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ABSTRACT 
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In publications [1–3] on the basis of results of theory of optimal control [4–6] we obtained explicit 
expressions of gradients of functional-discrepancies for identification by the O.M. Alifanov gradient 
methods [7] of different parameters of problems of elastic deformation of compound hollow sphere, 
compound cylinder and thermoelastic deformation of compound spatial body correspondingly.  

In the present article similar questions are considered for identification of different parameters of 
problems of thermoelatic deformation of compound hollow sphere under nonstationary field of temperature.  

1. Identification of thermoelastic state by surface displacements  

Let us consider isotropic hollow sphere. Taking into account symmetry, following [8, 9] its 
thermostressed state under assumption about smallness of inertia terms y&&ρ  (у is radial displacement) is 
described by the equation  
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Here λ, μ are the Lame elastic constants, α is the linear expansion coefficient, Т is variation of 
temperature 1T  from its initial state .10T   

Taking into account (1′) the equality (1) is easily transformed to the form  
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Variation of temperature Т holds the equation  
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where с is volumetric heat capacity, k is heat conductivity factor, f  is power of sources of heat.  
On internal and external surfaces of sphere the stresses are given  
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which is supposed to be unknown, and on external surface boundary condition of the third kind is set  
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At initial time instant distribution of variation of temperature field is known  

 .,00 Ω∈== rTT t  (7) 

We assume that on external surface of sphere its displacement is known  

 .),0(),(),( 02 Tttftry ∈=  (8) 

In this way we obtained the problem (2)–(8), which consists in determination of an element  =∈Uu
]),,0([ TC=  for which the first component of у of the classical solution Y = (y, T ) of the initial boundary 

value problem (2)–(7) holds the equality (8).  
Let us introduce into consideration the functional-discrepancy  
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For every fixed  instead of classical solution Y = (y, T ) of the initial boundary value problem 

(2)–(7) we shall use its generalized solution.  
U∈u

Definition 1. For every fixed U∈u  we call as the generalized solution of the initial boundary value 
problem (2)–(7) the vector-function  which  holds the system 
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We shall solve the problem (10)–(12), (9), which consists in determination of an element u 
minimizing on U the functional (9) under the constraints (10)–(12), approximately by means of gradient 
methods [7]. Iteration sequence for determination of the -th approximation  of solution  
of the problem (9)–(12) has the form  
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⎯ for the method of conjugate gradients  
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where  is gradient of the functional (9) at the point     uJ ′ ,nuu = ,0fuAe nn −= ).,;( 2 truyuA nn =
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Definition 2. We call as the generalized solution of the initial boundary value problem (20) the 
vector-function  which  holds the system of relations:  ,),( VpY ∈ψ=∗
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The presence of gradient  makes it possible to use gradient methods (13) for determination of 
the -th approximation  of the desired solution  of the problem (9)–(12).  
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Remark 2. If the recoverable heat flow и = u(t) is assumed to be representable as  
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The presence of gradient  makes it possible to use the method of minimal errors (13), (14) for 

determination of the -th approximation  of the solution  of 
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we obtain  which makes it possible to use the method of steepest descent (13)–(15) 
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In this case functional-discrepancy has the form  
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If we select in the relation (31) instead of the function  the difference  and the 
difference  instead of  in (32), (33), taking into account (10)–(12) we obtain  
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Remark 3. If instead of the condition (28) we have also the condition (8), then we write the 
functional-discrepancy as  

 .,))(),;((
2
1)( 20

1

0 0

2 rddttftduyuJ
i

T

ii =−= ∑ ∫
=

 (34) 

In this case we have the problem (10)–(12), (34).  
Let us introduce denotations  

,))0()(),0(()(

,))0()(),0()((),(

2

2

L

L

уvууfvL

уvууuуvu

−−=

−−=π
 

where ,)),;(),,;(()( 10 tdvytdvyvy =  ),,( 10 fff =  )),(),(( 21 tt ϕϕ=ϕ  )),(),(( 21 tt ψψ=ψ  =ψϕ
2

),( L  

.)()(
0

2

1
dttt i

T

i
i ψϕ= ∫ ∑

=
 

Since  

,)0()(2),()(2 2
2LуfvLvvvJ −+−π=  

then  

 =−−−π=
λ

−−λ+
→λ

)(),()())((lim
0

uvLuvuuJuvuJ  

 .,))()(,)((
2

uvJиуvуfuу uL −′=−−=  (35) 

For every approximation  of solution  of the problem (10)–(12), (34) the conjugate problem has 
the form (30), where instead of the second restriction, which reflects statement of boundary conditions, we 
accept  

nu U∈u

.),0(,))(),;((1)(,0)( 022
2

21
Tttftruy

r
nrrrrrr ∈−=ψσ=ψσ ==  
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For this initial boundary value problem the generalized problem consists in search of the vector-
function  which  holds the relations  ,),(*

dVрY ∈ψ= 0
21 ),( dVzzz ∈=∀

 ),,0(,)())(),;((),(
1

0
11 Ttdztftduyza

i
iiin ∈−=ψ ∑

=
 

 ),,0(,02)23(),(, 2
2

212
2 Ttdrz

rr
rzpаz

t
pcr ∈=⎟

⎠
⎞

⎜
⎝
⎛ ψ+

∂
ψ∂αμ+λ−+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂− ∫

Ω
 (36) 

 .0))(,( 2
2 =Tzcpr  

Taking into account (35) on the basis of (36) we obtain ).,(~
1

2 trрrJ nun
=ψ=′   

3. Restoration of the linear expansion coefficient by surface displacements 

For unknown linear expansion coefficient α the components  instead of (1′) take 

the form  

)(),(),( yyyr θϕ σσσ

 
,)23()(2)()(

,)23(2)2()(

Tuy
rr

yyy

Tu
r
y

r
yyr

μ+λ−μ+λ+
∂
∂λ=σ=σ

μ+λ−λ+
∂
∂μ+λ=σ

θϕ

 (37) 

where nonnegative real constant  is to be determined.  ),0[ ∞+=∈Uu
Taking into account (37) on the basis of (1) the equilibrium equation takes the form  

 ,),(,0)2(2)23()2( 22
Ttry

r
Тиr

r
yr

r
Ω∈=

⎭
⎬
⎫

⎩
⎨
⎧

μ+λ−
∂
∂μ+λ−⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂μ+λ−  (38) 

where .),(),,0( 21 rrTT =Ω×Ω=Ω   
Variation of temperature Т holds the equation (3). On internal and external surfaces of the hollow 

sphere the stresses are given (4), and variation of the temperature Т holds the mixed boundary conditions  

 .),0(,),(),(
2

2

01 TtТ
r
TktutrT rr

rr
∈β+α−=

∂
∂= =

=
 (39) 

For t = 0 the initial condition has the form  

 .),()0,( 0 Ω∈= rrTrT  (40) 

We assume that on external surface of the sphere the displacements, given by the equality (8), are 
known.  

So, we obtained the problem (38)–(40), (3), (4), (8), which consists in determination of nonnegative 
number  for which the first component у of the classical solution Y = (y, T) of the initial boundary 
value problem (38)–(40), (3), (4) holds the equality (8).  

,U∈u

For every fixed  instead of the classical solution Y = (y, T) of the initial boundary value 
problem (38)–(40), (3), (4) we shall use its generalized solution.  

U∈u
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Definition 4. For every fixed  we call as the generalized solution of the initial boundary value 
problem (38)–(40), (3), (4) the vector-function  which  holds the system 
of relations:  

U∈u
,),( VTyY ∈= 021 ),( Vzzz ∈=∀

 ),,0(),;,(),( 11 TtzTиlzya ∈=   

 ),,0(),(),(, 21212
2 TtzlzTaz

t
Tcr ∈=+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂  (41) 

 ),,()0)(,( 20
2

2
2 zTcrzcTr =  

where bilinear forms  are defined in section 1,  ),(),,( 1 ⋅⋅⋅⋅ aa

),()(
2

)23();,( 212
2
2111

2
1

112
1

2

1

rzprrzprdr
r
z

r
z

иTrzTul
r

r
−+⎟

⎠

⎞
⎜
⎝

⎛ +
∂
∂

μ+λ= ∫  

),()( 2
2
22

2
21

2

1

rzrdrzfrzl
r

r
β+= ∫  

),(),(),(:)),(),,(( 012
1
221 tutrvWvtrvtrvvV i =Ω∈=

⎪⎩

⎪
⎨
⎧

= Ω  

,))(;,0(,2,1,],,0[ 2
222

)(
0

1
2 ⎪⎭

⎪
⎬
⎫

Ω∈
∂

∂
=∞<∈∀ Ω∫ LTL

t
vidtvTt Wi

T
 

}.0)(,2,1),(:))(),(({ 12
1
2210 ==Ω∈== Ω rviWvrvrvvV i  

The functional-discrepancy has the form (9). We shall solve the problem (9), (41) by means of 
gradient methods (13).  

For every approximation  of solution  of the problem (9), (41) the conjugate problem has 
the form  

nu U∈u

 
),,0(),);((1)(,0)(

,),(,02)2(

022
2

2

21
Ttfruy

r

tr
dr
dr

r

nrrrrrr

T

∈−=ψσ=ψσ

Ω∈=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ψ−⎟

⎠
⎞

⎜
⎝
⎛ ψ

∂
∂μ+λ−

==

 (42) 

where the component )(ψσ r  is defined in section 1.  
Definition 5. We call as the generalized solution of the boundary value problem (42) the function 

,],,0[)(:),(),(
0

2
)(

1
21 1

2 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∞<∈∀Ω∈=∈ψ ∫ Ω

T

W dtvTtWvtrvVtr  which  holds 

the relation  

)()( 1
2

0
11 Ω=∈∀ WVrz

 ).,0(),())((),( 2101 2
Ttrzfuyza rrn ∈−=ψ =  (43) 

If we substitute in (43) the function  by the difference  taking into account the 

first relation of the system (41) we obtain  
1z ),()( 1 nn uyuy −+
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=−ψ=−− +=+ ∫∫ dtuyuyadtuyuyfuy nn

T

rrnnn

T
))()(,())()()()(( 1

0
10

0
2

 

 ,2)23());,();,(( 2

0
1

0

2

1

dtdr
rr

TrudtTulTul
r

r

T

nnn

T
⎟
⎠
⎞

⎜
⎝
⎛ ψ+

∂
ψ∂μ+λΔ=ψ−ψ= ∫∫∫ +  (44) 

where Т is the solution of the problem, defined by the second and third relations of the system (41).  
Hence, ,~

nun
J ψ=′  where  

,2)23(~

0

2
2

1

dtdr
rr

Тr
T r

r
n ⎟

⎠
⎞

⎜
⎝
⎛ ψ+

∂
ψ∂μ+λ=ψ ∫ ∫  .~

nun
J ψ=′  

Remark 4. If u = u( t), then on the basis of (44) we have ,~
nun

J ψ=′  where  

.)~(,2)23(~

0

222
2

1

∫∫ ψ=′⎟
⎠
⎞

⎜
⎝
⎛ ψ+

∂
ψ∂μ+λ=ψ

T

nu

r

r
n dtJdr

rr
Тr

n
 

Remark 5. If u = u( r), then ,~
nun

J ψ=′  where  

.)~(,2)23(~
2

1

22

0

2 ∫∫ ψ=′⎟
⎠
⎞

⎜
⎝
⎛ ψ+

∂
ψ∂μ+λ=ψ

r

r
nu

T

n drJdt
rr

Тr
n

 

Remark 6. If u = u( r, t), then ,~
nun

J ψ=′  where  

.)~(,2)23(~

0

222
2

1

∫ ∫ ψ=′⎟
⎠
⎞

⎜
⎝
⎛ ψ+

∂
ψ∂μ+λ=ψ

T r

r
nun dtdrJ

rr
Тr

n
 

4. Identification of thermostressed state on the basis of the problem of elastic equilibrium 

Let the equilibrium equation have the form  

 ,),(,0)23(2)2( 22
Ttr

r
иry

r
yr

r
Ω∈=

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂αμ+λ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂μ+λ−  (45) 

where we suppose variation of temperature  to be unknown. On internal and external 
surfaces of the hollow sphere the stresses (4) are given. We assume that on external surface of the sphere 
displacements, given by the equality (8), are known.  

)(12,
TCu Ω=∈U

We obtained the problem (45), (4), (8), which consists in determination of the function  for 
which the solution у = у(u) = у(u; r, t) of the boundary value problem (45), (4) holds the equality (8).  

,U∈u

Definition 6. For every fixed U∈u  we call as the generalized solution of the problem (45), (4) the 
function  which  holds the relation  ,),;()( 1Vtruyuyy ∈== 0

111 )( Vrzz ∈=∀

 ),,0();(),( 11 Ttzиlzya ∈∀=  (46) 

where ).()(2)23();( 212
2
2111

2
1

112
1

2

1

rzprrzprdr
r
z

r
zиrzul

r

r
−+⎟

⎠

⎞
⎜
⎝

⎛ +
∂
∂

αμ+λ= ∫   
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Remark 7. On solving the problem (46), (9) we can accept .)( TС Ω=U   
Instead of the problem (46), (8) we shall solve by gradient methods (13) the problem (46), (9). For 

every approximation  of solution  of the problem (46), (9) the conjugate problem has the form 
(42) with the corresponding generalized (43). If we substitute in (43) the function  by the difference 

 taking into account (46) we obtain  

nu U∈u

1z
),()( 1 nn uyuy −+

=−ψ=Δ′ ∫ +

T

nnnu dtuyuyauJ
n

0
1 ))()(,(,  

 .2)23());();((
0

2

0
1

2

1

dtdr
rr

urdtulul
T r

r
n

T

nn ∫ ∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ ψ+

∂
ψ∂Δαμ+λ=ψ−ψ= +  (47) 

Hence,  
 ,~

nun
J ψ=′  (48) 

where .~,2)23(~

0

222
2

1

dtdrJ
rr

r
T r

r
пun n ∫ ∫ ψ=′⎟

⎠
⎞

⎜
⎝
⎛ ψ+

∂
ψ∂αμ+λ=ψ   

Remark 8. If  is a system of linearly independent functions, and the recoverable function 
u is looked for as  

m
ii r 1)}({ =ϕ

  (48′) ),()(
1

rtuu
m

i
iim ∑

=
ϕα==

then taking into account (47) we obtain ,~
пun

J ψ=′  where  

 .)~(,2)23(~,}~{}~{
1 0

222
1

2

1

∑ ∫∫
=

= ψ=′⎟
⎠
⎞

⎜
⎝
⎛ ψ+

∂
ψ∂ϕαμ+λ=ψψ=ψ

m

i

T
i
nui

r

r

i
n

m
i

i
nп dtJdr

rr
r

n
 (49) 

Remark 9. If besides the point  solution у of the problem (46) is also known at other ones, for 

example, 

2rr =

,,1, Nidi =Ω∈  i.e.,  

 ),,0(,,0),(),( TtNitftdy ii ∈==  (50) 

then the functional-discrepancy has the form  

 ,))(),;((
2
1)(

0 0

2∑ ∫
=

−=
N

i

T

ii dttftduyuJ  (51) 

where   .20 rd =

We shall solve the problem (46), (51) by means of gradient methods (13). In this case for every 
approximation  of solution  of the problem (46), (51) the conjugate problem has the form:  nu U∈u

 ,),(,02)2( 2
Tdtr

r
r

r
Ω∈=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ψ−⎟

⎠
⎞

⎜
⎝
⎛

∂
ψ∂

∂
∂μ+λ−  
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 ),,0(,,1,))((1)]([,0][ 2 TtNifuy
d iii din

i
drd ∈=−−=ψσ=ψ  (52) 

),,0()),(),;((1)(,0)( 022
2

21
Tttftruy

r
nrrrrrr ∈−=ψσ=ψσ ==  

where the component σr(ψ) is defined in section 1, ),,0( TddT
×Ω=Ω   ,

0
i

N

i
d Ω=Ω

=
∪ ),

~
,

~
( 1+=Ω iii dd  

.,1,
~

,
~

1021 Nirdrd N ===+   
Definition 7. We call as the generalized solution of the boundary value problem (52) the function 

,),( 1dVtr ∈ψ  which  holds the relation  0
11 dVz ∈∀

 ,),0(),);((),( 11 Ttzuylza n ∈=ψ ψ  (53) 
where  

,),,0(,,1,0][,,0),(:),(
0

21
21 1

2 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∞<∈===Ω∈= ∫Ω

T

Wdid dtvTtNivNiWvtrvV
ii

 

).()),;(());((, 1
0

1
0

2
)(

2
1
2

1
2

i
N

i
iiпn

N

i
WW dzftduyzuylvv

i
∑∑
=

ψ
=

Ω −==  

Taking into account (46), (51), (53) we can write  

 =−−=Δ′ ∑ ∫
=

+ dtuyuyftduyuJ
in dn

N

i

T

niinnu ))()()(),;((,
0 0

1   

 .2)23())()(,(
0

2

0
1

2

1

dtdr
rr

urdtuyuya
T r

r
n

T

nn ∫ ∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ ψ+

∂
ψ∂Δαμ+λ=−ψ= +  (54) 

On the basis of (54) we obtain the expression (48).  

5. Parametric identification of variation of body temperature 

Let us consider the problem (46), (51) under the assumption that it is possible to represent the 
desired variation of body temperature Т = u as  

  (55) ,),(),(),(
1
∑
=

ϕα==
m

i
iim trtrutru

where  is a system of linearly independent functions. Taking into account (55) on the basis 
of (54) we obtain  

m
ii tr 1)},({ =ϕ

.2)23(,
1 0

2
2

1

dtdr
rr

ruJ
m

i

T r

r
iinnun ∑ ∫ ∫

=
⎟
⎠
⎞

⎜
⎝
⎛ ψ+

∂
ψ∂ϕαμ+λαΔ=Δ′  

Hence, ,~
пun

J ψ=′  where  

.)~(,2)23(~,}~{~
1

22

0

2
1

2

1

∑∫ ∫
=

= ψ=′⎟
⎠
⎞

⎜
⎝
⎛ ψ+

∂
ψ∂ϕαμ+λ=ψψ=ψ

m

i

i
пu

T r

r
i

i
n

m
i

i
nп n

Jdtdr
rr

r  
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6. Identification by given displacements of thermostressed state  
of two-layered body with weakly penetrable interlayer 

Let on the intervals ),,( 11 ξ=Ω r  ),( 22 rξ=Ω  )0( 21 ∞<<ξ<< rr  the equilibrium equation has 
the form  

 ,),(,0)23(2)2( 22
Ttr

r
Try

r
yr

r
Ω∈=

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂αμ+λ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂μ+λ−  (56) 

where .),,0( 21 Ω∪Ω=Ω×Ω=Ω TT   
Variation of temperature Т holds the relation  

 .),(,1 2
2 Ttrf

r
Tkr

rrt
Tc Ω∈+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂=

∂
∂  (57) 

On internal and external surfaces of compound hollow sphere stresses are given  

 ),,0(,2,1,)( Ttipy irrr
i

∈=−=σ =  (58) 

density of heat flow on internal surface is  

 ),,0(,, 1 Ttrru
r
Tk ∈==

∂
∂−  (59) 

which we suppose to be unknown, and on external surface we have boundary condition of the third kind  

 .),0(,, 2 TtrrT
r
Tk ∈=β+α−=

∂
∂  (60) 

On spherical surface of r = ξ radius of contact of components of compound sphere we have 
conjugation conditions  

,0)]([,0][ =σ= yy r  

 ],[21 T
r
TkR

r
TkR =

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂+

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂ +−

 (61) 

),,0(, Tt
r
Tk ∈ω=⎥⎦
⎤

⎢⎣
⎡

∂
∂  

where the components  have the form (1′).  )(),(),( yyyr θϕ σσσ

For t = 0 we have the initial condition  

 .),()0,( 210 Ω∪Ω∈= rrTrT  (62) 

We assume that on external surface of compound sphere displacement is known  

 ).,0(),(),( 02 Tttftry ∈=  (63) 

We obtained the problem (56)–(63), which consists is determination of the function  ∈= )(tuu
]),,0([ TC=∈U  for which the first component у of the classical solution Y = (y, T) of the initial 

boundary value problem (56)–(62) holds the equality (63).  
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Definition 8. We call as the generalized solution of the initial boundary value problem (56)–(62) the 
vector-function  which  holds the relations:  ,),( VTyY ∈= 021 ),( Vzzz ∈=∀

 ,),0(),;(),( 11 TtzTlzya ∈=  (64) 

 ),,0(),;(),(, 21212
2 TtzulzTaz

t
Tcr ∈=+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂  (65) 

 ).,()0)(,( 20
2

2
2 zTcrzcTr =  (66) 

Here  

,22)2(),(
2

1

111112
1 ∫

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛ +
∂
∂

+
∂
∂λ+⎟

⎠

⎞
⎜
⎝

⎛ +
∂
∂

∂
∂μ+λ=

r

r
dr

r
z

r
y

r
z

r
y

r
z

r
y

r
z

r
y

r
z

r
yrzya  

,
][][

),(
2

1 2

2
2
2

21

2222
21 ∫

=
α+

+
ξ+

∂
∂

∂
∂=

r

r rr
zTr

RR
zT

dr
r
z

r
TkrzTa  

,)()(
2

)23();( 212
2
2111

2
1

112
1

2

1

rzprrzprdr
r
z

r
z

TrzTl
r

r
−+⎟

⎠

⎞
⎜
⎝

⎛ +
∂
∂

αμ+λ= ∫  

,)()(][);( 22
2
212

2
12

2
2

21

22
2

2
21

2

1

rzrrzurzz
RR

Rdrzfrzul
r

r
β++ωξ−

+
ω

ξ+= +∫  

;2,1,)),(;,0(),(:)),(),,(( 2
221

221 =Ω∈
∂

∂
Ω∈=

⎪⎩

⎪
⎨
⎧

=
Ω

Ω jiLTL
t

v
WvtrvtrvvV iji

i
j

 

,2,1,],,0[,0][ 2
)(

2

10
1 1

2 ⎪⎭

⎪
⎬
⎫

=∞<∈∀= Ω
=

ξ= ∑∫ idtvTtv
jWi

j

T

r  

}.0][,2,1,),(:))(),(({ 1
1
2210 ==Ω∈== ξ=Ω rji vjiWvrvrvvV

j  
The functional-discrepancy has the form (9). The expressions of (17)–(19) type are valid. Foe every 

approximation  of solution nu ]),0([ TCu =∈U  of the problem (64)–(66), (9) the conjugate problem has 
the form:  

,),(,02)2( 2
Ttr

r
r

r
Ω∈=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ψ−⎟

⎠
⎞

⎜
⎝
⎛

∂
ψ∂

∂
∂μ+λ−  

 ),,0(,))((1)(,0)(
221

02
2

Ttfuy
r rrnrrrrrr ∈−=ψσ=ψσ ===  

 ,),(,02)23(222
Ttr

rr
r

r
pkr

rt
pcr Ω∈=⎟

⎠
⎞

⎜
⎝
⎛ ψ+

∂
ψ∂αμ+λ−⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂−

∂
∂−  

 ),,0(),,(,0 2
21

Tttrp
r
pk

r
pk

rrrr
∈α−=

∂
∂=

∂
∂−

==
 (67) 
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,0)]([,0][ =ψσ=ψ ξ=ξ= rrr  

,][,0
21 RR

p
r
pk

r
pk

r +
=

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂=⎥⎦

⎤
⎢⎣
⎡

∂
∂ ±

ξ=
 

,,0 Ω∈== rp Tt  

where the component )(ψσr  is defined in section 1.  
Definition 9. We call as the generalized solution of the initial boundary value problem (67) the 

vector-function  which  holds the relations  ,),( VpY ∈ψ=∗
021 ),( Vzzz ∈=∀
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If we select in the relation (68) instead of the function  the difference  and the 
difference  instead of  in the relations (69), (70), taking into account (64)–(66) we 
obtain  
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Taking into account (19) on the basis of (71) we have  
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nnun ∫ Δ=Δ′
0

1
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1 ),(, . (72) 

Hence, ,~
nun

J ψ=′  where  
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2
1 dtJtrpr

T

nun n ∫ ψ=′=ψ  (73) 

The presence of the gradient  makes it possible to use gradient methods (13) for determination 

of the -th approximation un+1 of solution  of the problem (64)–(66), (9).  
nuJ ′

)1( +n U∈u

Remark 10. If representation (26) takes place, then the expressions (26′) are valid.  
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7. Simultaneous identification of density of heat flow and thermal resistance 

Let on the domain ),0( TT ×Ω=Ω   the equation of elastic equilibrium be given  )( 21 Ω∪Ω=Ω
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and the diffusion equation  
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At the ends of segment  boundary conditions (58), (60) and the constraint are given  ],[ 21 rr
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At the point r = ξ conjugation conditions have the form  
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For t = 0 we have the initial condition  

 .),()0,( 210 Ω∪Ω∈= rrTrT  (78) 

Let us imagine that on external surface of the sphere at the point r = ξ and at certain internal points 
 ,Ω∈id ,,2 Ni =  displacements are known and are given by the equalities  

 .),0(,,,,0),(),( 120 TtdrdNitftdy ii ∈ξ====  (79) 

So, we obtained the problem (74)–(79), (58), (60), which consists in determination of a vector 
]),,0([]),0([),( 21 TCTCuuu +×=∈= U  for which the first component у of the classical solution 

Y = ( y, T) of the initial boundary value problem (74)–(78), (58), (60) holds the equalities (79).  
Definition 10. We call as the generalized solution of the initial boundary value problem (74)–(78), 

(58)–(60) the vector-function  which  holds the relations  ,),( VTyY ∈= 021 ),( Vzzz ∈=∀
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Functional-discrepancy has the form  
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2
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=
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We shall solve the obtained problem (80)–(83) by means of gradient methods (13). For every 
approximation  of solution nu U∈u  of the problem (80)–(83) for  ,u∀ U∈v  we introduce denotations  
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The following expression takes place  
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On the basis of the problem (80)–(83) for every approximation  by omitting terms of the second 

order of smallness we determine the function 
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Taking into account (87), (84), (85) we can write  
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For every approximation  of solution  of the problem (80)–(83) we introduce the following 
conjugate problem:  
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,),(,02)2( 2
Тdtr

r
r

r
Ω∈=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ψ−⎟

⎠
⎞

⎜
⎝
⎛

∂
ψ∂

∂
∂μ+λ−  

 18



,),(,02)23(222
Тdtr

rr
r

r
pkr

rt
pcr Ω∈=⎟

⎠
⎞

⎜
⎝
⎛ ψ+

∂
ψ∂αμ+λ−⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂−

∂
∂−  

,))((1)(,0)(
221

02
2

rrnrrrrrr fuy
r === −=ψσ=ψσ  

 
),,0(,,1,))((1)]([,0][

),,0(),,(,0

2

2
21

TtNifuy
d

Tttrp
r
pk

r
pk

iii drin
i

drd

rrrr

∈=−−=ψσ=ψ

∈α−=
∂
∂=

∂
∂−

=

==
 (88) 

),,0(,,2,00][ TtNi
r
pkp

i
i

d
d ∈==⎥⎦

⎤
⎢⎣
⎡

∂
∂=  

),,0(,],[,0 2 Ttrpu
r
pk

r
pk n ∈ξ==

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂=⎥⎦

⎤
⎢⎣
⎡

∂
∂ ±

 

,,0 Ω∈== rp Tt  

where .,\),,0(
2

i

N

i
ddddd dT

T =
∪=γγΩ=Ω×Ω=Ω   

Definition 11. We call as the generalized solution of the initial boundary value problem (88) the 
vector-function  which  holds the relations  ,),( dVpY ∈ψ=∗ 0
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If we select in the relation (89) instead of the function  the difference 1z )()(~
1 nn uyuy −+  and the 

difference  instead of  in (90), (91), taking into account (86) we assume  )()(~
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Remark 11. On the basis of the expression (92) we can easily obtain approximation of the gradient 
 (93) in the case of parametric representation of one or two parameters  simultaneously, i.e., 

representing them similar to (55).  
nuJ ′ ,, 21 uu
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8. Identification of coefficients of heat conductivity of components of compound hollow sphere 

Let on the domain   the equation of elastic equilibrium be defined  TΩ )( 21 Ω∪Ω=Ω
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Variation of temperature T holds the equation  
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At the ends of the segment  boundary conditions are given  ],[ 21 rr
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At the point r = ξ ),0( Tt ∈∀  conjugation conditions have the form  
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For t = 0 we have the initial condition  

 ., 2100 Ω∪Ω∈== rTT t  (98) 

We assume that on external surface of the sphere at the point r = ξ and at some internal points 
 ,Ω∈id Ni ,2=  ),0( Tt ∈∀  displacements, given by the equalities (79), are known.  

We obtained the problem (94)–(98), (79), which consists in determination of the vector 
 for which the first component у of the classical solution  of the initial 

boundary value problem (94)–(98) holds the equalities (79). The functional-discrepancy has the form (83).  
,),( 21 U∈= uuu ),( TyY =

For every fixed  instead of the classical solution of the initial boundary value problem (94)–
(98) we shall use its generalized solution.  

U∈u

Definition 12. For every fixed  we call as the generalized solution of the initial boundary 
value problem (94)–(98) the vector function  which  holds the relations  

U∈u
,),( VTyY ∈= 021 ),( Vzzz ∈=∀
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where the sets  the forms  are defined in section 6,  ,, 0VV );(),,( ⋅⋅⋅⋅ la
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For every increment  of the solution Y(u), which corresponds to increment Δu of the element 
 on the basis of the boundary value problem (94)–(98) we obtain the following initial boundary 

value problem:  
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Definition 13. We call as the generalized solution of the initial boundary value problem (102) the 
vector-function  which  holds the system of relations  ,V∈θ 021 ),( Vzzz ∈=∀
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The expressions (84), (85), (87) take place, where .)()(~
11 θ+=+ nn иyиy   

For every approximation  of solution  of the problem (99)–(101), (83) we write the 
conjugate problem in the following way:  
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Definition 14. We call as the generalized solution of the initial boundary value problem (104) the 
vector-function  which  holds the relations  ,),( dVpY ∈ψ=∗ 0
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Remark 13. On the basis of the expression (108) we can obtain representation of approximation nψ~  
of gradient 

n
 under other assumptions about the set U, for example, parametric representations 

changeable from variables r, t and other.  
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9. Identification of thermostressed state by given displacements  
(inhomogeneous mixed conjugation conditions) 

Let on the domain   the equation of elastic equilibrium is defined  TΩ )( 21 Ω∪Ω=Ω
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Variation of temperature Т holds the equation  
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At the ends of segment ),0(],[ 21 Ttrr ∈∀  boundary conditions are given  
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At the point r = ξ ),0( Tt ∈∀  conjugation conditions for disjointing pressure [11, 12] and compound 
weakly penetrable interlayer have the form  
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where   ,const, 21 =RR ,021 >+ RR ,]),0([)( TCt ∈δ=δ  p  is the value of disjointing pressure.  
For t = 0 the initial condition (98) is given. We assume that at the point  displacement is known  2rr =

 .),0(),(),( 02 Tttftry ∈=  (113) 

We obtained the problem (109)–(113), (98), which consists in determination of a real function 
]),,0([)( TCtuu =∈= U  for which the first component у of the classical solution  of the initial 

boundary value problem (109)–(112), (98) holds the equality (113). Instead of the classical solution of the 
boundary value problem (109)–(112), (98) we shall use its generalized solution.  

),( TyY =

 24



Definition 15. For every fixed  we call as the generalized solution of the initial boundary 
value problem (109)–(112), (98) the vector-function  which  holds the 
system of relations  
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Functional discrepancy has the form (9). We shall solve the problem (114), (9) by means of gradient 
methods (13). The expressions of (17)–(19) type take place.  

For every approximation  of solution nu U∈u  of the problem (114), (9) we write the conjugate 
problem as:  
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Definition 16. We call as the generalized solution of the initial boundary value problem (115) the 
vector-function  which  holds the system of relations:  ,),( dVpY ∈ψ=∗
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If we select in the relation (116) instead of the function  the difference  and the 
difference  instead of  in (117), (118), taking into account (114) we have  
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The presence of gradient  makes it possible to use gradient methods (13) for determination of 

the -th approximation  of the solution 
nuJ ′

)1( +n 1+nu U∈u  of the problem (114), (9).  

10. Simultaneous identification of density of heat flow and source 

Let on the domain  the equation of elastic equilibrium (109) is defined, and 
variation of temperature Т holds the equation (110). At the ends of segment 
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At the point ),0( Ttr ∈∀ξ=  conjugation conditions have the form:  
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Let us specify for t = 0 the initial condition (98). We assume that at points  ,id ,,0 Ni =  displacements 

are known and are given by the equalities  
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We obtained the problem (109), (110), (120)–(122), (98), which consists in determination of a vector 

]),,0([]),0([),( 21 TCTCuuu ×=∈= U  for which the first component у of the classical solution 
 of the initial boundary value problem (109), (110), (120),(121), (98) holds the equalities (122). 

Instead of the classical solution  of the initial boundary value problem (109), (110), (120), 
(121), (98) we shall use its generalized solution.  
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Definition 17. For every fixed  we call as the generalized solution of the initial boundary 
value problem (109), (110), (120), (121), (98) the vector-function  which  
holds the system of relations  

U∈u
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The functional-discrepancy has the form (51). We shall solve the problem (51), (123)–(125) by 
means of gradient methods (13).  

For every approximation  of solutions  of the problem (51), (123)–(125) we write the 
conjugate problem as  
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Definition 18. We call as the generalized solution of the initial boundary value problem (126) the 
vector-function  which holds  the system of relations  ,),( dVpY ∈ψ=∗ 0
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If we select in the relation (127) instead of the function  the difference  and the 
difference  instead of  in (128), (129), taking into account (123)–(125) we have  
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The presence of gradient  makes it possible to use gradient methods (13) for determination of 

the -th approximation  of solution  of the problem (123)–(125), (51).  
nuJ ′

)1( +n 1+nu U∈u
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Introduction 

For a spacecraft (SC) that moves along a circular or weakly elliptical orbit consideration is given to 
the problem of single failure detection and identification in a set of sensing elements (sensors) of 
spacecraft (SC) attitude control system. Unlike the known solutions requiring for identification of a failed 
sensor not less than five one-type devices, the paper in question suggests the procedure of detecting 
a single failure by using smaller number of actively operating sensors. This effect is attained by involving 
a data on SC motion parameters from the previous step of identification and arranging “virtual” 
measurements. Operability of proposed procedures of failures identification is illustrated by results of 
modeling the process of identifying failures of angular rate measurers and Sun position sensor. 

To basic directions of using an artificial intelligence in vehicle-borne segment of control system of 
some moving objects one generally refers control and diagnosis of state of control system facilities and 
other subsystems of controlled object [1]. The problems of this direction are related to increase of 
reliability of control system operation attained via forecasting a state of subsystems and implementing 
an operation principle by the real state of system. 

The information subsystem of SC attitude control system contains a set of sensors for obtaining 
information required for calculating and correcting SC attitude parameters. The measurement set can 
include angular rate sensors (ARS), triaxial magnetometer, Sun position sensor and other facilities. The 
sensor failure generally implies such its state that the measurement error exceeds a certain admissible 
level N. Solving the problem of the above subsystem insensibility to sensors failures is feasible through 
duplicating the subsystem as a whole or reserving sensors and control of redundant data. 

The increase of primary information reliability due to reservation of sensors and control of redundant 
data is related to sufficiently deep reservation of each type sensors. So, for identifying k simultaneous 
failures the number n of sensors in a unit while one-time measurement of three dimensional vector 
(for example, the angular rate vector) should satisfy the condition [2] .32 +≥ kn . From this relation it 
follows that while identifying a single failure the measurement unit is to contain not less than five 
sensors. However, in practice there could be a situation when it is necessary to detect and identify in 
a real time a single failure in nonredundant sensor unit or in conditions of their minimum redundancy. 

For the above situation the given paper presents the technique and algorithm of identifying failures 
of angular rate sensors. Consideration is also given to procedure of detecting Sun sensor failure in a set 
of sensing elements. 

Algorithms of failure identification 

For synthesis of failures identification algorithms in a unit of sensing elements we make use of parity 
space method [3–6]. Its essence consists in controlling consistency of equations of the system (relations 
of analytical redundancy) by using results of real measurements. There exist two forms of relations of 
analytical redundancy [5]: algebraic relations between measurements of redundant sensors and relations 
in the form of difference or differential equations. We consider both variants in detail. 

Let in the right orthogonal system of coordinates xyz rigidly related with the object there is installed 
the redundant unit of sensing elements of n sensors for measuring three-dimensional vector x. It is 
assumed that sensitivity axes of any three measurers do not lie in the same plane. With sensors dynamics 
neglected, the output y of the unit is related to the measured quantity x by the relation 

 ,exy += A  (1) 

in which }{ ijaA =  is )3( ×n -matrix of direction cosines of angles between sensitivity axes of sensors and 
coordinate axis x, y, z; }{ ie=e  ),,1( ni K=  is the vector of measurements error. 
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The senor numbered i is considered operable if .Nei <  The failure identification suggests the 
process of identifying the failed sensor and the estimated error of its measurement. 

 Now we show, that with the available information on the output }{ iy=y  )5;,,1( ≥= nni K  of the 
measurer unit and the matrix A of direction cosines of axes of sensor sensitivity we synthesize the 
identification algorithm of sensors failures. 

The existence of matrices V satisfying the conditions 

,0=VA  

 ,)( T1TT AAAAIVV n
−−=  (2) 

 mIVV =T  

is known [3–5]. These matrices allow one to present the vector ,yp V=  called the parity vector in the 
form 
 .ep V=  (3) 

The number m of possible linearly independent equations (3) equals the difference between the number 
of sensors n and the dimensionality of the quantity being measured [4] (in the case of three-dimensional 
vector x ).3−= nm  

Since the rank of matrix V in (3) equals m, then for the known vector p the equations (3) have the 
infinite set of solutions which can be written in the form 

 .Eee += ∗  (4) 

Here ∗e  is one of the solutions satisfying the equation (3) and the vector E belongs to the kernel X of 
operator V: 
 .}0:{ ==∈ eeE VX  

We determine the vector E in (4) in the form of relation 

 ,)( T lE VVIn −=  (5) 

in which l is the arbitrary n-dimensional vector. 
By substituting (5) in (4) from the set of vectors e by the corresponding selection of l we find such 

vector 0e  the norm of which is minimal. It is determined due to minimizing the functional 

.)( 2T2
0 lee VVIJ n −+== ∗  

Taking into consideration that VVIn
T−  in equality (5) is the projection matrix, the vector l 

bringing the minimum value to the functional 0J  is calculated by the formula 

 .)( T
∗−−= el VVIn  (6) 

The substitution of (6) in (4), (5) yields the required solution: 

 ., T
0 VVGG == ∗ee  (7) 
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It is important to note, that for the given vector p the relation (7) is the mapping of set ∗X  of vectors 

∗e  into the vectors 0e  of minimum length. 
From (7) it follows that calculation of vector 0e  assumes one of the solutions of equation (3) to be 

known. In [6] to find the solution ∗e  one employed the method of linear programming. However, the 

vector 0e  of minimum length can be obtained via pseudoinversion of matrix V in the equation (3) [7]. 
Indeed, 

1TT
0 )(, −++ == VVVVV pe  

or considering the third equality in (2) we have 

 .T
0 pe V=  (8) 

If we consider (8) as one of the possible solutions ∗e  of equation (3), then substitution of (8) into (7) 
naturally leads to the identity. 

If the vector p contains only information about the error iie ρ=  of the i-th sensor (small random 

errors being neglected), then the set ∗X  also contains the vector .]000[ T
, KK ii ρ=∗e  

Of elements )...,,1,( nkigik =  of the projection matrix G we form the vectors 

 .),,1(][ T
21 nkggg nkkkk KK ==g  

Assuming the vector 0e  to be known we find the minimum value of functional 

 0
2 ,)( egqq −ρ== kkkkkJ  (9) 

and its realizing value of kρ  of sensor error for each of n vectors .kk gρ  As a result we have the set n of 
quantities 

 ),,1(2
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T
nk

k

k
k K==ρ

g

eg
 (10) 

and their corresponding values of )(kJ  ),,1( nk K=  of the functional (9). The value of ∗= kk  for which 

the condition )(minarg* kJk =  holds true corresponds to number of required sensor; its error kρ  is 

estimated by the expression (10). 
We sum up the sequence of actions for realization of failure identification algorithm. 
Preliminary (by the known matrix A ) one calculates the matrix V with properties of (2) and nn×  

projection matrix G. 
The process of failure identification is performed as follows: 
— by the output y of the measurer unit and (8) one forms the vector 0e  of minimum length; 

— by formulae (10) one calculates the set of n quantities kρ  and their corresponding values of )(kJ  

of functional (9); 
— the number k , for which the value of functional )(kJ  (or the length of vector )kq  is minimum 

corresponds to the number of sensor with the estimated error .kρ  When  Nk >ρ  the failure of the k-th 
sensor is detected. 
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The above method of parity space applied to algebraic relations (1) describing the measurement 
process has been generalized in [8, 9] for the case of using redundant relations given by differential or 
difference equations. 

Let the dynamic system be described by the linear stationary discrete equations in the space of states 
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where k is the discrete time; x, u and y are the vectors of state, control and output of the system with the 
dimensions n, p and q correspondingly; A, B, C are the matrices of corresponding sizes. 

We now determine the subspace of q)1( +μ -dimensional vectors v by the relation 
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The space P is called the parity space of order μ  [8]. 

According to [5] each vector v from (12) at any time instant k can be used for parity control 
performed by the formulae 
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The described approach allows one to single out the most reliable relations and thereby to create the 
robust procedure of failures detecting and localizing. 

The question on selecting the order μ  of parity space P has been discussed in [5, 9]. 

Identification of failures of angular rate sensors 

Let the information subsystem of SC attitude control system contains the set of angular rate measurers 
of four identical devices — the angular rate sensors. Unit vectors of measuring axes of equipment in 
a related with SC system of coordinates Оxyz , whose origin O coincides with the object mass center is 
written in the form },,{ iiii γβα=n  ),,,( rzyxi =  

Under assumption that three of the above sensors operate in a design mode and the fourth is the 
redundant one, then the real number of actively operating ARS equals three. According to the above 
results such number of sensors is insufficient not only for localizing ARS failure but detecting the failure 
occurrence as well. With four actively operating sensors one can only identify the fact of failure. In such 
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situation to counteract the disturbances acting on SC due to possible single errors or ARS failures it is 
necessary to apply additional data aimed at forming not less than five independent measurements of SC 
angular rate vector. It could be the information from other sensors of information subsystem (for example, 
magnetometer or Sun position sensor indirectly containing data on SC absolute angular rate) or some 
other data on SC angular motion. 

Combination of readings of three or four ARS with those of one of the above devices allows one 
(under certain conditions) to solve the problem of detecting and identifying ARS failure. However, on 
information processing step it imposes certain burden on SC computational complex. 

We now make use of procedure of identifying failures based on parity space method; as additional 
information we apply the value of SC angular rate vector from the previous measurement step. For 
diagnosing and localizing the failure of one of actually operating ARS we form a measuring structure of 
three ARS and two additional “virtual” devices. The measuring axes of “virtual” devices are to be 
selected so that thereby obtained matrix A in relations (1) would satisfy the requirements on solvability of 
the problem considered. 

Let while diagnosing the failures of standard ARS of measuring subsystem (x-, y- and z-ARS) the 
sensitivity axis of the first “virtual” sensor coincides with the measuring axis of redundant gyroscope  
(r-ARS). Then in matrix A from the equality (1) which in the considered case has the structure of the form 
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it is necessary to select the coordinates γβα ,,  of the unit vector n of the sensitivity axis of the second 

“virtual” ARS so that none of three measuring axes of thereby formed “unit” of sensing elements would 
not lie in the same plane. 

If γβα ,,  are determined, then as the output y (the result of measuring the “unit” of ARS) we take 
the vector 
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1( −nω  — is the SC angular rate vector from the previous measurement step). This data processing by the 

algorithm of detection and identification of failures whose realization has been described above solves the 
stated problem. 

With failure of one of standard ARS and substitution of its readings by those of redundant gyroscope 
the failure identification scheme in a new configuration of measurer unit undergoes minimum changes: as 
the measuring axis of the first virtual sensor we take the axis of sensitivity of the failed gyroscope and the 
output (15) changes. For example, if we eliminate the failed y-ARS with the unit vector of measuring axis 

},,{ yyyy γβα=n  the vector y is determined by the relation 

,],,,,[ T
54321
∗∗= yyyyyy  

.1
T

2 −
∗ = nyy ωn  
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In the case of four actually operating ARS as the output of measurer “unit” we take the vector 
.],,,,[ T*

54321 yyyyy=y  
The requirements to be satisfied by the elements γβα ,,  of matrix A in expression (14) are 

formulated by the results presented in [10]. According to [10], the problem of failures detection and 
identification is solvable if any matrices pqA  );5,,1,( qpqp ≠= K  obtained from A by simultaneous 
crossing out the rows with numbers p and q are not degenerated. 

It is worth noting, that for stable identification of failures the determinants of matrices pqV  are to be 
taken the largest by module. It is attained by variation of the parameters γβα ,,  from the set Q whose 
structure is defined by the structure of matrices .pqA  

The substitution of angular rate vector ω  by its estimate 1−nω  for further application in formation 
of readings of the k-th “virtual” ARS with the unit vector of measuring axis kn  is followed by occurrence 
of systematic error ke  on output of this “ARS” with the estimate 

 .)( 1
T ωωn −= −nkke  (16) 

Hence, the threshold N should be consistent with a priori known level of measurements noises and the 
estimate (16) in order not to miss the sensor failure or not to admit the malfunction of failure 
identification algorithm. 

Simulation of identification algorithm of angular rate sensors failures 

We specify the value of matrix A determined by formula (14). We assume, that the measuring axes of 
standard ARS are parallel to axes of related system of coordinates Оxyz and are equally directed, the unit 
vector rn  of the measuring axis of a redundant device is determined by the relation 

.]3/13/13/1[ T−−−=rn  In this case the requirement for solvability of problem of failures 
identification is reduced to the coordinates γβα ,,  of unit vector n of virtual gyroscope measuring axis 
having to belong to the set 

 }1,,,,0,0,0:,,{ 222 =γ+β+αγ≠βγ≠αβ≠α≠γ≠β≠αγβα=Q . (17) 

Operability of proposed identification algorithm of failures in the angular rate sensor unit was 
investigated using fragments of recording angular rates of micro satellite type SC rotation in the mode of 
orbital attitude. Stabilization of SC motion was implemented with accuracy of order 5° in attitude and not 
worse than 0.01 °/s — in angular rate. The stabilization process was imitated by mathematical simulation of 

dynamics of controlled motion of SC moving along the orbit close to circular one ).s0010731.0( 1
0

−≈ω  
Periodically in reading of one of actually operating ARS there was introduced a replacement constant 

in quantity (sensor failure). 
Failures identification was carried out with a cycle of 1 s for the following values of parameters 

involved in the algorithm of failures detection and localization: 
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The threshold N was assumed to equal 0.0015°/s. There were performed some series of failures 
testing: one of them foresaw the failures identification of standard gyroscopes of information subsystem; 
in another series one of the standard gyroscopes was substituted by the redundant (r-ARS); consideration 
was given to different time intervals of SC motion. In different variants of failure simulation a reading of 
one of gyroscopes was supplemented with equal in quantity but different in sign displacements in 0.002°/s. 

Typical results of simulation are presented in Table 1. In columns referring to different configurations 
of unit of actual ARS for five measuring channels there are the estimates kρ  (°/s) of reading displacement 
of the corresponding sensor and the norm kq  (1/s) of vectors kq  (see formulae (9), (10)). Minimum 

values of kq  and their corresponding displacements of ARS readings are given in medium type. The 
result of operation of failures identification algorithm is presented in the last row of column. 

Table 1 

Sets of sensors 
Parameters 

x-, y-, z-ARS y-, z-, r-ARS x-, z-, r-ARS x-, y-, r-ARS 

0.842·10−5 0.249·10−4 0.146·10−5 0.847·10−5 

0.430·10−5 0.255·10−4 0.610·10−5 0.154·10−4 

0.189·10−4 0.133·10−5 0.142·10−4 0.210·10−4 

0.138·10−4 0.214·10−4 0.384·10−5 0.406·10−6 

kq  

0.133·10−4 0.140·10−4 0.147·10−4 0.257·10−4 

0.0023 −0.0008 −0.0020 0.0032 

0.0019 0.0001 −0.0014 0.0021 

−0.0003 −0.0021 −0.0005 0.0012 

0.0011 −0.0011 −0.0012 0.0021 
kρ  

0.0011 0.0017 −0.0003 0.0001 

0.0019 −0.0021 −0.0020 0.0021 
Displacement 

y-ARS failure z-ARS failure x-ARS failure r-ARS failure 

The analogous results hold while testing failures in a unit of four simultaneously operating angular 
rate sensors. 

Analysis of simulation results suggests the ability of the proposed procedure to identify and localize 
single failures in a unit of angular rate sensors by decreasing the number of actual devices to three. 
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Identification of failures of Sun position sensor 

Let the Sun position sensor (Sun sensor) be related with the right orthogonal system of coordinates 
SSS zyx  with the origin in the center of projecting the optical system and the axis Sy  coinciding with the 

optical axis of Sun sensor. The axes of system of coordinates SSS zyx  are assumed to coincide in direction 
with the corresponding axes of the system of coordinates zyxO  related with SC. 

Equations of Sun motion on the sensor image plane can be obtained by circular permutation of 
corresponding coordinates and indices in evolution equations of point object described in [11] for the case 
when the optical axis of the system is directed along the axis .Sz  These equations are of the form 
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where x and z are the coordinates of Sun center on the plane SS zx  of coordinate system ;SSS zyx  F is 
the focal distance of optical system; ,xω  ,yω  zω  are the projections of vector of SC absolute angular 
rate on the axis of related system of coordinates. 

The SC motion is assumed to occur on a circular orbit in a mode close to mode of three-axis attitude 
in the orbital coordinate system. In this case the system of equations (18) is simplified and can be 
presented in the form of relations 

 xz FxzFzx ω+ω=ω−ω−= 00 , &&  (19) 

0(ω  is the angular rate of SC orbital motion). 

Assuming the angular rates xω  and zω  to be constant on the step h of time quantization of the system 
of equations (19) we put down these equations in the form (11) 

 ),()()1( kBkAk uxx +=+  
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where the following notations are introduced: 
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)2,1,(sin,cos 00 =ω=ω= jihshc  

(E is the unit matrix). 
We now introduce the space of parity P of order 1 )1( =μ  — the space of four dimensional vectors 

.]...,,[ T
41 vv=v  Taking into consideration the relation (12) and structure of matrices A and C from (20) 

we define this space by the expression 
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After simple transformations we put it down in the form 

 .},:{ 214213 cvsvvsvcvvP −−=+−== v  (21) 

As it was already mentioned, each vector v of the set (21) at any time instant k can be applied to 
parity control performed by formula (13). Since in the considered case the matrix 

⎥⎦
⎤

⎢⎣
⎡=

OB
OOH  

(O is zero )22( × -matrix), then )(kr  from (13) is determined by equality 

=
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡−⎥⎦

⎤
⎢⎣
⎡ −

=
)()(

)1()( T
kB

O
k

kkr
uy

yv  

 +−ω−−ω−+−+−= )]1()1()([)1()1( 1211321 kbkbkxvkzvkxv zx  

 )].1()1()([ 22214 −ω−−ω−+ kbkbkzv zx  (22) 

It is easy to show that in the absence of noises and operable Sun sensor )(kr  in (22) vanishes. With 
measurements on noise background or with failure occurred on optical system (i.e., ),()()( kxkxkx Δ+= ∗  

),()()( kzkzkz Δ+= ∗  where )(),( kzkx ∗∗  are accurate values of the corresponding coordinates; 
)(),( kzkx ΔΔ  are the measurements errors), then expression (22) for parity control takes the form 

 ).()()( 43 kzvkxvkr Δ+Δ=  (23) 

From the set (21) we select two vectors },{ )1()1(
iv=v  )4,1(}{ )2()2( == iviv  satisfying the condition 

0)1(
4

)2(
3

)2(
4

)1(
3 ≠− vvvv  (or ,0)1(

2
)2(

1
)2(

2
)1(

1 ≠− vvvv  that is equivalent). Then the system of equations 

 
)()()(

),()()(

)2(
4

)2(
3

)2(

)1(
4

)1(
3

)1(

kzvkxvkr

kzvkxvkr

Δ+Δ=

Δ+Δ=
 (24) 

is solvable with respect to ).(),( kzkx ΔΔ  Fulfillment, for example, of condition 

 ,))(,)((min SNkzkx >ΔΔ   (25) 

in which SN  is a priori given admissible level of devise error suggests the failure of Sun sensor. Otherwise, 
the optical system is in state of operability. There could be another different from (25) condition stating the 
sensor failure. 
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Thus, on the next step of analyzing Sun sensor operability one needs to form and solve the system of 
equations (24). For this purpose it is necessary to apply the information on coordinates x and z of Sun 
position on the plane of images of optical system as well as data on projections of vector of SC absolute 
angular rate on the axis of related system of coordinates referring to the previous and current steps of 

measurements. Further, for each vector )1(v  and )2(v  of the set (21) we calculate their corresponding 

values )1(r  and )2(r  (formula (22)). 
The operation of identification algorithm of sensor failure will be estimated by characterizing the 

direction at Sun in the coordinate system SSS zyx  by the angles ξ  and .η  Counting the angle ξ  of the 
positive direction of the axis ,Sy  the connection of these angles with the unit vector 
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of the mentioned direction is determined by the relations 

.sin,coscos,cossin η=ηξ=ηξ−= zyx sss  

We select the following values of vectors )1(v  and :)2(v  

.)]3(331[,)](11[ T)2(T)1( cscscscs +−−=+−−= vv  

In mathematical simulation the use was made of fragments of recording of vectors S and ω  with the 
step h = 1 s referring to SC motion in mode of triaxial orbital attitude on the 500 seconds’ time interval. 
One can make judgment about the features of operation of failure identification algorithm by data (their 
dimensionality being degree) presented in Table 2. For each of measuring channels of Sun position there 
are assigned two columns. The first contains the accurate values of displacements ξΔ  and ηΔ  in Sun 

sensor readings introduced for investigating identification algorithm operability; the second contains the 

estimates ξΔˆ  and ηΔ ˆ  of these displacements quantities calculated by identification algorithm. The error 
was estimated every second of SC motion on the above time interval. 

Table 2  

x-channel z-channel Variant 
number ξΔ  ξΔˆ  ηΔ  ηΔ ˆ  

1 0 0.012 0 0.054 
2 1.1 1.114 0 0.059 
3 0 0.013 −0.8 −0.843 
4 −1.0 −0.988 1.5 1.554 
5 0.8 0.813 −1.2 −1.143 

The goal of the simulation first variant is to estimate the level of systematic errors of algorithm 
which are accounted for by approximating the solution of the system of equations (18) describing the Sun 



 41

motion on the plane SS zx  by solution (11), (20) of equations (19) while stabilizing the mode of SC 

triaxial orbital attitude. The next variants present typical values of displacements estimates ξΔˆ  and ηΔ ˆ  

for different combinations of qualities and signs of “accurate” displacements. Table 2 contains the worst 

(the largest by module) values of errors ξΔˆ  and ηΔ ˆ  on the 500 seconds’ time interval. 

As the analysis of simulation results implies, on the used fragment of recordings of vectors S and ω  
the systematic error of identification algorithm of Sun sensor failures does not exceed 4 ang. min. 
Approximately with the same error the angles ξ  and η  are estimated in other variants of simulation. With 

the threshold 1=N degree and condition (25) in simulation variants 2, 4, 5 the algorithm diagnoses Sun 
sensor failure. 

The measurements x and z imitated while simulation did not contain random noises. Their presence 

naturally increases the values of errors ξΔˆ  and ηΔ ˆ . However, this source of errors is nor related directly 
to the identification algorithm since it characterizes the uncertainty degree of initial information applied 
in the identification algorithm. A priori information on the level of random noises is taken into account 
when assigning the quantity of threshold N. 

Conclusion 

If the fail-safe unit of ARS contains five sensors (five measuring channels), then a single failure in 
one of them is identified by the above algorithm. These results in a failed device being eliminated from 
the measuring system of SC angular rate (or with the known model of failure, for example, a permanent 
displacement this information can be applied to determining the next failures [6]). In this paper with the 
unknown model of failure the readings of failed ARS are substituted by “virtual” measurements formed 
by data on a vector of angular rate ω  from the previous measurement step and so on. Therewith there are 
preserved five measuring channels and identification algorithm of failures of actually operating sensors. 
The identification procedure terminates on detecting the failure of one of three remaining ARS. 

Although the presence of systematic errors of the form (16) narrows the possibilities of the proposed 
identification procedure of sensing elements failures, the above technique of arranging “virtual” 
measurements allows one on a single algorithmic base to expand substantially the possibilities of internal 
reservation when constructing fail-safe measuring systems extending the failure identification procedure 
to the case of three simultaneously operating sensors. 

When solving the identification problem of Sun sensor failures of importance were the equations 
(18) of Sun motion on the image plane of optical system and their discrete approximation in the form of 
relations (19), (20). As simulation results imply, the thereby constructed algorithm of failures localization 
effectively solves the stated problem. 
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In the present article we obtained sufficient conditions of absolute interval stability of nonlinear 
control systems, described by differential-difference equations of neutral type with one deviation of argument. 
The Lyapunov–Krasovskiy method of functionals is under investigation. Such kind of problems appear 
because of necessity of providing global asymptotic stability of zero solution of control systems of special 
(“sector”) type [1–3]. Initially we consider systems, described by differential equations. Then, 
investigations were done for discrete and differential-difference equations [4–6]. As a rule, parameters 
of systems are exactly unknown. They take on their values from certain in advance given intervals. 
Therefore, the direction of investigation of robust or interval stability appeared [7]. Survey of investigations 
of problems of absolute stability is contained in publications [8, 9].  

1. Absolute interval stability 

Let us consider a system of indirect control, which is described by differential-difference equations 
of neutral type  
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with constant quadratic matrixes A, B, nnRD ×∈  and vectors b, .nRc∈  The solution of a system implies 
a pair of piecewise-continuously-differentiable functions ))(),(( ttx σ  with initial conditions ),()( ttx ϕ=  

),()( ttx φ=&  ),()( 1 tt ϕ=σ  ),()( 1 tt φ=σ&  which identically hold the system (1). Matrix D  satisfies 

“stability conditions”, i.e., ,1<D  is fulfilled, and constant quadratic matrixes ,AΔ  BΔ  can take on their 
values from certain in advance fixed intervals  
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The systems of such type got the name of interval indirect regulating systems. The nonlinear function 
)(σf  lies in the given sector, i.e., holds the conditions  
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Let us introduce the following denotations:  
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),(max ⋅λ  )(min ⋅λ  are extremal eigenvalues of the corresponding symmetric positively-defined matrixes.  
Let us consider initially a system without interval perturbations  
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Definition 1. The system (4) is called absolutely stable, if its zero solution ,0)( ≡tx  0)( ≡σ t  is 
globally asymptotically stable under arbitrary function ),(σf  satisfying the conditions (3).  

Definition 2. The system (4) is called absolutely interval stable, if the system (1) is absolutely stable 
for arbitrary matrixes ,AΔ  ,BΔ  satisfying the conditions (2).  

On investigation of absolute stability of systems of neutral type the Lyapunov–Krasovskiy functional 
of the following form [4, 5] is used sufficiently frequently  
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The first quadratic form makes it possible to compute easily total derivative of the functional in virtue of 
the system, however it is possible to obtain conditions of absolute stability only in integral metric.  

In the present article we investigate absolute interval stability, i.e., stability of zero solution of the 
system (1) under perturbations (2). Here one uses the functional with exponential multiplier  
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and two positively-defined matrixes G, H. Exponentional multiplier makes it possible to obtain not only 
stability conditions, but also compute estimates of convergence of solutions of the system (1).  

Preliminarily we obtain conditions of absolute system stability without interval perturbations (4). Let 
us denote  
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Theorem 1. Let positively-defined matrixes G, H and parameters ,0>β  0>ς  exist such, that the 
matrix ],,,[1 ςβHGS  is also positively-defined. Then the system (4) is absolutely stable in metric 

,)( ,ςτtx  .)(tσ   

Proof. Taking into account constraints (3), superimposed on the function ),(σf  we obtain that for 

the Lyapunov–Krasovskiy functional (6) the following bilateral inequalities take place  
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If we compute total derivative of the functional (6) in virtue of the system of non-interval perturbations 
(4) we obtain the following:  
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Using the vector-matrix form we rewrite the obtained expression: 

 ×στ−−=σ )))((),(),(()](),([ TT tftxtxttxV
dt
d  

 −

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

σ

τ−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

βρ⎥⎦
⎤

⎢⎣
⎡ β+−

+++−

⎥⎦
⎤

⎢⎣
⎡ β+−+−−−−

× ςτ−

))((

)(

)(

2
1

2
1

T
T

TTTT

TT

tf

tx

tx

HDbcHb

HbDGeHBDHDBHDAHB

cHbHADHBGHAHA

T  

 .)()(T)( dssGxsxe st
t

t

−ς−

τ−
∫ς−  

If the matrix ],,,[1 ςβHGS  is positively-defined, then  
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Thus we have the system of inequalities  
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As it follows from the Krasovskiy theorem [10, p. 145], the system is absolutely stable in the metric 
,)( ,ςτtx  .)(tσ   
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Further we obtain conditions of absolutely interval stability of the system (4). Let write preliminarily 
the following auxiliary result.  

Lemma. For arbitrary matrixes ,1L  2L  of the vectors ),(tx  )( τ−tx  and the scalar ξ  the following 
inequality takes place:  
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Proof. If we open evident expression for arbitrary matrixes ,1L  2L  of the vectors ),(tx  )( τ−tx  and 
the scalar ,ξ  we obtain the following:  
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We obtain from this  
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i.e., the inequality (10). 
Let us denote  

 ,

0

],[

TT

TTTT

TT

2

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

θθ

θΔ−Δ−Δ−Δ

θΔ−ΔΔ+Δ

= BHDHDBAHDHB

HDABHAHHA

HGS  

where θ  is zero vector.  
Theorem 2. Let positively-defined matrixes G, H and parameters ,0>β  0>ς  exist, for which the 

matrix ],,,[1 ςβHGS  be positively-defined, and for the given 10 <ξ<  the following inequalities hold:  
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Then the system (4) is absolutely interval stable in metric ,)( ,ςτtx  .)(tσ   

Proof. Let us compute total derivative of the Lyapunov–Krasovskiy functional (6) in virtue of the 
interval system (1)  
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Using the vector-matrix form of notation we rewrite the given expression in the form  
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Let us expose the second quadratic form  
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3. For the fourth one  
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If we substitute the written expressions into estimate for total derivative, we obtain  
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The condition of negative definiteness of total derivative is realization of the following relations:  
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If we solve the first inequality with respect to ,AΔ  we obtain that for 10 <ξ<  and  
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So, on realization of the conditions (11) 0][1 >⋅θ  and 0][2 >⋅θ  will be fulfilled and  
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According to [10, p. 145] the system (1) will be absolutely interval stable.  

2. Estimates of convergence of solutions of interval systems 

In previous theorems we obtained conditions of absolute stability. At the same time for solving 
practical problems more important is not only the fact of stability, but computation of estimates of 
solution convergence. For obtaining estimates of convergence for solutions of interval system with delay 
we shall use again the Lyapunov–Krasovskiy functional (6).  
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The following statement takes place.  
Theorem 3. Let positively-defined matrixes G, H and scalars ,0>β  0>ς  exist, for which the 

matrix ],,,[1 ςβHGS  is positively-defined and conditions (11) are fulfilled. Then for the pair of solutions 
))(),(( ttx σ  of the interval system of neutral type (1) the following estimates of convergence take place:  
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Proof. For obtaining the convergence conditions (13), (14) we use the Lyapunov–Krasovskiy 
functional of (6) type. As it was shown on proof of Theorem 2, it holds bilateral estimates  
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Let us write the right-hand part of the inequality (15) as  
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If we substitute the obtained expression into (16), we have  
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If parameters of the system and the functional are such that  
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If we integrate this inequality, we get  
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If we unite the obtained inequalities, we have  
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We use again bilateral inequality of the functional )](),([ ttxV σ  and the dependency (18). We write  
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Using denotations ),,(11 HGϕ  ),(12 Gϕ  ),(13 Gϕ  we obtain the following estimates of convergence:  
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Introduction 

In real problems in the mathematical description of the system there is some uncertainty. In the modern 
control theory parametric methods of describing the uncertainty in the form of interval or affine families of 
polynomials (regular disturbances of the dynamics), for which, on the basis of the principle of exclusion of 
zero and the Kharitonov theorem, the robust stability criteria are derived [1], are widely used. 

Meanwhile, there are other approaches to describing the uncertainty. Often, the uncertainty in the 
description of the system can be characterized by singular perturbations [2, 3], i.e., small parameter λ  
before the derivatives in the Cauchy normal form. Such perturbations in the form of ballast dynamics are 
a mandatory element of any practical implementation of any control. It has long been known and widely 
used in real design [4, 5]. Thus, the normal work area of the industrial controller is characterized by the 
value of the time constant of the ballast link, raising the dimension of a closed system.  

Description of the robust properties of the system in the approach, based on singular perturbations, 
rests on Klimushev–Krasovskiy theorem [6], which discrete analog is used for discrete systems [7]. It is 
obvious another advantage of the proposed approach: it is known [8] that the result of the Kharitonov 
theorem type does not hold in the discrete case. Therefore, currently there are no effective means of 
analysis and synthesis of robust discrete control systems on the basis of the interval method of describing 
the uncertainty.  

The Klimushev–Krasovskiy theorem actually confirms the existence of asymptotically stable family 
of the systems, parameterized by the values λ  from the interval }.0:{ λ<λ<λ  For various λ  let us 

denote }.0:{ λ<λ<λ=Λ  The finite value Λ=λ∗ sup  is critical in the sense that for sufficiently small 
0>ε  for ε+λ=λ ∗  the system becomes unstable (for unlimited Λ  one accepts ).∞=λ∗  Thus, ∗λ  can 

be considered, on the one hand, as a measure of stability to singular perturbations, and on the other — as 
a characteristic of the nonroughness or nonstiffness [2, 3]. It is natural to call value ∗∗ λ=ϑ /1 , inverse to 
it, the stiffness. It characterizes the structural nonroughness of the system. So, the task is to determine the 
critical value of the parameter of the singular perturbations ∗λ  and the stiffness value ∗ϑ , corresponding 
to it.  

It is clear that for nonlinear systems, generally, it is practically impossible to determine the exact 
value ∗λ . The existing results can be found in [9]. But for linear stationary systems the problem of 

determining the critical value ∗λ  is completely solvable and there are different approaches to its solution. 

Those ones, which enable to get the exact value, will be called. In [10] the critical value ∗λ  was determined 

on the basis of constructing the amplitude phase frequency response function (APFRF) of some matrix 
function )( ωjM . Later this result was obtained by other investigators on the basis of the Möbius 

transformation (LFT-conversion) [11, 12]. The APFRF method is graphical and not analytical; in addition, 
the complexity of its implementation depends on the dimension of the “fast” component of the state.  

Another approach, to which this work is devoted, is based on the D-partitioning method of the 
characteristic polynomial of a closed system by the parameter of singular perturbations .λ  The existing 
results for continuous systems give the exact value of stiffness in the case when the characteristic 
equation is given explicitly when the dimension of the “fast” component k is not larger than two [2, 3]. 
For other cases, they are an asymptotic approximation of the desired values. For discrete systems, 
a similar result for 1=k  was obtained in [13], and for 2=k  the stiffness estimate is defined only for the 
particular case, which will be discussed below. In this paper, the results for determining the exact value of 
stiffness for continuous and discrete systems with the explicitly given characteristic equation, the 
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dimension of the “fast” component being ,3≤k  are obtained, and also the graphical method for finding 
the stiffness for arbitrary k is developed. The main advantage of the D-partitioning method therewith 
consists in the possibility of obtaining an analytical result.  

1. The problem formulation of D-partitioning by the parameter of singular perturbations  

Let us consider the continuous linear singularly perturbed system  
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0 kmnxxxxxx kmn +=ℜ∈ℜ∈ℜ∈=  A  is )( nn× -matrix; B  is )( rn× -matrix; λ  

is a positive small parameter (hereinafter Т means transposition).  
Under the assumption of the controllability of the pair ),( BA , the problem of choice of control as 

a linear form by the state )()( txGtu = is equivalent to definition of the polynomial coefficients in the 
characteristic equation of system (1)  
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The Klimushev–Krasovskiy theorem implies [6] that if the “fast” subsystem with the characteristic 
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1)( K  satisfies the Gurvits criterion, the dynamics of the 

“slow” variables is approximated by the degenerate system, obtained from (1) for 0=λ  with the 
“external” characteristic polynomial masMsS /)()( =  [2]. Thus, if the polynomials )(sF  and )(sS  are 
stable, then there is such ,0>λ∗  that ∗λ≤λ<λ∀ 0:  the polynomial )(sP km+  is stable.  

In the discrete case we consider a linear singularly perturbed system of the form [7]  
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Under the assumption of the controllability of the pair ),( BA , the problem of choice of control as 
a linear form by the state )()( kGxku =  is equivalent to definition of the polynomial coefficients of the 
characteristic equation of system (3)  
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In such problem formulation, from [7] it follows that due to the stability of the “external” polynomial 

mzzS =)(  (the roots of the polynomial lie within a circle of unit radius), the stability of the “fast” 
polynomial mazMzF /)()( =  implies the existence of such ,0>λ∗  that ∗λ≤λ<λ∀ 0:  the polynomial 

)(zP km+  is stable [7]. The problem again is reduced to finding the critical value of the parameter of 
singular perturbations .∗λ   
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2. Assessment of the second-order stiffness  

2.1. The continuous case. When the dimension of the “fast” component of the state is 2=k , 
characteristic equation (2) becomes  
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In [2, 3], the stiffness 2ϑ  (the lower index shows the order of evaluation) is calculated by the  
D-partitioning method by the nonlinear parameter ,ϑ  i.e., first, the equation (5) is solved relative to ,ϑ  
and then to the resulting expression the D-partitioning method was applied. As a result for 2ϑ  in [2, 3], 
one has:  
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where  
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)(ωmR  and )(ωmV  are real and imaginary parts of the polynomial )( ωjM , respectively.  
First, note that this estimate 2ϑ  can be simplified. Let us express the last relation )(/)( ωω mm RV :  
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Substituting the obtained relations in (8), one obtains more simple relations for estimating :2ϑ   

.12,
)(

)1(
max

,2,
)(

)1(
max

1
1

0)(:
2

1
1

1

0)(:
2

+ν=
ω
ω−

=ϑ

ν=
ω

ω−
=ϑ

+
+

ν

=ωω

+
+

+ν

=ωω

m
R
a

m
V

a

m

m
m

N

m

m
m

N

V

R
 

Let us consider now the problem of finding 2ϑ  by the D-partitioning method in the plane of two real 

parameters .,:},{ 2
2121 λ=ξλ=ξξξ  To do this, let us reduce characteristic equation (7) to the form 

,0)()()()(~
122 =+ξ+ξ=+ sMsQsPsPm  where .)(,)( 1

1
2 +

+
+ == m

m
m sasQssP   

Furthermore, in accordance with the D-partitioning technique [14], introducing the substitution 
ω= js  in the transformed characteristic equation, one obtains the system, containing two equations: 

0),,(Re 212 =ξξω+ jPm  and .0),,(Im 212 =ξξω+ jPm  From their solution one obtains the expressions 
for the parameters :)(),( 2211 ωξ=ξωξ=ξ   
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where ).(Im)(),(Re)( ω=ωω=ω jMVjMR mm  Relationships (7) have a singularity at the point ,0=ω  
the singular line  
 .02 =ξ  (8) 

corresponds to this frequency value. Expressions (7), (8) define in the plane },{ 21 ξξ  the stability region 
boundary D. In Figure 1, this region is highlighted by thick lines. The critical parameter value of singular 
perturbations is defined as follows: ),(min 1 ωξ=λ

Ω∈ω
∗  where Ω  is a set of the frequencies ,iω  which 

satisfy the condition  
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Condition (9) follows from the adopted notations, it corresponds to the points of intersection of the 
curve of the D-partitioning with the parabola )(2

1 ωξ  in the parameter plane },{ 21 ξξ  (see Figure 1).  
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Substituting (7) in condition (9), we write the final expression, defining the set of frequencies :Ω   
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Finally, for assessing the stiffness of the second order we obtain  

 

,12,
)(

)1(
max/1

,2,
)(

)1(
/1

1
1

0)(:
2

1
1

1

2

+ν=
ω
ω−

=λ=ϑ

ν=
ω

ω−
λ=ϑ

+
+

ν

=ωω
∗

+
+

+ν

∗

m
R
a

m
V

a

m

m
m

N

m

m
m

V

 (10) 

which coincides with the results of [2, 3].  
2.2. The discrete case. Let us write the characteristic equation (4) for 2=k   
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By analogy with the continuous case, we will reduce this characteristic equation to the form suitable 
for application of the method of D-partitioning by two parameters:  
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find expressions for the parameters in the form ),(11 ωξ=ξ  :)(22 ωξ=ξ   
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At frequencies 0=ω  and π=ω  relationships (12) have singularities, so for these frequencies singular 
lines are constructed:  
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Expressions (12), (13) define the boundaries of the stability domain of the characteristic polynomial 
)(2 zPm+  in the plane }.,{ 21 ξξ  The critical value of stiffness is equal to ),(max 1 ωξ=ϑ
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∗  where Ω  is 

a set of the frequencies ,iω  which satisfy condition (9).  
Condition (9), as well as in the continuous case, can be interpreted as a set of points of intersection 

of the D-partitioning curve with the parabola )(2
1 ωξ  (Figure 2). Substituting (12) into (9), one will have 

for the set Ω  
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Note, that if the parabola )(2
1 ωξ  intersects the D -partitioning curve in the points of intersection with 

the singular lines (as shown in Figure 3), i.e., 01 =ω  or π=ω2  are roots of (14), then the critical value 
of stiffness can not be determined from (12), because at these frequency values the expression for )(1 iωξ  
has singularities. In such cases, the critical value of stiffness will be determined as ),(max 1
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where )(1 ωξ  is a solution of the following equations:  
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Taking into account (12), (14), (15), to assess the stiffness of the second order we will write finally:  
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set Ω  is defined by (14).  
Relationships (16) uniquely determine the assessment of the second-order stiffness for discrete 

systems, in contrast to [13], where the cases π=ω ,0  have nor been considered. Note that when 0=ω  
and (or) ,π=ω  for estimating (16) the analytical representation for arbitrary dimension of the “slow” 
component can be obtained.  
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3. Assessment of the third order stiffness 

3.1. The continuous case. Let us consider the characteristic equation (2) of the singularly perturbed 
system (1) for :3=k   
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Let us reduce this equation to the form  
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Using the D-partitioning technique, one obtains the following expressions for the parameters 1ξ  and :2ξ   
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Also, there is a singular line ,02 =ξ  which together with (18), defines the boundaries of the stability 
domain of characteristic polynomial (17) in the plane }.,{ 21 ξξ  As before, the critical parameter value of 
singular perturbations is defined as ),(min 1 ωξ=λ

Ω∈ω
∗  where Ω  is a set of the frequencies ,iω  which 

satisfy condition (9). In the notations )(ωmR  and )(ωmV , this condition is as follows:  
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Taking into account that ),(min 1 ωξ=λ
Ω∈ω

∗  for estimating the third order stiffness, we obtain  
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where )(ωRN  and )(ωVN  are determined by formulas (19), (20).  

3.2. The discrete case. The case 3=k  reduces characteristic equation (4) to the form  
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By analogy with the continuous case, let us represent (21) in the form suitable for application of the  
D-partitioning method  
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m zazPzzL  and the remaining notations, correspond to the ones, taken earlier. 
The significant difference of the discrete case from the continuous one lies in the fact that the D-partitioning 
equations, obtained by substituting ,ω= jez  depend both on 1ξ  and ,2ξ  and this dependence is nonlinear. 
Let us write them:  
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Solving the last equation for 1ξ  and ,2ξ  one gets  
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where  
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For π=ω ,0  from (21) one obtains the equations of the singular curves:  
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Together with (22) they determine the stability domain of polynomial (21) in space }.,{ 21 ξξ  The desired 
for us critical parameter value of singular perturbations is determined by the point of intersection of the 

parabola )(2
1 ωξ  with the boundary of the stability domain in the space }.,{ 21 ξξ  Then the estimate of 

the third order stiffness will be determined by the expression  
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where the set Ω  is found from condition (9).  

4. Estimates of the higher orders stiffness 

It is clear that with increasing the order of the estimate, the process of its finding is complicated, and 
obtaining an analytical representation for the stiffness becomes more and more difficult, but this does not 
exclude the possibility of its numerical determination. Let us show a graphical method for determining 
the stiffness for continuous systems with arbitrary “fast” and “slow” components of a state.  

Let us consider characteristic equation (2), in which we will denote ,1 λ=ξ  .2
2 λ=ξ  Introducing 

the substitution ,ω= js  depending on k  and m , we will get one of the following systems:  
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• for ν=μ= 2,2 mk  (25) 
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• for 12,2 +ν=μ= mk  
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The distinctive feature of equations (25) is that, regardless of k  and m, one of the equations depends 
on 1ξ  and ,2ξ  moreover on 1ξ  linearly, and another — only on 2ξ  and this dependence is nonlinear. 
Based on this, let us express the parameter 1ξ  in terms of ,2ξ  and the parameter 2ξ  we find through 
solving the power equation. Thus, obtaining the expressions for the parameters )(1 ωξ  and ),(2 ωξ  one 
can construct the D-partitioning curve. Then the parameter critical value of the singular perturbations will 
be determined by intersection of the D-partitioning curve with the parabola ).(2

1 ωξ  Below the examples, 
showing the efficiency of this approach, are given.  

Note. Further efforts to develop the D-partitioning method for determining the stiffness of stationary 
systems can be aimed at simplification of the obtained algorithms. In this direction, probably, new 
developments can be obtained by using the recent results on the D-partitioning method for polynomial 
families of a special form [15, 16].  

5. Examples of definition of stiffness  

5.1. The continuous case. Suppose, that the system has the two-dimensional “slow” and a two-
dimensional “fast” components of the state, with the following characteristic polynomial of the system:  
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Let us consider a system with .4,2 == mk  The characteristic equation has the form  
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stability.  
Let us consider a system for .2,3 == mk  The characteristic equation has the form  
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 },1.51.5,{ −=Ω  one gets .789.02 =ϑ  Roots :ir  

,1.52,1 jr ±=  ,0.820.084,3 jr ±−=  6.30.5 −=r  The system is on the border of stability.  
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Let us analyze the systems of a high order. Let .2,8 == mk  Let us write the characteristic 
polynomial as:  
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It is clear, that it is difficult to determine numerically the set Ω  of frequencies, for which the  
D-partitioning hodograph intersects with the parabola ).(2

1 ωξ  But it is not necessary, the parameter 
critical value of the singular perturbations can be determined graphically (Figure 4: solid line — 
D-partitioning hodograph; dotted line —parabola )).(2
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Figure 4  

The graphic way showed that ,305.2=λ∗  therefore, the stiffness .433.08 =ϑ  The roots :ir  
,0,120.000332,1 jr ±−=  0.0622,3 −=r  ,0,270.385,4 jr ±−=  ,1,10.597,6 jr ±−=  ,0.0990.979,8 jr ±−=  

1.58.10 −=r  The roots 2,1r  practically lie on the imaginary axis, then 305.2=λ∗  can be considered as a 
measure of the “roughness” of the system.  

5.2. The discrete case. Let for the system 2,2 == mk  one has the characteristic polynomial  
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The roots ir  of the polynomial )(4 zP  for 31.1/1 3 =ϑ=λ  are such that ,12,1 =r  .4,3,1 =< iri  The 
system is on the border of stability.  

Let us consider the system for ,8,2 == mk  its characteristic equation has the form  
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 The roots ir  of the 

polynomial )(10 zP  for 002.1/1 3 =ϑ=λ  are such that ,999.01 =r  ,1<ir  .10,2=i  Obviously, for 
such stiffness value the system is on the stability boundary.  
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Let us consider the system for 2,3 == mk  and the characteristic polynomial  

0. )001.00025.00.056(058.00.483)( 233245
5 =−−λ+λ−λ−= zzzzzzP  

The stiffness .789.02 =ϑ  The roots ir  of the polynomial )(5 zP  for 381.2/1 3 =ϑ=λ  are such that 
,997.02,1 =r  ,112.03 =r  ,74.04 =r  .17.05 =r  The system is on the border of stability.  

Conclusion 

For linear stationary systems on the basis of the method of singular perturbations the criteria of the 
robustness and stability factors are constructed. The nonroughness property is determined by the system 
stiffness. The results both for continuous and discrete linear systems are obtained.  
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Introduction 

Recently methods of cybernetics find growing application in physics. This is connected both with 
necessity of solving problems of control of complex physical systems [1–4] and treatment and processing 
of measurement data, namely, refinement of mathematical models, restoration of global form of physical 
fields by local measurements, solution of prediction problems. The necessary component part of these 
problems is construction or selection of mathematical model, which describes sufficiently accurately 
behavior of the investigated system.  

For physical systems, described by equations in partial derivatives, one uses as models integral 
representations of their solutions [5, 6], which are obtained by means of the Green functions and 
fundamental solutions [7, 8], as well as finite-dimensional approximations of initial equations in the form 
of ordinary differential equations [9–11]. Every of these approaches has its own advantages and 
disadvantages, and efficiency of their application is defined finally by definite problem. In particular, on 
investigation of physical processes in domains of complex shape the usage of the Green functions is 
difficult, since construction of the Green function in this case represents independent rather complicated 
problem [12]. Usage of fundamental solutions removes this restriction, however, it is possible to find 
these solutions easily only for equations with constant coefficients [7, 8, 13]. The approach, which uses 
finite-dimensional approximations in the form of ordinary differential equations (ODE), is the most 
universal. Moreover, in this case for solving problems of control and estimation we succeeded in using 
standard procedures of optimal control and observation [14, 15].  

Finite-dimensional models of systems with distributed parameters can be obtained by certain method 
of numerical solution of equations in partial derivatives [16–27]. At the same time pure mechanical usage 
of threes methods for obtaining mathematical model in the form of ODE is impossible, since they are 
developed namely for numerical solution of and have mostly algorithmic character.  

One of the most popular methods of numerical solution of differential and integral equations now is 
the Galerkin method [20–24]. It was suggested at the beginning of XX century by professor of the Marine 
Academy I.G. Bubnov for solving problems of theory of elasticity. Then, method was enhanced by 
professor of the Petersburg Polytechnic Institute B.G. Galerkin, and it was generalized for solving 
arbitrary problems of mathematical physics. New and numerous areas of application of the Galerkin 
method appeared after suggestion [20] to use as basis function the functions of simple form with finite 
support [7]. Here the Galerkin method got the name of the finite element method (FEM). It is used 
successfully for solving problems of elasticity, diffusion and heat conductivity, as well as in hydrodynamics 
for computation of potential flows [20, 22, 24]. Wide usage of FEM is connected with automation of the 
process of construction of conservative difference schemes [20, 25] on realization of calculations for 
domains of complex shape, and with potential of computational process effective paralleling.  

On solving practically significant problems of convection-diffusion with prevalent convection 
numerical solutions, obtained by the Galerkin method are, as a rule, instable or oscillatory for stable 
analytical solution [20, 21, 26]. They belong to singular problems of mathematical physics problems 
(small coefficient at the higher derivative) and their solution, including numerical one, represents 
considerable complexities [27]. There are many modifications of the Galerkin method now [20, 27], 
which make it possible to overcome this insufficiency. One of the most effective is the Galerkin–Petrov 
method, which is distinguished by special selection of weighting functions, not coinciding with basis 
functions [20, 27–35]. For a one-dimensional stationary problem of convection diffusion were found 
weighting functions such, that their numerical and analytical solutions coincide at mesh points [28].  

In the present article we suggest the method for construction of weighting functions of the Galerkin–
Petrov method [20, 21] for nonstationary problems of convection and diffusion. By means of these 
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functions we obtained finite-dimensional model of the process of convection–diffusion, which is 
applicable for arbitrary simply connected two-dimensional domain. Accuracy of the model was shown on 
comparison of numerical solution with analytical one for certain problem of heat conductivity with 
convective addend, which is characterized by great value of the Peclet number.  

1. Problem statement  

Let us consider peculiarities of numerical solution of problems of convection-diffusion by the 
example of one-dimensional propagation of heat in medium, which moves relative to immovable 
reference frame with constant velocity .v  This process is described by the following equation  
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where ),( xtTT =  is the temperature of medium at the point with coordinate x at time instant t, κ  is the 
coefficient of temperature conductivity.  

The Galerkin method makes it possible to obtain approximate weak solution [9, 36] of this equation. 
Here solution is searched as  
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Here )(xNi  are known the so-called basis functions. Relations for determination of unknown coefficients 
of decomposition )(tai  in (2) are obtained in the following way. Let us substitute the expression for 

),(ˆ xtT  into the equation (1), multiply the obtained equality by the function )(xN j  ),1,1( −= nj  which 

is accepted in this case to be called as weighting function, and integrate the obtained equality over spatial 
variable x  on the interval .],0[ L  As the result we obtain the system of ODE for determination of the 
coefficients ).(tai  Initial conditions for the equation (1) define initial conditions for this system, while 
boundary conditions enter its right-hand part [9, 20–24]. For numerical solution it is necessary to integrate 
the obtained system of ODE.  

We can take the simplest piecewise-linear functions as the functions )(xNi . They are determined in 

the following way. Let us select on the interval ],0[ L  points ,ix  ,,0 ni =  such, that ,1+< ii xx  moreover, 
00 =x  and .Lxn =  One supposes that these points set grid on the interval ],0[ L , therefore they are 

called nodes. We take continuous positive function )(xNi , different from zero only on the interval 
],[ 11 +− ii xx , linear on the intervals ],[ 1 ii xx −  and ],[ 1+ii xx  and equal to 1 at the point .ix  On usage of 

such functions, which differ from zero only on small element ],[ 11 +− ii xx  of the domain of solution, the 
Galerkin method is usually called the finite element method. 

Solving the equation (1) by means of the described procedure under the absence of convective 
addend, ,0=v  does not cause complexities.  

Let us consider peculiarities of numerical solution of this equation under the presence of convective 
addend. Here we suppose that diffusion addend is absent, .0=κ  In this case the equation (1) takes the 
form  
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The general solution of this equation is  

 ),(),( vtxgxtT −=  (4) 

where )( ⋅g  is arbitrary continuously-differentiable function [37]. Graph of solution for time instant 
,tt Δ+  as it follows from (4), is obtained by shifting the graph for time instant t  by the value tvΔ  along 

the axis .x  If we continuously observe this process in time, then we obtain that graph of the function 
)(⋅g  moves with the velocity v  along the axis .x  Graphs of solution of the equation (3), which 

correspond to different time instants, are shown in Figure 1, arrow indicates direction of velocity. The 
solution (4) is called the running wave [17, 37], and the equation (3) is called the transfer equation.  
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Figure 1 

Usage of the described above procedure and functions )(xNi  for numerical solution of the equation 
(3) under the condition that nodes on the interval ],0[ L  are selected as equidistant ,1 hxx ii =−+  results 
in the following equations for coefficients  
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−=++ &&&  .1,1 −= nj  (5) 

The equations for boundary nodes are written taking into account boundary conditions and here we do not 
adduce them. Solutions (5) are of oscillatory type and weakly decreasing [20, 26]. Correspondingly, 
numerical solution of the equation (3) has oscillatory character [26] and higher error. Decreasing the step 
h  does not change the character of the solution, and, as it follows from (5), changes only time scale.  

Usage of the finite difference method (FDM) with use of approximation of derivative by spatial 
variable of )( 2hO  order for solving the equation (3) results in the following system of differential equations  

 ,
2

~~
~ 11

h
TT

vT ii
i

−+ −
−=&  ,1,1 −= ni  (6) 

where )(~ tTi  is approximate value of the exact solution ),()( ii xtTtT =  at the points .ix  Roots of the 

characteristic equation of the system (6) are pure imaginary, which corresponds to stability boundary of 
this system. Numerical solution of the system (6) considerably deviates from solution of the equation (3), 
and for some methods of integration diverges [26].  

These negative results of application of numerical methods are connected with the absence of taking into 
account the character of the solution (3), and, namely, in the considered case (positive velocity) as it follows 
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from (4) variation of temperature at certain point ix  depends on time only on the looked for function values 
from the left of this point, as it is shown in Figure 1. This corresponds to physical nature of the considered 
process, namely, variation of temperature is consequence of medium transfer with the velocity .v   

For taking into account this property on application of FDM we approximate the derivative of spatial 
variable in the equation (3) by the so-called right difference  
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),( 1

h
TT

x
xtT iii −−

≈
∂

∂
 ,,1 ni =  (7) 

or by upstream difference. In this case the system of equations for determination of numerical solution of 
the equation (3) takes the following form:  
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h
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vT ii
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−=&  .,1 ni =  (8) 

Roots of the characteristic equation of this system are real and negative, and its solution for the 
corresponding selection of dimension of grid step coincides with solution of the equation (3) with high 
accuracy [26].  

Similar result may be obtained on application of the Petrov–Galerkin method, which differs from the 
Galerkin method by usage of weighting functions ),(xWi  which do not coincide with the basis ones ).(xNi  
Application of this method for numerical solution of the equation (3) results in the following equation:  
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Selection of the functions )(xWi  makes it possible to integrate the expression, which contains derivative 
xT ∂∂ /  or xNi ∂∂ /  with greater weight from incoming flow within support of the weighting function.  

In particular, for solving of the stationary equation (1) by the Petrov–Galerkin method it was 
suggested [20, 28] to use the weighting functions  

 ),()()( xWxNxW iii
∗α+=  (10) 

where the parameter ],1,0[∈α  and the function )(xWi
∗  on the interval ],[ 11 +− ii xx  holds the following 

conditions:  
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Outside of the interval ],[ 11 +− ii xx  the function )(xWi
∗  is equal to zero identically. For 1=α  from (11) and 

(10) we get ,)(
1

hdxxWi

x

x

i

i

=∫
−

 .0)(
1

=∫
+i

i

x

x
i dxxW  This means that mean value of the weighting function )(xWi  

is equal to 1 on interval ],,[ 1 ii xx −  i.e., from the direction of incident flow, and is equal to 0 on .],[ 1+ii xx   
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We can make sure that the following piecewise-polynomial functions hold the condition (11)  
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where the function ,)1()]1/()1[()( 1−λ−λ−+=λ nn nnW  n  is degree of the polynomial ).1( >n  Graphs 
of functions )(xNi  and )(xWi  for 1=α  and for the values ;2=n  5 and 100 are shown in Figure 2. 
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Figure 2 

In [28] the functions )(2 xWi
∗  were used and the following dependency was obtained  

 ),/(2)2/(coth hPehPe ⋅−⋅=α  (13) 

for parameter α  on the Peklet number ,/ κ= vPe  for which in stationary case )0)/( =∂∂ tT  numerical 
solution (1) coincides with the exact one at nodes.  

We can easily make sure that weighting functions )(xWi  of (10) type under the condition 

)()( xWxW i
n

i
∗∗ =  and 1=α  converge for ∞→n  by the norm 2⋅  [38] to the function equal to 1 on the 

interval ),( 1 ii xx −  and zero at all other points,  
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If we substitute this expression in (9), we obtain the following equations for determination of the 
expansion coefficients  
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This equation practically coincides with the equation (8) and, as it was shown in [26], also makes it 
possible to obtain numerical solution of the equation (3) with the required accuracy.  
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Selection of weighting functions in the Petrov–Galerkin method, which provides the given (required) 
accuracy of numerical solution, up to date represents unsolved in the general case problem.  

Objective of the present article is to show the way of construction of continuous piecewise-
polynomial weighting functions, similar to (10), for the Petrov–Galerkin method in two-dimensional 
domain, to construct by means of this method finite-dimensional model for nonstationary process of 
convection-diffusion. We assume to verify accuracy of solutions, obtained by means of the constructed 
model, by comparison with the known analytical solution.  

2. Basis and weighting functions in two-dimensional case  

We shall suppose that the considered domain 2R⊂Ω  is simply connected, 2R  is two-dimensional 
real Euclidean space. Components of the vectors ,),( 21 Ω∈= xxx  the numbers 1x  and 2x  are coordinates 
of points of plane in certain Cartesian coordinate system. We assume that the domain Ω  may be 
represented as finite union of triangular elements (triangles)  

 ,U
j

jΩ=Ω  ,int lklk ≠∀∅=ΩΩ I  (15) 

where lΩint  is the set of internal points of a triangular element .lΩ  Only vertexes or completely edges 
can be common for triangles. As the result all domain will be covered with grid, which consists of edges 
and vertexes of triangles or nodes. Every vertex is characterized by its number and system of coordinates. 
For specification of triangular element with the number j  it is necessary to specify a set of numbers of its 
vertexes .jI   

Let us consider piecewise-linear basis functions ),()( 21 xxNxN ii =  [21–24]. Index i  of the function 
)(xNi  means that it is connected with the i-th node. The set of elements ,jΩ  to which the i-th node 

enters forms the polyhedron ),(iΩ  shown in Figure 3 (the i-th node is denoted by point in the center). 
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Figure 3 

Every basis function )(xNi  is different from zero only inside this polyhedron, is equal to zero on its 
boundary and to unit at i-th node, .1)( =ii xN  On every triangular element the function )(xNi  is linear, i.e.,  

 ,),()( 2121 xcxbaxxNxN ijijijii ++==  .jx Ω∈  (16) 

Here the numbers ijij ba ,  and ijc  are uniquely determined from the condition that the function )(xNi  is 
equal to unit at the i-th vertex of triangle jΩ  and to zero at two other ones. For such definition the 

function )(xNi  is continuous on the polyhedron ),(iΩ  as well as in .2R   
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Let us state general requirements to the weighting function ).(xWi  It should be continuous on the 
polyhedron of the basis function ),(xNi  equal to zero on its boundary and unit at the i-th node, 

.1)( =ii xW  Supplementary requirements consist in the fact, that by analogy with one-dimensional case 
weighting functions )(xWi  should have greater weight from the direction of incoming flow.  

We assume that on every element jΩ  of components of the polyhedron )(iΩ  the function )(xWi  is 

defined by polynomial of n  dimensionality and, therefore, is continuous on .jΩ  For continuity of the 

function )(xWi  on the whole polyhedron )(iΩ  its continuity on edges of adjacent elements is necessary and 
sufficient. Coordinates of points on the edge ),( ki −  which connects i- and k-th nodes, are determined by 
the expression  
 .]1,0[,)1()( ∈λλ+λ−=λ= ki xxxx  (17) 

If we substitute this equality into expression for the polynomial ),(xWi  we can make sure that on the edge 
)( ki −  this function is also polynomial of n degree, but of one variable .λ  For continuous function 
)(xWi  on the edge )( ki −  it is necessary the polynomials of two adjacent elements on this edge coincide. 

Let us demand that on every edge )( ki −  the function )),(()( λ=λ xWW ii  which is considered as function 
of the parameter ,λ  is defined by the expression:  

 ).()()( ,sign
, λα+λ=λ

α ki
i

n
kiii WNW  (18) 

Here ki,α  is adjusting numerical parameter, connected with the edge ),( ki −  ],1,1[, −∈α ki  

.1))(()( λ−=λ=λ xNN ii  The function )(,sign
λ

α ki
iW  for different values of the number ikα  is defined 

by the following expressions:  

 .]1,0[),1()(),()( ∈λλ−−=λλ−=λ +− WWWW n
i

nn
i

n  (19) 

For ,1, −=α ki  as it follows from (18), (19), the function )(λiW  coincides with the function (10) on the 
interval .],[ 1 ii xx −  If ,1, +=α ki  then the function )(λiW  coincides with (10) on the interval .],[ 1+ii xx  
For 0, =α ki  we have ).()( λ=λ ii NW  Thus, by means of selection of the parameter ki,α  we can set 
different form of graph of the function )(xWi  on every edge )( ki −  of the element ).(iΩ   

Let us consider construction of the function )(xWi  for .2=n  In this case the function )(xWi  on the 
set jΩ  is given by the polynomial  

 .),()( 2
2

2
1212121 xgxfxxdxcxbaxxWxW ijijijijijijijij +++++==  (20) 

Triangular element jΩ  contains the vertex with the number i, we denote two other vertexes as k and l. 

According to requirements to the function )(xWi  the values of )(xWij  on the edges )( ki −  and )( li −  

are defined by the expressions (18) and (19), and on the edge )( lk −  they are zero. For determination of 
six unknown coefficients of the function )(xWij  we specify its values in six nodes of the element .jΩ  

Besides nodes in vertexes of the triangular element jΩ  we select supplementary nodes in the middle of 
its sides, for example, as it is shown by points in Figure 4. We shall denote by index i and k points in the 
middle of side, which connects, for example, nodes i and k, i.e., we write .2/)(, kiki xxx +=  As the 
result we obtain the following six equalities:  
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On obtaining two last equalities we took into account that =⋅−=−== +− 25.03)5.0()5.0()5.0( 22 WWW n
ii  

.75.0−=  Using the equalities (21) and the expression (22) for determination of the coefficients ,a  ,b  
fdc ,,  and g  (indexes ij  are omitted) we obtain the system of linear algebraic equations  
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 (22) 

By means of parameters ki,α  and li,α  we can change the form of graph of the function :)(xWij  for 

,,kiα  0, >α li  and make it convex, as it is shown in Figure 5, for 0, ,, <αα liki  we can do it concave 
(Figure 6) or convex-concave for 0,, <α⋅α liki  (Figure 7) 
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Figure 7 

We write the equation (22) in the vector-matrix form  

 ,,,0 llikki hhhpX α+α+=  (23) 

where X  is the matrix in the expression (22), the vectors ,),,,,,( Tgfdcbap =  ,)5.0,5.0,0,0,0,1( T
0 =h  

,)0,75.0,0,0,0,0( T−=kh  .)75.0,0,0,0,0,0( T−=lh  We obtain from (23)  

 llikki hXhXhXp 1
,

1
,0

1 −−− α+α+=  (24) 
or 
 ,,,0 llikki pppp α+α+=  (25) 

where the vector 0
1

0 hXp −=  contains coefficients of the function ),(xNij  and the vectors kk hXp 1−=  

and ll hXp 1−=  contain coefficients of certain polynomials )(),( xW jki  and )(),( xW jli , correspondingly. 
Therefore, the following equality for functions corresponds to the equality (25)  

 ).()()()( ),(,),(, xWxWxNxW jlilijkikiijij α+α+=  (26) 
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The polynomial )(),( xW jki  differs from zero on the edge )( ki −  and is identically equal to zero on edges 

)( li −  and )( lk −  of the element .jΩ  On the element j′Ω  adjacent to the element jΩ  by the edge )( ki −  

the functions )(),( xW jki ′  possess similar properties. Let us consider the function  
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defined on union of adjacent elements .jj ′ΩΩ U  The function )(),( xW ki  is continuous and is equal to 

zero everywhere, except the set ,jj ′ΩΩ U  in the middle of the edge ),( ki −  as it follows from 

definition, its value is −0.75. We can define similar for all edges, which come from the node with the 
number i.  

As the result the weighting function )(xWi  on the element )(iΩ  is representable as  

 .)()()( ),(,∑
∈

α+=
iKk

kikiii xWxNxW  (28) 

Here iK  is the set of vertex numbers, which are connected with the vertex i. In practice the number of 
edges, coming from certain node i seldom exceeds the number 6. Every of the functions )(xNi  and 

)(),( xW ki  and, therefore, )(xWi  is specified by its separate expression on every of elements ,jΩ  which 
form the set ).(iΩ   

3. Finite-dimensional model for two-dimensional nonstationary process of convection–diffusion  

We write the heat transfer equation in the case of two spatial variables in the following way:  

 ,],[,),,(, 10 tttxxtTTTTv
t
T

∈Ω∈=Δκ=∇⋅+
∂
∂  (29) 

where )/,/( 21 xTxTT ∂∂∂∂=∇  is gradient of the temperature field ),,( xtTT =  2
2

22
1

2 // xx ∂∂+∂∂Δ  is 
the Laplace operator. In the equation (29) the field of velocities )),(),,((),( 21 xtvxtvxtv =  is assumed to 
be everywhere smooth in the domain ,Ω  2211 // xTvxTvTv ∂∂+∂∂=∇⋅  is scalar product of the vectors 
v  and T∇ . We assume that on the boundary of the domain Ω  one of standard boundary conditions are 
stated [12]. At the place, where this is essential, it is necessary to suppose that the conditions of the 1-st 
kind are stated.  

We shall look for the approximate weak solution [9, 36] of this equation as  

 .)()(),(ˆ
1
∑
=

=
n

i
ii xNtaxtT  (30) 

Here )(xNi  is piecewise-linear basis function corresponding to i-th grid node. Taking into account that 
the vector of velocity may be solution of FEM hydrodynamic equations, we represent it also in the form 
of decomposition by basis functions  

 ,)()(),(ˆ),(
1
∑
=

=≅
n

i
ii xNtVxtvxtv  (31) 

where the vector )).,(),,(()( 21 iii xtvxtvtV =  According to formal procedure of the Petrov–Galerkin 
method we substitute the expressions (30) into the equation (29), multiply the obtained equality by the 
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weighting function ),(xW j  which is defined by (28), and integrate over the domain .Ω  Taking into 
account the expression (31) we have  
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For obtaining this equation we used integration by parts from expressions, which contain the second 
derivatives by spatial variables. Taking into account boundary conditions the value jf  is connected [9, 21–

23].  
Starting from denotations  
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we rewrite the equation (32) as  
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where 0J  is the set of numbers of internal nodes of partition grid. If we substitute (28) into expression for 

the coefficients ,2211
ijij DD +  we get  
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 (35) 

We connect the coefficients ,, kjα  ,jKk ∈  by analogy with one-dimensional case with the value of the 

vector of velocity ),()( jj xtvtV =  in the j-th node at time instant t, and namely, it is necessary to camber 
every function upward from the side of incoming flow.  

Let us consider several variants of heuristic selection of the parameters ., kjα   

Variant 1:  
 ),(/)(, kjjkjjkj xVxVPe Δ⋅Δ⋅α=α  ,jKk ∈∀  (36) 

where ,jkkj xxx −=Δ  2/1)( xxx ⋅=  is norm of the vector x, the function )(Peα=α  is defined by (13).  
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Variant 2:  
 ),(sign)(, jkjkj xVPe Δ⋅α=α  .jKk ∈∀  (37) 

Variant 3;  
 ))/(()(, kjjkjjkj xVxVFPe Δ⋅Δ⋅α=α , ,jKk ∈∀  (38) 

where the function 11: RRF →  is defined by the expression  
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Here β is certain number, .0≥β  For 0=β  we obtain the Galerkin method, where weighting functions 
coincide with basis ones; for 1=β  variant 3 transfers to variant 1, and for ∞=β  it transfer into variant 2. 
The parameter β makes it possible to change quickly parameters of the equation (34).  

It is possible to select the coefficients kj,α  in such a way that  
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In this case the sum of the right-hand part of the equations (34) coincides with expression, obtained by the 
Galerkin method. Namely this takes place on application of the Petrov–Galerkin method in one-
dimensional case. Let us denote the number of elements of the set jK  by the symbol K and elements of 

this set by .,,1 Kkk K  Then the system of coefficients ,,kjα  ,jKk ∈  can be considered as the vector 

.),,( T
,, 1

K
kjkjj R

K
∈αα=α K  Here the condition (40) defines certain hyperplane in the space ,KR  

which passes through the origin. Supplementary restrictions for the coefficients kj,α   

 ,11 , ≤α≤− kj  ,jKk ∈  (41) 

specify multidimensional cube in .KR  Let us denote intersection of this cube with the hyperplane, 
defined by the equality (40), by .jΑ  This set represents polyhedron in .KR  For realization of (40) we 
project the vector of coefficients ,jα  calculated in accordance with one of the mentioned above variants, 
on the set .jΑ  Introduction of the condition (40) makes it possible to simplify additionally the system of 
equations (34).  

4. Accuracy of the model  

Let us consider boundary value problem for the equation (29) in rectangular domain ,0 ii Lx ≤≤  
,2,1=i  for constant vector of velocity .const),( T

21 == vvv  The initial condition is specified in the 
form .),,0( 121

xexxT =  Boundary conditions are prolongation by continuity of initial conditions on 
boundary of the domain ,1),0,( 2 =xtT  ,),,( 121

LexLtT =  .),,()0,,( 1211
xeLxtTxtT ==   

We obtain analytical solution of the problem for its further comparison with numerical solution. If 
we use substitute in the form  

 ),,,(),,( 2121 21 xxtuexxtT cxbxat ++=  (42) 
where  

 κ=κ=κ−=κ+−= 2/,2/,4/4/)( 21
22

2
2
1 vcvbvvva , (43) 
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the equation (29) is reduced to the diffusion equation for the function ),,,( 21 xxtuu =  which is solved by 
the method of separation of variables [12]. Solving the initial boundary value problem for the equation 
(29) with the stated above initial and boundary conditions is expresses as  
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Numerical solution of the considered problem is found by the classical Galerkin method 
0( , ≡α ki ),,ki∀  and by the Petrov–Galerkin method, where parameters specifying the form of weighting 

functions, were computed according to (36)–(38). Here we used the following numerical parameters of 
the problem ,5021 == vv  ,1.0=κ  ,11 =L  .12 =L  It is seen, that for such ratio of the vector of velocity 
v and the coefficient κ  the Peclet number is ,700≈Pe  i.e., in the considered problem the convection 
processes dominate diffusion process. The result of numerical solving of the problem for 5.0=y  by the 
Galerkin method for uniform partition of the domain into 1515×  nodes is represented in Figure 8.  
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Figure 8  

In Figure 9 we show the graph of the solution, which is obtained by the Petrov–Galerkin method on 
use of variant 1 for selection of parameters of weighting functions.  

Better in comparison with previous case result was obtained on selection of parameters of weighting 
functions according to variant 3 for β = 1.5. The corresponding graph is shown in Figure 10. 

Variant 2 of selection of parameters of the function turned out to be the most exact. Graph of 
solution is shown in Figure 11. 

Reduction of step value by spatial variable in all cases makes it possible to increase accuracy of 
numerical solution.  
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Conclusion  

In the present article we solved the problem of construction of finite-dimensional model of the process of 
convection-diffusion in two-dimensional domain of arbitrary shape with usage of the Petrov–Galerkin method. 
Here we suggested a way of construction of continuous piecewise-polynomial weighting function for the 
Petrov–Galerkin finite element method, which represents generalization of one-dimensional weighting function 
[20, 28] for two-dimensional case. Weighting function is specified for every node by means of independent 
parameters, connected with grid segments, which contain the given node. Efficiency of selection of parameters 
was determined by comparison of numerical solution with testing analytical one. All variants of selection 
provided good qualitative coincidence and stability of mathematical model, obtained by means of the Petrov–
Galerkin method. The model, obtained by the Galerkin method turned out to be unstable. Usage of piecewise-
polynomial function )(xWi  makes it possible to realize analytical integration on an element of expressions, 

which contain product of the functions )(xNi  and )(xWi  and/or their derivatives, by known formulae [23]. 
This speeds up considerably determination of parameters of the system of differential equations (34) 
in comparison with numerical integration of these expressions. This is of importance if parameters of the 
equation (34), for example, vector of velocity, are nonstationary.  

It is necessary to underline universality of the suggested method of construction of finite-
dimensional mathematical model of process of convection-diffusion for domains of complex shape and 
potential of automation of the whole process of model obtaining.  

It is possible to transfer the suggested technique of construction of weighting functions without any 
complexities for three-dimensional case. Selection of values of parameters, which characterize the form 
of the weighting function ),(xWi  optimal relative to accuracy of the obtained model, remains to be the 
subject of further research. Usage of the suggested weighting functions for construction of finite-
dimensional approximations of other equations of mathematical physics, containing convective terms, is 
of interest, in particular, for solving the Navier–Stocks equations, as well as for equations of magnetic 
hydrodynamics.  
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