
Ψ(1),Ψ(2), . . . ,Ψ(Ne)

)
.

• Step 1: Using measured water-cut datay with varianceR, get the updated ensemble:
{
Ψ̃(i)

}Ne

i=1
.

Step 1.1—Find ensemble mean [Eq. (4a)]Ψ.

Step 1.2—Subtract deviation from the meanA′ =
(

b(1), b(2), . . . , b(Ne)
)

, b(i) = Ψ(i) −Ψ.

Step 1.3—ApplyH to each column ofA′ to getS = H A ′, i.e., simply pick the water-cut deviations inA′.

Step 1.4—For i = 1, 2, . . . , Ne,

sampleν(i) i.i.d.∼ N (0, R).
y(i) = y + ν(i),

R1/2 =
(
ν(1), ν(2), . . . , ν(Ne)

)
,

D =
(

d(1), d(2), . . . , d(Ne)
)

,

d(i) = y(i) −W(i)
c ; W(i)

c is predicted water cut for each ensemble member.
End for

Step 1.5—Compute SVD
[
S+ R1/2

]
= XLΣXR.

GetΣ̂ retaining the first few singular values which explain most variability inΣ, corresponding

to the left singular vectors:̂XL.

Step 1.6—Update ensemble: Eq. (6),Ã =
(
Ψ̃(1), Ψ̃(2), . . . , Ψ̃(Ne)

)
,

Ã = A + A′ST X̂LΣ̂−2X̂
T

L D.

• Step 2: Using coarse-scale dataz with varianceQ, get the updated ensemble:
{
Ψ̂(i)

}Ne

i=1
.

Step 2.1—Compute coarse-scale ensemble prediction:u(i) = UΨ̃(i), i = 1, 2, . . . , Ne.

Step 2.2—Coarse-scale mean:µ′ =
1

Ne

Ne∑

i=1

u(i).

Step 2.3—Coarse-scale deviations:S′ =
(
s(1), s(2), . . . , s(Ne)

)
, s(i) = u(i) − µ′.

Step 2.4—Repeat step 1.4 using coarse-scale measurement.For i = 1, 2, . . . , Ne,

sampleω(i) i.i.d.∼ N (0, Q).
z(i) = z + ω(i),

Q1/2 =
(
ω(1), ω(2), . . . , ω(Ne)

)
,

D′ =
(

d(1), d(2), . . . , d(Ne)
)

, d(i) = z(i) − u(i).

End for

Step 2.5—Compute SVD[S′ + Q1/2] = XLΣXR. GetΣ̂ andX̂L as in step 1.5.

Step 2.6—Compute fine-scale mean:µ =
1

Ne

Ne∑

i=1

Ψ̃(i).

Step 2.7—Compute fine-scale deviations:A′′ =
(

b(1), b(2), . . . , b(Ne)
)

, b(i) = Ψ̃(i) − µ.
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Step 2.8—Update ensemble:Â =
(
Ψ̂(1), Ψ̂(2), . . . , Ψ̂(Ne)

)
,

Â = Ã + (A′′)(S′)T X̂LΣ̂−2X̂
T

L D′.

Remark 1:
Note that steps 2.6 and 2.7 in the above algorithm approximate the intermediate fine-scale error covariance,

P̃f ≈ 1
Ne − 1

A′′ (A′′)T .

Remark 2:
Steps 2.1–2.3 accomplish4

S′ = UA′′.

Note that the above algorithm is independent of the choice of upscaling procedure, and we can use the same algorithm
for different kinds of coarse-scale observed data (if available).
Remark 3:
Note that the above coarse-scale constrained EnKF algorithm can be readily extended to incorporate data at multiple
coarse scales with the appropriate upscaling procedure inU. To elaborate, if we had other independent data at a scale

different fromz, we could use the estimates
(
{Ψ̂(i)}Ne

i=1

)
obtained usingz. As an intermediate solution, repeating

step 2 to assimilate the data at another scale.

4As noted in [2], this approach of accounting for the nonlinear observations operatorU works well as long asU is weakly nonlinear
and a monotonic function of model variablesΨ.
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Singular source terms in the differential equation represented by the Dirac δ-function play a crucial role in determining
the global solution. Due to the singular feature of the δ-function, physical parameters associated with the δ-function are
highly sensitive to random and measurement errors, which makes the uncertainty analysis necessary. In this paper we
use the generalized polynomial chaos method to derive the general solution of the differential equation under uncertain-
ties associated with the δ-function. For simplicity, we assume the uniform distribution of the random variable and use
the Legendre polynomials to expand the solution in the random space. A simple differential equation with the singular
source term is considered. The polynomial chaos solution is derived. The Gibbs phenomenon and the convergence of
high order moments are discussed. We also consider a direct collocation method which can avoid the Gibbs oscillations
on the collocation points and enhance the accuracy accordingly.

KEY WORDS: generalized polynomial chaos, stochastic Galerkin method, singular source, Dirac δ-func-
tion, Gibbs phenomenon

1. INTRODUCTION

Differential equations with singular source terms are commonly found in various areas of applications [1–5]. Singular
source terms are defined in a highly localized regime and play a crucial role in determining the global solution of the
given differential equations. It is important to capture properly such small-scale phenomenon induced by the local
singular source terms and understand the interaction between the small- and large-scale solution dynamics. Singular
source terms are mathematically represented by the Diracδ-function,δ(x − c), and its derivative(s) defined in the
distribution sense with a functionf(x), which is defined atx = c such that

∫ ∞

−∞
δ(x− c)f(x)dx = f(c), and

∫ ∞

−∞
δ(x− c)dx = 1. (1)

The derivatives of theδ-function are also defined in a similar way for a functionf(x), whose derivatives are defined
atx = c such that ∫ ∞

−∞
δ
′
(x− c)f(x)dx = −f

′
(c),

∫ ∞

−∞
δ
′′
(x− c)f(x)dx = f

′′
(c), · · · (2)

where the superscript′ denotes the derivative with respect tox.
Although singular sources are defined in a compact form mathematically, various uncertainties are easily involved

to define them physically. For example, it is not easy to pinpoint the location of the singular source term. The detection
of the singular object is based on the physical measurement, and such measurement has errors due to the locality of
the singularity. Thus the realistic model of the singular source term should include the uncertainty of the location of
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the singular source, which can be introduced by a new random variableξ in the physical space where theδ-function
is defined such as

δ(x− c) → δ(x− ξ),

whereξ is a random variable replacingc in δ(x−c). Another type of uncertainties can be introduced for the amplitude,
for which one can rewrite theδ-function as the following form

δ(x− c) → ηδ(x− c),

whereη is a random variable. Ifη → 0, then the singular source term vanishes. One can consider other types of
uncertainties for theδ-function besides the location and the amplitude. In this paper we consider the case where the
uncertainty exists in the location.

In many cases solutions of differential equations with singular sources are nonsmooth, singular, or discontinuous.
For example, in nonlinear optics, a defect in the optical media is modeled by the singular source, and such a sin-
gular source term plays a role as a potential around which the input signals yield nonlinear reflection and scattering
phenomena. These nonlinear phenomena have been investigated using nonlinear partial differential equations (PDEs)
including the sine-Gordon equation

utt − uxx + sin(u) = εδ(x) sin(u), −∞ < x < ∞, t > 0, u : R× R+ → R, (3)

and the nonlinear Schrödinger equation

iψt + ψxx + κ|ψ|2ψ = εδ(x), −∞ < x < ∞, t > 0, ψ : C× R+ → C. (4)

Previous research shows that the global solutions of PDEs as given above are sensitive to the singular potential
term and that the mathematical structure of the solution dynamics is rich and complex [2, 3]. The sensitivity of the
global solution to the singular source term is amplified if uncertainties are involved, which makes the global solution
dynamics more complex. No significant research has been conducted for the uncertainty analysis for the solution of
such singularly perturbed differential equations. In this paper, as a preliminary research, we use the polynomial chaos
method to analyze the solution of differential equations with the singular source term.

The polynomial chaos method was introduced by Wiener [6] and was recently much further developed by Xiu and
co-workers [7–14]. The polynomial chaos method with the spectral method approach has gained great popularity these
days [15–17] (see Xiu’s recent book and references therein [17]). The polynomial chaos method seeks the solution
in a higher dimensional polynomial space by introducing a random variable associated with the uncertainty. Then the
method expands the solution as a polynomial using the orthogonal polynomials [16, 17]. The orthogonal polynomials
are determined by the distribution of the random variables considered. Different distributions and the corresponding
orthogonal polynomials are given in Table 1 [11, 17]. In this paper we consider the uniform distribution and use the
Legendre polynomials for simplicity.

This paper is composed of the following sections. In Section 2 we consider the simple differential equation with a
singular source term. The uncertainty is in the location of the singular source term. The random variable has a uniform

TABLE 1: Continuous probability density functions and the associated orthogonal polyno-
mials [11, 17].

Distribution (PDF) Orthogonal polynomials Support

(1/2)χ[−1,1] Ll(x), Legendre polynomials [−1.1]

(1/
√

2π) exp(−x2/2) Hl(x), Hermite polynomials (−∞,∞)

xk−1 exp(−x/θ)/Γ(k)θk Ll(x), Laguerre polynomials [0,∞)

{[Γ(α + β)]/[Γ(α)Γ(β)]}xα−1(1− x)β−1 P
(α,β)
l , Jacobi polynomials [−1, 1]
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distribution. We derive the solution using the Galerkin method and provide some convergence results. We also consider
the case that the uncertainty is confined in a local regime. This assumption yields the domain decomposition method.
In Section 3 we discuss the Gibbs phenomenon which exists in the solutions obtained in Section 2. In Section 4
discussions on high-order moments are given. In Section 5 we consider the simple linear advection equation with the
singular source term. A similar solution is obtained for the time-dependent problem. In Section 6 we consider the
collocation method to solve the same time-dependent problem considered in Section 5. The singular source term is
directly projected to the collocation space. As a result, the direct projection method removes the Gibbs phenomenon
in the solution. In Section 7 we provide a brief summary and remark on future work.

2. A FIRST-ORDER DIFFERENTIAL EQUATION WITH UNIFORM DISTRIBUTION, ξ ∈ [−1, 1]

First we consider the following simple differential equation for the real-valued functionu(x),

du

dx
= δ(x), x ∈ [−1, 1], u(−1) = 0. (5)

The exact solution is simply given by the Heaviside functionH(x) which is an integral of the right-hand side of
Eq. (5),δ(x). The singularity is located at the origin for Eq. (5), but we assume that there is an uncertainty in the
location of theδ-function and useξ as the random variable to denote the uncertainty of the location. Then the given
differential equation becomes

∂u

∂x
= δ(x− ξ), x ∈ [−1, 1], u(−1, ξ) = 0. (6)

The solutionu is now a function of bothx andξ. We also assume thatξ has the uniform distribution and is defined in
the same interval ofx, i.e.,ξ ∈ [−1, 1], with the probability density function (PDF) given by(1/2)χ[−1,1](ξ) where
χ(ξ) is the characteristic function. The assumption of the uniform distribution yields that the associated orthogonal
polynomials forξ are the Legendre polynomials, as given in Table 1. The Legendre polynomials are defined by
the solution to the Sturm–Liouville problem{(1 − x2)[Ll(x)]′}′ + l(l + 1)Ll(x) = 0 with x ∈ [−1, 1] with the
orthogonality condition

∫ 1

−1
Ll(x)Ll′(x)dx = [2/(2l + 1)]δll′ , where the superscript′ denotes the derivative with

respect tox andδ is the Kronecker delta.
The solution of Eq. (6) is obvious,

u(x, ξ) =

{
0 if x < ξ

1 if x ≥ ξ
. (7)

Let E(u) denote the expectation value ofu, andV ar(u) the variance ofu. These two quantities,E(u) andV ar(u),
are all functions ofx only. Letf(x) = E(u) andg(x) = V ar(u). Then we have

f(x) = E[u(x, ξ)] =
∫ 1

−1

u(x, ξ)
1
2
χ[−1,1](ξ)dξ =

1
2
(x + 1). (8)

Similarly,

g(x) = V ar[u(x, ξ)] =
∫ 1

−1

u2(x, ξ)
1
2
χ[−1,1](ξ)dξ− [E(u)]2 =

1
4
(1− x2). (9)

Definition: Let u(1)(x), u(2)(x) andu(x, ξ) be defined by the Galerkin solution of Eq. (5) in Legendre polyno-
mials, the Galerkin projection of the exact solution of Eq. (5),H(x) and the polynomial chaos solution of Eq. (6),
respectively. The superscripts(1) and(2) denote that the associated quantity corresponds tou(1)(x) andu(2)(x). For
example,̂u(1) andû(2) are the expansion coefficients ofu(1)(x) andu(2)(x), respectively.
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First we consider the functionu(2)(x) =
∑∞

l=0 û
(2)
l Ll(x), which is the direct projection of the exact solution of

Eq. (5), that is,̂u(2)
l are given by the following equation:

H(x) =
∞∑

l=0

û
(2)
l Ll(x). (10)

Lemma 1. The expansion coefficientŝu(2)
l in Eq. (10) are given by

û
(2)
l =





1
2

l = 0

0 l = even

−1
2
[Ll+1(0)− Ll−1(0)] l = odd

. (11)

Proof. By multiplying each side of Eq. (10) byLl(x) and using the orthogonality of the Legendre polynomials, the
expansion coefficients are given by

û
(2)
l =

2l + 1
2

∫ 1

−1

H(x)Ll(x)dx =
2l + 1

2

∫ 1

0

Ll(x)dx. (12)

If l = 0, it is obvious that̂u(2)
l = (1/2). For l 6= 0, we use the following property of the Legendre polynomials [18]:

(2l + 1)Ll(x) = L
′
l+1(x)− L

′
l−1(x), (13)

and

(2l + 1)
∫ x

−1

Ll(x) = Ll+1(x)− Ll−1(x). (14)

Since
∫ 1

0
Ll(x)dx =

∫ 0

−1
Ll(x)dx for l = even and

∫ 1

0
Ll(x)dx = − ∫ 0

−1
Ll(x)dx for l = odd, the above relations

yield

û
(2)
l =

(−1)l

2
[Ll+1(0)− Ll−1(0)]. (15)

SinceLl(0) = 0 if l = odd, we obtain Eq. (11).

Next we consider the functionu(1)(x) =
∑∞

l=0 û
(1)
l Ll(x), which is the Galerkin solution of the differential

equation, Eq. (5). By pluggingu(1)(x) into the differential equation and the initial condition, we have

∞∑

l=0

û
(1)
l L

′
l(x) = δ(x), (16)

∞∑

l=0

û
(1)
l Ll(−1) = 0. (17)

Lemma 2. The coefficientŝu(1)
l , satisfying Eqs. (16) and (17), are given by

û
(1)
l =





1
2

l = 0

0 l = even

−1
2
[Ll+1(0)− Ll−1(0)] l = odd

. (18)
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Proof. From Eq. (13) we have

L
′
2(x)− L

′
0(x) = (2 · 1 + 1)L1(x),

L
′
4(x)− L

′
2(x) = (2 · 3 + 1)L3(x),

L
′
6(x)− L

′
4(x) = (2 · 5 + 1)L5(x),

...

L
′
n(x)− L

′
n−2(x) = [2 · (n− 1) + 1]Ln−1(x).

(19)

Adding both sides of Eq. (19) all together, we have

L
′
n(x) = 1 + 5L2(x) + 9L4(x) + 13L6(x) + · · ·+ (2n− 1)Ln−1(x), (20)

for n = even. Similarly, we have

L
′
n(x) = 3L1(x) + 7L3(x) + 11L5(x) + · · ·+ (2n− 1)Ln−1(x), (21)

for n = odd. From Eqs. (20) and (21), we know thatL
′
n(x) is a linear combination of all the previous odd (ifn is

odd) or even (ifn is even) terms with coefficients(2k + 1) for Lk(x). By plugging Eqs. (20) and (21) into Eq. (16),
we have ∞∑

l=0

û
(1)
l [· · ·+ (2l − 1)Ll−1(x)] = δ(x). (22)

In Eq. (22),· · · means3L1(x) + 7L3(x) + 11L5(x) + · · · + (2l − 3)Ll−2 for evenl or 1 + 5L2(x) + 9L4(x) +
13L6(x) + · · ·+ (2l − 3)Ll−2 for oddl. Multiplying each side of Eq. (22) byLk(x) yields

Lk(x)
∞∑

l=0

û
(1)
l [... + (2l − 1)Ll−1(x)] = Lk(x)δ(x). (23)

We then integrate the above equation overx and switch the left and right sides to obtain

Lk(0) = û
(1)
k+1

∫ 1

−1

Lk(x)(2k + 1)Lk(x)dx + û
(1)
k+3

∫ 1

−1

Lk(x)(2k + 1)Lk(x)dx + û
(1)
k+5

∫ 1

−1

Lk(x)(2k + 1)Lk(x)dx

+ û
(1)
k+7

∫ 1

−1

Lk(x)(2k + 1)Lk(x)dx + ... = 2
(
û

(1)
k+1 + û

(1)
k+3 + û

(1)
k+5 + û

(1)
k+7 + ...

)
, (24)

where we used the orthogonality condition of the Legendre polynomials. Eq. (24) also reads

Lk+2(0) = 2
(
û

(1)
k+3 + û

(1)
k+5 + û

(1)
k+7 + û

(1)
k+9...

)
. (25)

Subtracting Eq. (24) from Eq. (25) yields

û
(1)
k+1 = −1

2
[Lk+2(0)− Lk(0)]. (26)

Now consider the boundary condition. Sinceû
(1)
k+1 vanishes ifk is odd, the boundary condition becomes

−
∞∑

l=0,odd

û
(1)
l = lim

k,odd→∞
1
2
[Lk+1(0)− L1(0)] = 0. (27)

This completes the proof.
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Finally we consideru(x, ξ), which is the solution of the stochastic differential equation, Eq. (6),

u(x, ξ) =
∞∑

l=0

ûl(x)Ll(ξ), (28)

where the expansion coefficientsûl are functions ofx. Pluggingu(x, ξ) into the differential equation yields

∞∑

l=0

û
′
l(x)Ll(ξ) = δ(x− ξ), (29)

where the superscript′ denotes the derivative with respect tox. To consideru(x, ξ), let us first consider the general
case whereξ is defined in the subinterval ofx.

Domain decomposition:ξ ∈ (−ε, ε). Assume that the location of theδ-function is confined in a small region
ξ ∈ (−ε, ε), 0 < ε ¿ 1. The solution for Eq. (6) is then given by

u(x, ξ) =

{
0 if x < ξ

1 if x ≥ ξ
, (30)

whereξ ∈ (−ε, ε). In the intervalx ∈ [−ε, ε], the expectation value is

f(x) = E[u(x, ξ)] =
1
2ε

(x + ε). (31)

Similarly, the variance is

g(x) = V ar[u(x, ξ)] =
1

4ε2
(ε2 − x2). (32)

Thus, for a fixedε, the expectation value and variance are given by

f(x) =





0 x ∈ [−1,−ε)
1
2ε

(x + ε) x ∈ [−ε, ε]

1 x ∈ (ε, 1]

, (33)

and

g(x) =





0 x ∈ [−1,−ε)
1

4ε2
(ε2 − x2) x ∈ [−ε, ε]

0 x ∈ (ε, 1]

. (34)

For anyε, we have

|f(x)| = |E[u(x, ξ)]| =
∣∣∣∣

1
2ε

(x + ε)
∣∣∣∣ ≤

|x|+ |ε|
2ε

≤ 1, (35)

|g(x)| = |V ar[u(x, ξ)]| =
∣∣∣∣

1
4ε2

(ε2 − x2)
∣∣∣∣ ≤

ε2

4ε2
=

1
4
, (36)

which shows the expectation value and variance are bounded although the PDF[(1/2)χ[−ε,ε](ξ) = (1/2ε)] diverges
asε → 0. We know thatx → 0 asε → 0, and we obtain the expectation value and variance atx = 0 by letting
ε → 0. Also by Eqs. (35) and (36) we have

f(0) = E[u(0, ξ)] ≡ 1
2

and g(0) = V ar[u(0, ξ)] ≡ 1
4
. (37)
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These values are the same as those forξ ∈ [−1, 1]. Thus, we know that ifx → 0, the expectation value and the
variance are the same for any value ofξ ∈ (−ε, ε).

The assumption thatξ ∈ (−ε, ε) breaks the original differential equation into three equations in three regions, (1)
x ∈ I = [−1,−ε], (2) x ∈ II = (−ε, ε], and (3)x ∈ III = (ε, 1].

Interval I, x ∈ [−1,−ε]: In this interval, theδ-function is absent and the differential equation and the boundary
condition are given by

du

dx
= 0, u(−1) = 0,

and the solution is simply
u(x) = 0, u(ε) = 0. (38)

Interval II, x ∈ (−ε, ε): In this interval, theδ-function exists and the equation is given by

∂u(x, ξ)
∂x

= δ(x− η),

whereη ∈ (−ε, ε). Then we seek a solutionu(x,η) as

u(x, η) =
∞∑

l=0

ûl(x)Ll[ξ(η)], (39)

whereξ = (η/ε) andξ ∈ [−1, 1].
Lemma 3. The expansion coefficientŝul(x) in Eq. (39) are given by

ûl(x) =





1
2ε

(x + ε) l = 0

1
2

[
Ll+1

(x

ε

)
− Ll−1

(x

ε

)]
l 6= 0

. (40)

Furthermore, the boundary valueu(x = ε,η) is unity for any value ofη, i.e.,

u(ε, η) = 1. (41)

Proof. By plugging Eq. (39) into the differential equation and using the orthogonality ofLl(ξ) we obtain

2
2k + 1

dûk(x)
dx

=
∫ 1

−1

δ(x− εξ)Lk[ξ(η)]dξ =
1
ε

Lk

(x

ε

)
. (42)

The boundary condition atx = −ε is obtained by the solution atx = −ε in interval I,
∞∑

l=0

ûl(−ε)Ll[ξ(η)] = 0. (43)

Thus,ûl(−ε) = 0 for all l = 0, 1, 2, · · · . Using this boundary condition, we obtain

û0 =
1
2ε

(x + ε), (44)

if k = 0. If k 6= 0, we have

ûk(x) =
2k + 1

2
· 1
ε

∫ x

−ε

Lk

(y

ε

)
dy =

1
2

[
Lk+1

(x

ε

)
− Lk−1

(x

ε

)]
, (45)

where we used Eq. (14). The boundary value ofu(x, η) atx = ε is

u(ε,η) =
1
2ε

+
∞∑

l=1

1
2
[Ll+1(1)− Ll−1(1)]Ll

(η

ε

)
= 1. (46)

Volume 1, Number 1, 2011



84 Jung & Song

From lemma 3, we know that the mean value ofu(x, η) in this interval is given by

E[u(x, η)] =
1
2ε

(x + ε), (47)

which isû0(x). If x → 0, we confirm that

lim
x→0

E[u(x, η)] = û(0) =
1
2
.

Interval III, x ∈ (−ε, 1]: Since there is noδ-function in this interval, using the boundary value ofu(ε, η) = 1,
the solution inx ∈ (ε, 1] is given byu(x) = 1. It is easy to show that ifε → 0, then we have

u(x, η) → u(1)(x), or u(2)(x). (48)

Using lemma 3, we have the following corollary forξ[−1, 1].
Corollary 4. The expansion coefficientŝul(x) are given by

û0(x) =
1
2
(x + 1), ûk(x) =

1
2
[Lk+1(x)− Lk−1(x)], (49)

and

u(x, 0) =
1
2
−

∞∑

l=1,odd

1
2
[Ll+1(0)− Ll−1(0)]Ll(x). (50)

Proof. From lemma 3, forε → 1, we have Eqs. (49) and (50). Furthermore, by pluggingξ = 0 and equations in
Eq. (49) into Eq. (28), we obtain

u(x, 0) =
1
2
(x + 1) +

∞∑

l=2,even

1
2
[Ll+1(x)− Ll−1(x)]Ll(0). (51)

It is a simple exercise to show that Eq. (51) becomes

u(x, 0) =
1
2
−

∞∑

l=1,odd

1
2
[Ll+1(0)− Ll−1(0)]Ll(x).

Here note that the first coefficient,û0(x) = (1/2)(x + 1), is the same as the expectation value ofu(x, ξ) in Eq. (8).
Remark: Equations (50) and (51) are equivalent. They may, however, become different if they are truncated with

the finiteN in their given forms. For Eq. (51), sinceLl+1(x) = Ll−1(x) at x = ±1 if l is even, we know that at
x = ±1,

u(x, 0) =
1
2
(x + 1) =

{
1 x = 1
0 x = −1

,

which are the boundary values and they are determined regardless of how many terms are used in the series. For
Eq. (50), sinceu(x, 0) = 1 at x = 1, andu(x, 0) = 0 at x = −1, the following should be

N∑

l=1,odd

1
2
[Ll+1(0)− Ll−1(0)]Ll(x) =




−1

2
x = 1

1
2

x = −1
,

which is only true ifN →∞. Thus we use Eq. (51) for the computation in the following sections.
Figure 1 shows the expansion coefficientsul(x), Eq (49). The top figure showsul(x) for l = 0, · · · , 9 and the

bottom figure forl = 10, · · · , 40.
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FIG. 1: Expansion coefficientsul(x). Top: ul(x) for l = 0, · · · , 9. Bottom:ul(x) for l = 10, · · · , 40.

Theorem 5.
u(1)(x) = u(2)(x) = u(x,ξ = 0).

Furthermore,uN (x, ξ) converges tou(x,ξ) at ξ = 0, i.e.,

lim
N→∞

‖u(x, 0)− uN (x, 0)‖∞ = 0. (52)

Proof. From lemmas 1 and 2 and corollary 4, we know that all the coefficients ofu(1)(x), u(2)(x), andu(x, ξ = 0)
are the same.

Using the recurrence relation(n + 1)Ln+1(x) = (2n + 1)xLn(x)− nLn−1(x), we have

(n + 2)Ln+2(0) = −(n + 1)Ln(0), (53)

which yields

L2n(0) = (−1)n (2n)!
4n(n!)2

. (54)
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Then we let̂vk(x) be defined as

v̂2k+1 =
1
2
[L2k(0)− L2k+2(0)] =

1
2
(−1)k (2k)!

4k(k!)2

[
1 +

(2k + 2)(2k + 1)
4(k + 1)2

]
≈ (−1)k (2k)!

4k(k!)2
. (55)

Using the Stirling formulan! ∼ √
2πn(n/e)n and(2n)! ∼ [√

4πn(2n/e)2n
]
, we have

lim
k→∞

(2k)!
4k(k!)2

= lim
k→∞

√
4πk

(
2k
e

)2k

4k
[√

2πk
(

k
e

)k
]2 = lim

k→∞
1√
4πk

= 0. (56)

Thus, the following series converges
∞∑

k=0

v̂2k+1 =
∞∑

k=0

(−1)k (2k)!
4k(k!)2

, (57)

and we have

‖u(x, 0)− uN (x, 0)‖∞ =

∥∥∥∥∥∥

∞∑

k=N/2

v̂2k+1L2k+1(x)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

∞∑

k=N/2

v̂2k+1

∥∥∥∥∥∥
∞

→ 0 for N →∞. (58)

From theorem 5, we know that the stochastic solutionu(x, ξ) matches the deterministic solution well, particularly
if the singularity is located atx = 0.

Remark: Theorem 5 can be extended to the more general case that

du(x)
dx

= δ(x− c), x ∈ [−1, 1],

wherec is the real constantc ∈ [−1, 1]. Then solutionsu(1)(x; c) andu(2)(x; c) are the same asu(x, ξ) for anyξ = c.

This can be easily shown using the properties of the Legendre polynomials. First, forH(x−c) =
∑N

l=0 û
(2)
l Ll(x),

the coefficients are given by

û
(2)
l =

2l + 1
2

∫ 1

c

Ll(x)dx. (59)

By the Galerkin projection, we get similar results as lemma 2,

û
(1)
0 =

1− c

2
, û

(1)
l =

1
2
[Ll−1(c)− Ll+1(c)], (60)

for any l > 0. To prove Eqs. (59) and (60) are equal, we use the identity formula (14). Settingx = 1 andx = c in
Eq. (14), respectively, we have

(2l + 1)
∫ 1

−1

Ll(x) = Ll+1(1)− Ll−1(1) = 0, (61)

(2l + 1)
∫ c

−1

Ll(x) = Ll+1(c)− Ll−1(c). (62)

Subtracting Eq. (62) from Eq. (61) yields the equation implying that Eqs. (59) and (60) are equal. Also, the boundary
condition

∑N
l=0 û

(1)
l Ll(−1) = 0 is obtained by plugging Eq. (60) into this formula. The coefficients from the polyno-

mial chaos method for anyc are obtained in as similar way as corollary 4 by just replacing0 with c in Eq. (50). After
some simple algebraic calculations, we can show that the coefficients by the polynomial chaos method are equal to
those by the previous two methods.
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Now we consider the convergence ofu(x, ξ) for anyξ. That is, we want to show

lim
N→∞

‖u(x, ξ)− uN (x, ξ)‖∞ = 0, ∀ξ ∈ [−1, 1]. (63)

Using corollary 4 we have

‖u(x, ξ)− uN (x, ξ)‖∞ =

∥∥∥∥∥
∞∑

l=N+1

ûl(x)Ll(ξ)

∥∥∥∥∥
∞

=

∥∥∥∥∥
∞∑

l=N+1

1
2
(Ll+1(x)− Ll−1(x))Ll(ξ)

∥∥∥∥∥
∞

≤ 1
2

∞∑

l=N+1

|Ll+1(x)− Ll−1(x)|∞ , (64)

where we used|Ll(ξ)| ≤ 1. Here we do not provide the convergence analytically, but instead we show the numerical
result. DefineR1(n),

R1(n) = |Ll+1(x)− Ll−1(x)|∞ ,

and the remainder

R2(n,N∞) =
N∞∑

l=n+1

|Ll+1(x)− Ll−1(x)|∞ .

For the numerical calculation ofR1(n) andR2(n,N∞), we useN∞ = 6000. Figure 2 shows the decay ofR1(n)
(blue solid line) andR2(n) (black solid line) withn in logarithmic scale. The figure shows thatR1(n) decays with
a rate of about∼ n−4.95. The red line in the figure is a reference line which decays∼ n−4.95. With this decay rate,
we know that the series

∑∞
n=1 |Ll+1(x)− Ll−1(x)|∞ will converge. Thus, the remainderR2(n,N∞) will decay as

n →∞ andN∞ →∞ for n < N∞, i.e.,

lim
n,N∞→∞

R2(n, N∞) = 0.

The black solid line shows the decay ofR2(n,N∞) with N∞ = 6000. The figure implies that due to the decay prop-
erty of R1(n), the remainderR2(n,∞) will also decay to zero asn → ∞, but the decay rate is only algebraic. That
is, we know thatuN (x, ξ) converges tou(x, ξ), but convergence is slow because of the existence of the discontinuity
atx = ξ.
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n−4.95.
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3. GIBBS PHENOMENON

The solutions obtained in the previous section yield the Gibbs phenomenon. The Gibbs phenomenon is commonly
found in high-order approximations of discontinuous functions with the spectral method [19, 20]. The exact solution
of Eq. (5) is the Heaviside function withH(0) = 1 andlimx→0− H(x) = 0. As we already saw, all solutions obtained
in the previous section have the expectation value of1/2 atx = 0. Thus all solutions converge toH(x) at every point
x exceptx = 0. This appears as the Gibbs oscillations in the partial sum of each solution nearx = 0.

Figure 3 shows the partial sum solution ofu(x, ξ = 0) (left) andu(x, ξ) (right) for N = 40. The left figure
shows the solution whenξ = 0. As shown in the figure, the solution is oscillatory near the discontinuityx = 0. The
right figure shows the collection of solutions for everyξ andx. As shown in the figure,u(x,ξ) are oscillatory near
x = ξ. Figure 4 shows the variance and the mean ofu(x, ξ). The top figure shows the computed variance ofu(x, ξ)
with 501 points ofx andξ for N = 10 (blue solid line),N = 20 (green),N = 40 (purple), and the theoretical
variance ofu(x, ξ), (1− x2)/4 (red). As the figure shows, the variance approaches the exact variance asN increases,
but the convergence is slow. The slow convergence is due to the fact that the variance is computed using every term
in the series of the solution. As the series converges slowly, the variance also converges slowly. The bottom figure
shows the error between the computed mean ofu(x, ξ) and the exact mean(1 + x)/2 in logarithmic scale using5001
uniform points forN = 4, 6, 10. For the numerical integration, we used the Simpson’s rule. The figure shows that the
pointwise errors of the mean value are close to machine accuracy for the small value ofN . This is because the first
mode is the mean and the rest of the terms are canceled out. AsN increases, the pointwise errors increase, which
results from the incomplete numerical cancellations of high modes due to round-off errors.

4. HIGH-ORDER MOMENTS OF U(X, ξ)

With the uniform distribution, it is easy to show that the variance is given by

V ar[u(x, ξ)] =
∞∑

l=1

û2
l (x)

2l + 1
, (65)

where one should note that the indexl runs from1. In general, all the terms of̂ul(x) are involved for the computation
of the variance, as shown in the above equation and Fig. 4. It is, however, interesting to observe that the variance in
our case is simply given by the second mode ofûl(x),

V ar[u(x, ξ)] = − û1(x)
3

=
1
4
(1− x2). (66)
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FIG. 3: Left: u(x, ξ) for ξ = 0. Right: u(x, ξ). For these figures,N = 40 is used.
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That is, as the mean ofu(x, ξ), the variance can be determined exactly onceû1(x) is found. This implies that the slow
convergence of the variance found in Fig. 4 can be resolved as the variance is obtained instantly. To understand this
interesting aspect, we need to show the following:

∞∑

l=1

û2
l (x)

2l + 1
=

1
4
(1− x2), (67)

whereul(x) = (1/2)[Ll+1(x)− Ll−1(x)]. To prove Eq. (67), first we plug Eq. (14) into the left-hand side (LHS) of
Eq. (67). Then the LHS becomes

LHS =
1
4

∞∑

l=1

(2l + 1)
[∫ x

−1

Ll(µ)dµ

]2

.
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For the proof we use the well-known property that the Legendre polynomials are complete, that is,
{√

[(2l + 1)/2]

Ll(x)
}∞

l=0
are complete and orthonormal [21]. The completeness condition yields

∫ x

−1

12dµ =
∞∑

l=0

[∫ x

−1

1 ·
√

2l + 1
2

Ll(µ)dµ

]2

.

Thus,

x + 1 =
∞∑

l=0

2l + 1
2

[∫ x

−1

Ll(µ)dµ

]2

.

UsingL0(x) = 1 we obtain [21]

1− x2 =
∞∑

l=1

(2l + 1)
[∫ x

−1

Ll(x)dµ

]2

.

This completes the proof. This special result is due to the following relation:

E[un(x, ξ)] = E[u(x, ξ)], for any n = 0, 1, · · · . (68)

Since the exact solution isH(x− ξ), it is simple to show that

E[un(x,ξ)] = E[Hn(x, ξ)] = E[H(x, ξ)] = E(u).

The fact that the mean of any power ofu(x, ξ) is the same as the mean ofu(x, ξ) yields the following property. Let
E[u(x, ξ)] = ū andv = −ū. Then forn = 0, 1, · · · , we have

E[(u− ū)n] = vn(1 + v)− v(1 + v)n. (69)

It is easy to show Eq. (69),

E[(u− ū)n] = E

[
n∑

k=0

(
n

k

)
uk(−ū)n−k

]
= (−ū)n +

n∑

k=1

(
n

k

)
E(uk)(−ū)n−k = (−ū)n + (ū)

n∑

k=1

(
n

k

)
(−ū)n−k

= vn − v

n∑

k=1

(
n

k

)
(v)n−k = vn(1 + v)− v(1 + v)n, (70)

where we used Eq. (68) andv = −ū. Equation (69) yields interesting results about the high-order moments ofu. For
example,

E[(u− ū)n] = (−1)n−1 un−1

2(n− 1) + 1
, n = 2, 3. (71)

The second moment is the variance and the third moment is related to the skewness. Thus, we know that the first three
moments (the mean, variance, and skewness) are obtained exactly by the first three modes oful(x) for our case.

Figure 5 showsE[(u − ū)n] with differentn = 1, · · · , 50. The left figure showsE[(u − ū)n] for n = 1, · · · , 20
and the right forn = 21, · · · , 50. If n = 1, E[(u − ū)n] = 0. As n increases, the maximum value ofE[(u − ū)n]
decreases in the figures. Note the different scale in the left and right figures.

5. TIME-DEPENDENT LINEAR ADVECTION EQUATION WITH UNCERTAINTY

We consider the time-dependent problem with a singular source term

ut + ux = δ(x), u : [−1, 1]× R+ → R, t > 0
u(x, 0) = g(x), t = 0
u(−1, t) = h(t) t > 0. (72)
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FIG. 5: Moments,E[(u− ū)n]. Top: n = 1, · · · , 20. Bottom:n = 21, · · · , 50.

If the boundary condition is homogeneous, i.e.,u(−1, t) = 0, the solutionu(x, t) goes to the steady-state solution
which is the Heaviside function,H(x). We consider the case that the location of the singular source has an uncertainty
ξ as in the previous sections, that is,

ut + ux = δ(x− ξ), (73)

whereu = u(x, t, ξ). We assume thatξ ∈ (−1, 1) with the uniform PDF and

u(x, t, ξ) =
∞∑

l=0

ûl(x, t)Ll(ξ). (74)

By plugging Eq. (74) and using the orthogonality condition of the Legendre polynomials, we obtain

2
2l + 1

[
∂

∂t
ûl(x, t) +

∂

∂x
ûl(x, t)

]
= Ll(x). (75)
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If l = 0, we have

∂

∂t
û0(x, t) +

∂

∂x
û0(x, t) =

1
2
. (76)

Then the solution of Eq. (76) is given by

û0(x, t) = û0(x0, t = 0) +
1
2
x + C, (77)

whereC is the integration constant andx0 = x − t. To determine the integration constantC, we use the given
boundary and initial conditions. From the boundary conditionu(−1, t, ξ) = h(t), we have

ûl(−1, t) = (2l + 1)h(t)δl0 =
{

h(t) l = 0
0 l 6= 0 . (78)

Similarly, using the given initial condition

∞∑

l=0

ûl(x, 0)Ll(ξ) = g(x),

we obtain

ûl(x, 0) = (2l + 1)g(x)δl0 =
{

g(x) l = 0
0 l 6= 0 . (79)

Using Eqs. (78) and (79), we obtain

û0(x, t) = g(x− t) +
1
2
x + C = g(x− t) +

1
2
x + h(t) +

1
2
− g(−1− t). (80)

If l 6= 0, by using the orthogonality condition we obtain

ûl(x, t) = ûl(x0, t = 0) +
2l + 1

2

∫ x

−1

Ll(y)dy =
1
2

[Ll+1(x)− Ll−1(x)] , (81)

where we used Eqs. (18) and (79). Thus, the general solution of the stochastic equation (73) is given by

u(x, t, ξ) = g(x− t)− g(−1− t) +
1
2
(x + 1) + h(t) +

∞∑

l=1

1
2

[Ll+1(x)− Ll−1(x)] Ll(ξ). (82)

If g(x) = 0 = h(t), then we obtain

u(x, t, ξ) =
1
2
(x + 1) +

∞∑

l=1

1
2

[Ll+1(x)− Ll−1(x)] Ll(ξ).

This is the Legendre expansion ofH(x), and we know thatu(x, t) → H(x) ast →∞.
To consider the numerical approximation of the solution, we use the Legendre polynomials both inx andξ,

u(x, t, ξ) =
∞∑

l=0

ûl(x, t)Ll(ξ) =
∞∑

l=0

[ ∞∑

k=0

v̂l
k(t)Lk(x)

]
Ll(ξ). (83)

We seek the truncated sum of Eq. (83) for the numerical solution

uNM (x, t, ξ) =
N∑

l=0

[
M∑

k=0

v̂l
k(t)Lk(x)

]
Ll(ξ). (84)
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For simplicity, we assume thatN = M . Multiplying each side of Eq. (75) byLl′(x), l′ = 0, · · · , N and using the
integration by parts, we obtain

∂

∂t

∫ 1

−1

ûlLl′(x)dx + ûl(1, t)− ûl(−1, t)Ll′(−1)−
∫ 1

−1

ûlL
′
l′(x)dx = δll′ , (85)

where we useLl′(1) = 1, ∀l′. We then plug the following relation into Eq. (85),

ûl(x, t) =
N∑

k=0

v̂l
k(t)Lk(x).

For the givenl, using the boundary condition and the properties of the Legendre polynomials, we obtain

2
2l′ + 1

dv̂l
l′

dt
+

N∑

k=0

v̂l
k(t)− h(t)δl0(−1)l′ −

N∑

k=0

v̂l
k

∫ 1

−1

Lk(x)L′l′(x)dx = δll′ . (86)

Define the column vectors~v l and~b1, whoseith elements arêvl
i and(−1)i, and define the matrixbl

2, whoseith column
has the elementδil for i = 0, · · · , N . Also, define the matricesA, B, andC, whoseij elements areAij = (2i + 1)/2,

Bij = [2/(2i + 1)]δij , andCij =
∫ 1

−1
L′i(x)Lj(x)dx, for i, j = 0, · · · , N , respectively. Then for givenl, Eq. (86)

becomes

d~vl

dt
=

(
B−1C−A

)
~v l − h(t)δl0B−1~b1 + B−1bl

2. (87)

Equation (87) is solved numerically using the initial condition

v̂l
k =





0 l 6= 0

2k + 1
2

∫ 1

−1

g(x)Lk(x)dx l = 0
. (88)

For the numerical experiment, we use the following initial and boundary conditions:

u(x, t = 0, ξ) = sin(πx), u(x = −1, t, ξ) = sin[π(−1− t)].

With these conditions, the meanf(x, t) and the varianceg(x, t) of the exact solutionu(x, t, ξ) are given by

f(x, t) = sin[π(x− t)] +
1
2
(x + 1), g(x, t) =

1
4
(1− x2). (89)

The variance is the same as the variance of Eq. (9), which is because the homogeneous solution is independent of
the random variableξ. For the time integration we use the third-order Runge-Kutta total variation diminishing (TVD)
scheme [22]. The mean and the variance att are computed by

mean=
N∑

k=0

v0
k(t)Lk(x), variance=

N∑

l=1

1
2l + 1

[
N∑

k=0

vl
k(t)Lk(x)

]2

.

Figure 6 shows the solution forξ = 0 (left figure) and the variance (right) att = 10. As shown in the right figure,
convergence of variance is slow due to the Gibbs phenomenon.
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FIG. 6: Left: The numerical solution (oscillatory, blue) and the exact solution (red). Right: Variance.ξ = 0 at t = 10
with N = 41.

6. DIRECT PROJECTION COLLOCATION METHODS

In the previous sections, we used the Galerkin approach to obtain the solution of the differential equations with the
random variableξ. The Galerkin approach yields the Gibbs phenomenon, as shown in the previous sections. In this
section, we solve the same equations using the collocation method based on the direct projection approach for the
singular source term [23]. The direct projection approach uses the direct derivative of the Heaviside function for the
singular source term on the collocation points. The direct collocation method was applied to several applications [23–
25]. The main idea of the direct projection approach is to project the Heaviside functionH(x) to the collocation
points using the spectral derivative matrixDN , that is,

δN (x) −→ DNHN (x),

whereδN (x) is the spectral approximation of theδ-function on the collocation points withDN the derivative ma-
trix andHN (x) the Heaviside function on the collocation points. Several spectral derivative matrices related to the
orthogonal polynomials can be found in [19].

6.1 A Simple First-Order Differential Equation

Consider the following differential equation with the random variableξ,

du(x, ξ)
dx

= δ(x− ξ).

Let UN be the approximation ofu on N + 1 collocation points forξ, {ξl}N
l=0. The collocation method yields the

approximationUN (x, ξ) in the Legendre polynomials as in the previous sections,

UN (x, ξ) =
N∑

l=0

ûl(x)Ll(ξ). (90)

Here we assume that we also seekUN (x, ξ) on the collocation points forx, {xl}M
l=0. That is, the spectral method is

applied for bothx andξ directions, and the solutionUN (x, ξ) is defined on the two-dimensional grid. By plugging
UN (x, ξ) into the differential equation, we obtain

DMUN (x, ξ) = δ(x− ξ), (91)
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whereDM is the spectral derivative matrix for the variablex on M + 1 collocation points associated with some
orthogonal polynomials such as Chebyshev or Legendre polynomials. For the singular source term in the right-hand
side (RHS) of the above equation, the direct projection method uses

δ(x− ξ) −→ DMHM (x− ξ),

whereHM is the Heaviside function on the collocation points which has the jump atx = ξ. Then Eq. (91) becomes

DMUN (x, ξ) = DMHM (x− ξ). (92)

To solve the differential equation, we first use the boundary condition, which is

UN (−1, ξ) = 0, ∀ξ ∈ {ξl}N
l=0. (93)

From Eqs. (92) and (93) we obtain

D̃M (UN (x, ξ)−HM (x− ξ)) = 0, ∀ξ ∈ {ξl}N
l=0,

whereD̃M is the submatrix ofDM , which is obtained by subtracting the boundary column and row fromDM . The
RHS0 denotes a null vector, andUN (x, ξ) in the LHS is a solution vector for a certainξ. SinceD̃M is nonsingular
[19], we obtain

UM (x, ξ) = HM (x− ξ), (94)

which is the same as the exact solution, and we know that such solution isGibbs-freeon the collocation points.
Remark: We note that the interpolation based on the solution at the collocation points yields the Gibbs oscillations,
but the solution is Gibbs-free on the collocation points.

6.2 A Simple Time-Dependent Problem

Now we consider the time-dependent problem with the collocation method

Ut + Ux = DxH(x− ξ), (95)

whereU = U(x, t, ξ) andDx denotes the derivative operator with respect tox. U is defined in the same way,

UN (x, t, ξ) =
N∑

l=0

ûl(x, t)Ll(ξ). (96)

For the steady-state problem, using the following boundary condition,

U(−1, t, ξ) = 0, t > 0, (97)

and we have the given differential equation which becomes ast →∞,

Ux = DxH(x− ξ). (98)

This steady-state solution becomesU(x, t, ξ) → H(x− ξ), as shown in the previous section.
For the numerical experiment we use the Chebyshev polynomials forx and the Legendre polynomials forξ. As

in the previous section, we use the third-order Runge-Kutta TVD scheme for the time integration [22]. For the initial
and boundary conditions we use the following:

U0 = [sin(πx0), sin(πx1), · · · , sin(πxM−1), sin(πxM )]T

Un(x0) = sin[π(x0 − tn)], ∀n = 1, 2, · · · , (99)
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wherexi, i = 0, · · · ,M are the Chebyshev Gauss–Lobatto collocation points,xi = − cos(πi/M), i = 0, · · · , M .
With these initial and boundary conditions, the exact solutionu(x,ξ) is given by

u(x, t, ξ) = sin[π(x− t)] + H(x− ξ), (100)

where the first term is the homogeneous solution and the second term is the particular solution due to the singular
source term.

Figure 7 shows the collocation solution foru(x,ξ). Figure 7a shows the solution whenξ = 0, and the middle
shows the collection of solutions with variousξ. Figure 7a shows that the solution is not affected by the Gibbs
phenomenon without any oscillations on the collocation points. Figure 7b shows that along the linex = ξ, the jump
of each solution is sharp, without any Gibbs oscillations. For these figures, we useM = N +1 andN = 81. Figure 7c
shows the variance withN = 41 andM = 21. The variance from the numerical solution is the blue line with the
2 symbol. As shown in the figure, the variance is more accurately computed compared to the result in Fig. 6. The
numerical results, however, show that the degree of accuracy is similar to that with the numerical simulation with the
Galerkin approach, although the Gibbs oscillations are not seen on the collocation points. This result is somewhat
different from what the authors expected, partly because the collocation approach has the ambiguity in defining the
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FIG. 7: (a) The solution atξ = 0. (b) Polynomial chaos solutions for everyξ. The total number of grid points for
x is N = 81. (c) The computed variance (blue line with square) and the exact variance (red line) withM = 21 and
N = 41.
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location of theδ-function and the Heaviside function. If theδ-function is located at a certain collocation point, the
error does not decay at that point because the actual location of theδ-function with our collocation method exists off
the collocation points. This issue will be further investigated in our future work.

7. CONCLUSION

In this paper we considered simple differential equations with a singular source term. For the singular source term, we
used the Diracδ-function. Due to the uncertainty of the location of the singular source term, we introduced a random
variable and used the generalized polynomial chaos method to find the general solution of the differential equation
under the uncertainty. For simplicity, we used the assumption that the uncertainty is associated with the uniform
distribution. Based on this assumption, we derived the general solution of the differential equation in the Legendre
polynomials using the Galerkin method, as well as the expectation value and variance of the solution. For this partic-
ular case, we show that the second- and third-order moments as well as the mean can be computed exactly using the
first three expansion coefficients. The same technique was applied to the simple time-dependent problem. We showed
that the Gibbs phenomenon appears in the polynomial chaos solution and consequently convergence is slow. As a
preliminary work dealing with the Gibbs phenomenon in the solution, we considered the direct collocation method
for the polynomial chaos solution. We showed that the direct collocation method can avoid the Gibbs phenomenon
for the simple differential equations considered in this paper. Although the Gibbs oscillations are much reduced, the
convergence of variance is about the same order as the Galerkin approach, which will be further investigated in our
future work. The assumption of uniform distribution yields relatively easy analysis. In our future work we will con-
sider more realistic cases with different distributions for more general types of differential equations with the singular
source term. Thus, our future work will include the polynomial chaos method for more types of uncertainty variables
associated with the singular source term and will further investigate the collocation method for the polynomial chaos
solution and the Gibbs phenomenon with the singular source term.
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