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1. INTRODUCTION

Heat is difficult to measure, even at macroscales! At macroscales, key quantities of interest for
heat transfer are temperature, heat flux, and thermophysical properties such as thermal con-
ductivity, specific heat, etc. Conductive and convective heat transfer at macroscale are usually
governed by diffusion processes because heat carriers (molecules, electrons, phonons, etc.) in
these processes have short mean free paths and short wavelengths. In micro- and nanostruc-
tures, however, the mean free paths and even wavelengths of heat carriers become comparable
or longer than the characteristic length involved in the transport process. Heat transfer can no
longer be described by established theories applicable to macroscale. It is precisely these de-
viations from continuum that have drawn significant interests from scientific communities to
understand micro-/nanoscale heat transfer. Such understandings have potential impacts over a
wide range of applications, from microelectronics to energy conversion. Experimentally probing
heat transfer in micro-/nanostructures is essential for scientific and technological endeavors, and
significant progress has been made over the last two decades. This volume aims to provide a
summary of the advances made in probing micro-/nanoscale heat transfer.

R(E) =
κ

2η

∫

Ω

(∇E · ∇E + ε)η
dΩ (1)

In manygasoline direct injection(GDI) engines hollow conesprays generated by swirl or
outwardly opening injectors are applied. In this study the spray of an outwardly opening injector
is investigated. According to the geometrical shape of an outwardly opening pintle nozzle the
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fuel exits from an annular gap. Previous investigations have already shown that the hollow cone
spray leaving this nozzle is composed of many single strings instead of a continuous conical
sheet.

2. PROBLEM DEFINITION

In this section, we follow the notation in Ma and Zabaras (2009) and Ghanem and Spanos (1991).
Define a complete probability space(Ω,F ,P) with sample spaceΩ which corresponds to the
outcomes of some experiments,F ⊂ 2Ω is theσ-algebra of subsets inΩ (these subsets are
called events) andP : F → [0, 1] is the probability measure. Also, defineD as ad-dimensional
bounded domainD ⊂ Rd (d = 1, 2, 3) with boundary∂D. We are interested to find a stochastic
functionu : Ω×D → R such that forP-almost everywhere (a.e.)ω ∈ Ω, the following equation
holds:

L(x,ω;u) = f(x, ω), ∀x ∈ D, (2)

and

B(x;u) = g(x), ∀x ∈ ∂D, (3)

wherex = (x1, . . . , xd) are the coordinates inRd, L is (linear/nonlinear) differential operator,
andB is a boundary operator. In the most general case, the operatorsL andB as well as the
driving termsf andg, can be assumed random. We assume that the boundary has sufficient
regularity and thatf andg are properly defined such that the problem in Eqs. (2) and (3) is
well-posedP -a.e.ω ∈ Ω.

2.1 The Finite-Dimensional Noise Assumption and the Karhunen-Lo ève
Expansion the Finite-Dimensional Noise Assumption and the
Karhunen-Lo ève Expansion

Any second-order stochastic process can be represented as a random variable at each spatial
and temporal location. Therefore, we require an infinite number of random variables to com-
pletely characterize a stochastic process. This poses a numerical challenge in modeling uncer-
tainty in physical quantities that have spatio-temporal variations, hence necessitating the need
for a reduced-order representation (i.e., reducing the infinite-dimensional probability space to a
finite-dimensional one). Such a procedure, commonly known as a ‘finite-dimensional noise as-
sumption’ (Bardenhagen et al., 2006; Foo, 2008), can be achieved through any truncated spectral
expansion of the stochastic process in the probability space. One such choice is the Karhunen-
Loève (K-L) expansion c.

2.1.1 Suspended Structures

Suspended structures used for nanowire thermal conductivity measurements serve as a good ex-
ample. From the entire volume, it is clear that significant progress has been made in experimental
techniques to probe nanoscale heat transfer phenomena, and the experimental results have led
to new understandings of heat transfer physics, generated new challenges, and opened new op-
portunities. From my own perspective, the following are some significant challenges. For the
chosen fragment of the fuselage nose (see Fig. 1).
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FIG. 1: Visualization setup. (a) Some description for left part. (b) Some description for right part.

2.1.1.1 Suspended Structures

Suspended structures used for nanowire thermal conductivity measurements serve as a good
example. From the entire volume, it is clear that significant progress has been made in exper-
imental techniques to probe nanoscale heat transfer phenomena, and the experimental results
have led to new understandings of heat transfer physics, generated new challenges, and opened
new opportunities. From my own† perspective, the following are some significant challenges.

Theorem 1. There exists a unique solutionun ∈ L2
(
O, H1

0 (D)
)

to the problem(2) and (3)
for n = 0, and the problem(2)–(4) for n ≥ 1. In addition, if f ∈ L2

(
O, H−1+σ (D)

)
for

σ ∈ (0, 1], it holds that

E(|un|2H1+σ(D)) ≤ Cn+1
0 E(f2

H−1+σ(D)), (4)

for some constantC0 independent ofn ands.

Proof. For n = 0, the existence of the weak solutions can be deduced from the Lax-Milgram
theorem, and the desired energy estimate,

E(|u0|2H1+σ(D)) ≤ C̃0 E(f2
H−1+σ(D)),

This completes the proof.

†Suspended structures used for nanowire thermal conductivity measurements serve as a good example.
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Algorithm 1: Block-circulant embedding method (BCEM)

GivenN ∈ Zd, x0 ∈ Ω, and strictly positive valued vectorh ∈ Rd,
Step 1. Choose a vectorm ∈ Zd such thatm[i] ≥ 2N [i] for all 1≤ i ≤ d.
Step 2. Compute the first block row of the circulant matrixC as described.
Step 3. Compute the block-diagonal matrixΛ = diag(Λ0, · · · ,Λm−1).

3. ADAPTIVE SPARSE GRID COLLOCATION METHOD (ASGC)

In this section, we briefly review the development of the ASGC strategy. For more details, the
interested reader is referred to Ghanem and Spanos (1991), Klimke (2006), and Ma and Zabaras
(2009).

The basic idea of this method is to have a finite element approximation for the spatial domain
and approximate the multi-dimensional stochastic spaceΓ using interpolating functions on a set
of collocation points{Yi}k

i=1 ∈ Γ. Suppose we can find a finite element approximate solution
u to the deterministic solution of the problem in Eq. (2), we are then interested in constructing
an interpolant ofu by using linear combinations of the solutionsu(·,Yi). The interpolation is
constructed by using the so called sparse grid interpolation method based on the Smolyak al-
gorithm. In the context of incorporating adaptivity, we have chosen the collocation point based
on the Newton-Cotes formulae using equidistant support nodes. The corresponding basis func-
tion is the multi-linear basis function constructed from the tensor product of the corresponding
one-dimensional functions.

Any functionf ∈ Γ can now be approximated by the following reduced form:

f
(
x,Y

)
=

∑

‖i‖6N+q

∑

j

wi
j(x) · ai

j(Y), (5)

TABLE 1: Injected fuel mass

Injection duration Injection pressure Fuel mass
∆t (µs) (MPa) (mg)

300 1 1.7
300 2 3.0
300 3 4.0
300 4 4.7
300 5 5.4
300 6 6.0
300 7 6.5
300 8 6.9
300 9 7.2
300 10 7.6
300 11 7.7
300 12 8.0
100 10 0.6
200 10 4.3
400 10 10.3a

a the first note.
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where the multi-indexi = (i1, . . . , iN ) ∈ NN , the multi-indexj = (j1, . . . , jN ) ∈ NN and
‖i‖ = i1+ · · ·+ iN . q is the sparse grid interpolation level and the summation is over collocation
points selected in a hierarchical framework (Dolbow et al., 2004; Ma and Zabaras, 2009). Here,
wi

j is the hierarchical surplus, which is just the difference between the function value at the
current point and interpolation value from the coarser grid. The hierarchical surplus is a natural
candidate for error control and implementation of adaptivity.

Heat flux cross small structures such as nanowires is very tiny, and high-sensitivity heat flux
meters are needed for thermal measurements. Similar to macroscale heat flux measurements,
nanoscale heat flux measurements usually require knowing temperature differences between
two points and thermal resistance between the same points, from which the heat flux can be
calculated. The key for small heat flux measurements is to create structures with large thermal
resistance values between the two temperature measurements points.

4. CONCLUSIONS

Significant progress has been made in terms of tailoring the radiative properties with micro-
/nanostructured materials. Rapid developments have been made in fabricating periodic gratings
and nanostructured periodic arrays of metal materials over thin films and multilayers. Magnetic
responses have been demonstrated in the infrared and even visible spectral regions. Further re-
search is needed to understand the coupling mechanisms between various modes and localized
surface plasmons. While FDTD and RCWA can be used to calculate the radiative properties
for engineered surfaces with micro-/nanostructures, faster computational algorithms are needed
with complicated structures to assist the design for specific applications. The optical constants
are often different in the nanostructured materials as compared with the bulk solid. Furthermore,
for high-temperature applications, the chemical and thermal stability must be considered, as well
as the size- and temperature-dependent optical constants of the materials.

1. Aligned metallic nanowires may exhibit unique optical and thermal radiative properties
due to the surface-enhanced absorption and scattering, anisotropic dielectric function, and
magnetic resonance (between parallel wires), and may be applied to diffraction optics as
well as IR polarizers and in the control of optical and radiative properties

2. Detailed models considering both surface scattering and volume scattering will allow bet-
ter understanding of the radiative transfer in these inhomogeneous structures. Methods for
fabricating more uniform structures in large areas with a high yield are still needed.

3. Measurements at longer wavelengths, i.e., mid- to far-IR, will help in understanding the
effective medium behavior as well as the magnetic response.

VACNT arrays show great promise for radiometric applications as nearly perfect absorbers and
emitters in a broad spectral region. EMT appears to be able to describe the visible and infrared
properties of CNT arrays reasonably well. Specular and diffuse black materials made of SWC-
NTs or MWCNTs should be valuable for space-borne radiometric systems, high-power laser
radiometers, absolute cryogenic radiometers, and infrared calibration facilities. The chemical
stability and mechanical rigidity of these structures also need to be further investigated. A chal-
lenge that exists in the materials growth process is how to control the growth conditions so
that arrays with a controllable degree of alignment and surface morphology can be reproduced.
However, this error indicator is too sharp and may result in a non-terminating algorithm.
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