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PREFACE

The twenty-seventh volume of the Thermophysics series is devoted
to investigations of heat transfer, hydrodynamics, and flow mixing in
gas-cooled fuel rod assemblies in longitudinal flow with a marked change
in geometric characteristics of the cells along the assembly radius. The
investigations were conducted at the Lithuanian Energy Institute for a
number of years.

The book presents data of the experimental and theoretical study of
local heat transfer and hydrodynamics in assemblies of smooth and rough
rods, spaced using honeycomb spacer grids. Along with assemblies with
spacer grids, consideration was given to assemblies with a wire wrapping.

Extensive experimental data made it possible to develop a number of
universal calculating procedures and programs for the analytical cell-
by-cell calculation of heat transfer and hydrodynamics in assemblies in
longitudinal flow, the calculation of shear stresses at the wetted surfaces
of assemblies, and the determination of local resistances of honeycomb
spacer grids.

Special attention was given to the study of turbulent lateral mixing
and structure of flow in rod assemblies with a wire wrapping.

The experimental setups and methods of study are described in detail.
A part of the most characteristic experimental data is tabulated. The
results are correlated in the form of calculational dimensionless similarity
relations suitable for practical application. Recommendations are given
for calculating the flow cross mixing in rod assemblies.

The integrated numerical and experimental study of thermohydraulic
characteristics provided an explanation of some specific features of heat
transfer and hydrodynamics in such complex systems. The obtained
information is needed for improving the reliability of operation of various
modern gas-cooled heat-transfer devices and will be useful in developing
fuel assemblies of new nuclear reactors with various coolants.

The monograph incorporates results of the experimental investigations,
conducted by the author together with Dr. J. Kolesnikov (Parts 5 and 6)
and Dr. A. Sakalauskas (Parts 6 and 7).
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Introduction

The arrangement of fuel elements in the form of rod assemblies found
wide application in reactor engineering. Such assemblies are used in the
most diverse reactors, such as water-moderated, boiling water, gas-
cooled, and liquid-metal cooled reactors of both vessel and channel struc-
ture. The international group, representing the governments of ten nuclear
countries, chose six concepts of the joint development of the next (IV)
generation of power reactors [1]. According to the conclusions reached
at the International Forum, all concepts of the [V generation of reactors
can be implemented by 2030, and some of them even by 2020. Basic
diagrams of two types of reactors of the new generation are presented
inFigs. 1.1 and 1.2.

The first is a helium-cooled reactor operating in the fast-neutron spec-
trum and having a closed fuel cycle (Fig. 1.1). The helium temperature
at the core exit reaches 850°C. The recommended electric power of the
reactor is 288 MW(e). The reactor operates in combination with a steam
turbine with the Brayton cycle, which has a high efficiency.

The second is a supercritical water-cooled reactor (Fig. 1.2), which
is operated at supercritical parameters of water (374°C and 22.1 MPa).
The supercritical water coolant makes it possible to increase the thermal
efficiency of this reactor by one third in comparison with the present-
day light-water reactor. This implies that the energy balance of the elec-
tric power plant significantly simplifies, since the phase state of the cool-
ant in the reactor does not change. The recommended electric power of the
reactor is 1700 MW(e). The reactor is operated at a pressure of 25 MPa,
and the coolant temperature at the core exit reaches 510-550°C,
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Introduction

Of great importance for assessing the prospect of the development
of nuclear power engineering are investigations of heat transfer and
hydrodynamics in various gas-cooled assemblies at large heat loads.
Because of the complicated geometry of rod assemblies, the laws gov-
erning heat transfer and hydrodynamics in them are markedly different
from those for channels of simple shape (like annuli and tubes of various
cross sections), and until now have not received sufficient study.

. The specific features of heat transfer in rod assemblies in the longi-
tudinal flow of a gaseous coolant or vapor are relatively low heat trans-
fer coefficients, significant heatings of the coolant along the assembly
length, and relatively weak heat and mass transfer in the bundle cross
section, which, in turn, leads to large temperature differences in the
cross section and to a substantial temperature nonuniformity of the fuel-
element shell. In gas-cooling assemblies, the geometrical parameters,
operating conditions, and structure of the assembly itself have a stron-
ger effect on the temperature field. Dissimilar geometry of the intercon-
nected cells, the presence of a smooth unheated shell, a different heat
release in the fuel elements, the proximity of a smooth shell and rough
rods in the assemblies with heat transfer intensifiers, and a variety of
other factors cause appreciable nonuniformities in the distribution of mass
velocities and heat and vapor contents of the coolant over the cross
section of the channels, which is the reason for a large temperature
nonuniformity in various elements of the assembly and can cause a sig-
nificant deformation of the rods. Flow is markedly influenced by such
structural elements of the assemblies as spacer grids, wrapping, finning,
etc. All of these features manifest themselves most clearly in few-rod
assemblies. They can lead to the considerable decrease of efficiency
and reliability of the reactor. Therefore, among the main tasks in pro-
ducing cores in the form of rod assemblies cooled by gas or vapor, is to
equalize the temperature field in the cross section of the assembly and
accurately determine its local values.

The provision of high efficiency and reliability of operation of the
gas- or vapor-cooled fuel assemblies is an important problem whose
solution depends to a certain extent on the level of the technical justifi-
cation. This is especially relevant to assemblies operating in high-tem-
perature modes. The uncertainty of some parameters requires a deeper
insight into the thermophysical processes, beginning with assemblies in
longitudinal flow and the study of new phenomena that conforms to the
contemporary scientific level. The interchannel hydrodynamic and heat
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exchange, a variable energy release, deformed rod lattices and non-
standard elementary channels, the roughness of rods or the application
of fins to them, regular and stochastic temperature nonuniformities, the
related superheating factors and hot spots — this is by far not a complete
list of the questions currently posed by the practice of nuclear power
engineering in designing gas-cooled assemblies in longitudinal flow.

Accounting for the enumerated factors in the thermohydraulic cal-
culation of assemblies is a very complex problem. The following re-
quirements are imposed on the thermohydraulic calculations:

e great informativeness,

e high reliability of results, primarily for local hydrodynamic and
thermal characteristics, since, on the one hand, large margins of
the wall temperature are inadmissible (the power and efficiency
of the plants are limited) and, on the other hand, the excess of
local temperatures above permissible limits can result in the su-
perheating of the assembly or its individual elements and in the
failure of the entire assembly.

The prerequisite for securing the operational safety of the assem-
blies under extreme conditions is the fulfillment of limitations on the
maximum temperature level of the rod surface. Correspondingly, high
requirements are also specified for the thermophysical justification of
assemblies. The fulfillment of limitations, not only on average param-
eters but also on their deviations from nominal values, necessitates the
study of the effect of the deviations on the temperature fields of assem-
blies.

The temperature deviations from nominal values because of the super-
heating of fuel elements can be determined using two methods. The first
of them is analytical. This method is applied to calculating the deviation
of the known temperature function depending on many random param-
eters (factors) by specified laws and distributions. The second is the
statistical Monte Carlo method.

The analytical method is faster than the Monte Carlo method. Howev-
er, itnoticeably limits the functional dependence of temperature on vari-
ous parameters. The Monte Carlo method is expedient to use where the
dependence of temperature on the governing parameters is multidimen-
sional and nonlinear, and random deviations of the parameters are signi-
ficant and obey the law of free distribution under all general conditions.

It is also expedient to use the superposition method, with which tem-
perature deviations as a result of the effect of local factors are deter-
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mined by the Monte Carlo method and total temperature deviations are
evaluated analytically.

Among the steps of the justification of assemblies in longitudinal flow
is the analytical determination of thermohydraulic characteristics of as-
semblies and their elements. The analytical description incorporates the
calculations of geometric characteristics of assemblies and the distribu-
tion of the coolant flow rates and heatings among elementary channels
of the assembly with accounting for the interchannel hydrodynamic and
heat exchange, the determination of the wall-gas temperature differ-
ences, and finally, consideration of the effects of various factors on the
temperature field. Since the coolant heatings in gas-cooling assemblies
are very large (over 200°C), the accuracy of determining the maximum
temperature of the rod surface depends to a considerable extent on the
correctness of the calculation of the distribution of the coolant heating in
elementary cells.

The processes of the formation of the velocity and temperature fields
in assemblies in longitudinal flow that represent a system of intercon-
nected channels, exchanging mass, momentum, and heat, have essential
distinctions from the processes in isolated channels. Random geometri-
cal deviations (for example, deflections or displacements of the rods)
result in a local redistribution of the coolant flow rates among elemen-
tary cells. The rod spacing elements (such as spacer grids and a wire
wrapping) affect the interchannel mixing and the degree of flow turbu-
lence. Nonuniformity of the coolant distribution among various-geom-
etry cells (like central and peripheral cells) is determined by the hydro-
dynamic characteristics of the interconnected channels.

The role of various factors causing the flow nonuniformities changes
with the type of the device and structure of the fuel assemblies. A high
thermal stress of such assemblies and the presence of spacing facilities
in them lead to instability of hydrodynamics and heat transfer along the
channel length. However, these factors cannot be taken into account
based on a one-dimensional representation of the hydraulics of the fuel
assembly, since a more complete and comprehensive description of the
coolant flow is needed.

The use of the procedures and equations for isolated channels in
calculating interconnected channels can lead to large errors. Therefore,
it is necessary to develop special procedures, taking into account the
features of such interconnected channels.



HEAT TRANSFER AND HYDRODINAMICS IN GAS-COOLED FUEL ROD ASSEMBLIES

Interchannel heat and mass transfer are important factors behind the
formation of the thermal and flow pictures of assemblies in longitudinal
flow. For example, spiral wire wrappings on rods, which make contact
with the surfaces of neighboring rods, decrease the temperature in the
region of hot spots and thus facilitate an increase in the assembly power.
None of the present-day procedures of the thermophysical calculation
of assemblies can do without accounting for this factor. Its importance
manifests itself when consideration is given to the processes occurring
both inside the rod assembly and in the space between individual rod
assemblies (for example, the interaction between fuel assemblies in a
nuclear reactor).

The cellular method is equivalent to the difference method of solving
differential equations. However, there is a basic distinction between them.
In the difference method, there is an opportunity for reducing the grid
step, and thus the solution obtained using the difference method can be
brought as close to the solution of the starting differential equation as
desired. In the cellular method, the minimum step size of the grid is
limited by the cell dimensions.

Regardless of the above-mentioned drawbacks, the cellular methods
are now an effective instrument in the calculation of local thermohydraulic
characteristics of rod assemblies. Within the framework of these meth-
ods, the question remains open as to the determination of dependences
for calculating local thermohydraulic parameters of cells, especially for
assemblies with hydraulically nonequivalent cells, i.e., dependences for
the distribution of the local skin friction coefficient,
the local heat transfer coefficient,
the turbulent coefficient of mixing between cells,
the coefficient of hydraulic resistance of spacer grids and their
effect on the above dependences.

In order to further refine such methods, it is necessary to solve the
problem of thermohydraulics for a number of cross sections of the as-
sembly, retaining average values of the thermohydraulic parameters in
the cells. The development of more accurate calculational methods re-
quires the experimental study of local hydrodynamic characteristics in
rod assemblies with thermohydraulically nonequivalent cells. Most of
the known experimental studies of this problem pertain to fuel assem-
blies with equivalent cells.
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1.1. Analysis of Methods of the Thermohydraulic Calculation
of Rod Assemblies

Methods of the three-dimensional analysis of hydrodynamics and
heat transfer in rod assemblies

A detailed thermohydraulic calculation of fuel rod assemblies is needed
not only for conducting the developments but also for processing the
results of experiments, which model these fuel assemblies or their frag-
ments. To date, a great many calculating procedures have been worked
out that make it possible to determine, to various degrees of adequacy,
the coolant parameters and the wall temperatures at any point in the fuel
assembly. Three principal trends can be distinguished in the develop-
ment of the methods of solving such problems: the first is a detailed
theoretical and experimental description of the hydrodynamics of the
interrod space, the second is the method of homogenization or of porous
body that is used mainly for multirod assemblies of complicated geom-
etry [2], and the third is the method based on the splitting of the cross
section of the channel of a complicated shape into elementary channels
(cells) that make contact with one another in the narrowest cross section.

A detailed description of the first trend is given in monographs [3, 4].
It should be noted that in connection with the complication of the geom-
etries of elements of the reactor cores and nonuniformity of local
thermohydraulic characteristics of flow, only a limited range of the prob-
lems of hydrodynamics and heat transfer can be solved at present. The
second method - the method of homogenization [5-7] or of porous body —
can be used for calculating the spatial temperature field in the fuel as-
sembly, averaged on the elementary cell scale. The essence of this method
is that flow in the rod bundle is viewed as being two-phase with an
immovable solid phase and volumetric sources of energy release, and
with accounting for friction. In this model, friction is taken into account
and local conditions of the rod cooling are disregarded.

According to the third method, the rod bundle on the whole is consid-
ered as a system of parallel communicating channels. In the English
literature, the term “subchannel” is used to denote the forming channels;
it is not employed in the Russian literature. In the Russian literature it is
customary to use the term “channel” or “cell,” adding “elementary,” if
needed, in order to stress that a mentally isolated part of the actual
channel is spoken of. Mass momentum and energy balance equations
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are written for each such channel. Variations in the flow parameters
(such as mass velocity and temperature) within the limits of a single cell
are neglected. Using this procedure, many diverse computer programs
of such purpose have been developed in various countries that are based
on approximately identical thermohydraulic models of flow. This method
and the programs are considered in greater detail in reviews [8-11]. A
significant part of the presented algorithms is intended for analysis of
evaporation channels, and as a rule, the programs suggest an arbitrary
number of elementary cells. Although many programs have been devel-
oped independently, they have much in common. Common are the meth-
ods of dividing the cross section into elementary cells (at present, it is
customary to draw the cell boundaries in the gaps between rods along
the lines, connecting the rod centers). For peripheral cells, it is custom-
ary to draw the boundary along the lines, passing through the rod center
to the angular point, or normal to the shell. However, there are pro-
grams, for example, the Italian CISE [12], in which cells are isolated
along the maximum velocity lines. In this case, the fuel rod is fully inside
the cell (Fig. 1.3).

FIGURE 1.3. Examples of the division of the cross sections of various channels into
elementary cells. (a), (b), and (c), division along the lines, connecting the rod centers;
(d), division along the zero-stress lines

Since the mass, momentum and energy balance equations can be
written for any part of the channel, the method of isolating elementary
cells is not important. However, for closing these equations it is necessary
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to use empirical dependences of the flow interaction that are studied
under quite certain geometric conditions.

The stresses at the solid surfaces, confining the cell, are determined
using ordinary hydraulic dependences. The determining dimension is taken
to be the hydraulic diameter calculated from the wetted perimeter of the
cell. Some authors [3, 4] suggest that corrections be introduced that
allow for the difference of the cell shape from a circular channel. These
corrections are determined using the results of hydrodynamic studies.

In the considered approach, the thermal and mechanical interaction
of flows at the cell boundaries are taken into account. In describing this
interaction it is necessary to determine the rate of the interchannel trans-
fer. However, both theoretical and experimental determinations of the
rate of the interchannel transfer involve great difficulties primarily be-
cause of the complexity of its mechanism. Mass and heat transfer be-
tween channels results not only from turbulent or diffusive exchange,
but also from the effect of the directional cross flow caused by the
pressure gradient in the region of transient flow (inlet sections, regions
near spacing elements) or by the deviation of geometric dimensions from
nominal values (the deformation of channels, the swelling of rods, etc.).

In the last year, a novel method of calculating thermohydraulic pa-
rameters of assemblies has been developed, namely, the method of large
vortices, reviewed in Ref. [13]. This is a method of direct numerical
modeling used for studying the mechanisms of some flows and obtaining
data on the turbulent statistics with reference to the development of
statistical turbulence models. The method of large vortices is used for
modeling flows at high Re and Ra numbers. The drawback of this method
is a strong dependence of the subgrid scale for low Re numbers on the
accuracy of the employed models.

The most commonly used programs for the thermohydraulic analy-
sis of rod assemblies by the channel-by-channel method

The need for solving the above problems prompted the appearance
of a variety of programs, developed for a computer. The development
was conducted independently in various countries and firms. Basic prin-
ciples remained common, but specific implementations of the physical
models and calculational methods turned out to be very diverse. This
made it possible to accumulate by now great experience on the evalua-
tion of specific features and ranges of application of various methods.

Information on the most widely known programs is presented in Table 1.1.
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Table 1.1
Programs for thermohydraulic calculation of rod assemblies
using channel-by-channel method

Program

Author, reference

Year  Country

Note

HAMBO
TIGR

CISE

GIDRA
COBRA - TIA
FORMAX
EBRFLOW
FORCMX
PUCHOK-2

HERA
DIANA

PUCHOK-3

NADIJA

R.W. Bowring [14]
N.L. Polyanin [15]

G.R. Gaspari et al. [12]
V.S. Osmachkin et al. [16]
C.L. Wheeler et al. {17]

A.W. Graves et al. [18]

1967/68 England
1969  Russia

1970  Ttaly
1970  Russia
1970 USA
1972 USA

A. Gopalakrishnan et al. [19] 1973  USA

A W. Graves et al. [20]
Yu.V. Mironov et al. [21]

R. Nijsing et al. [22]

S. Hirao et al. [23]

Yu, V. Mironov et al. [24]

G. Cormet et al. [25]
PUCHOK BM G.S. Mingaleyeva et al. [26]

PUCHOK BM-RIP

BREED
SIMPL -2
SAGAPO
SCRIMP
SAGAPO - 2
CLUHET

DARS

G.S. Mingaleyeva et al. [27]

A.S. Chichkanov [28]
0. C. Jones et al. [29]
M.Dalle Donne et al. [30]
M. Huggenberger [31]

A. Martelli [32]
P. Barroyer [33]
R.V. Snitsar [34]

B. Cesna [35]

1973  USA
1973 Russia

1974
1974 Japan

1979 Russia
1976  Belgium
1980  Russia
1981 Russia
1980  Russia

1977 USA
1977 FRG

For uniphase
coolants

For multirod
assemblies
For assemblies
with wrapping
For a 37-rod
assembly

For assemblies
with wrapping
For uniphase
assemblies

For multirod
assemblies
For multirod
assemblies

For multirod
assemblies

For multirod
assemblies

1977 Switzerland

1978 FRG

1981 Switzerland

1995  Russia

1999  Lithuania

For laminar
flow

For multirod
assemblies and
uniphase
coolants

10
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