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K F. Chernykh
AN INTRODUCTION TO MODERN ANISOTROPIC ELASTICITY
1997

The author, a leading Russian authority in the field of elasticity, has
obtained some fundamental results in the investigation of a number of gen-
eral problems in the mechanics of solids, the theory of elasticity, the theory
of shells, biomechanics, and the mechanics of elastomers. Fundamental
theoretical investigations were combined with practical applications to real
construction problems. He is the author of nine well-known monographs.

The first chapter of this book deals briefly with symmetry considerations.
The second chapter is devoted to the author’s original treatment of linear
anisotropic elasticity. The succeeding chapters are concerned with some of
the most interesting modern problems of the nonlinear theory of elasticity
(constitutive equations, plane problems, anisotropic and reinforced shells,
brittle fracture, Volterra’s dislocations, etc.). The account is based mostly
on the author’s original investigations and contains a lot of new results.

This important book is intended for students, postgraduate students, en-
gineers, and scientists specializing in the various fields of structural analysis
and is an attempt to acquaint them with current problems of the modern
theory of anisotropic mechanics of solids.

© Begell House Inc. Publishers, New York
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TO THE READER

One must surely have a lot of courage to undertake the work of pre-
senting the anisotropic theory of elasticity in its most general (nonlinear)
form. After all, it is obvious that one must deal with cumbersome compu-
tations and unwieldy formulas that do not come easily across to the reader
who must also be shown their practical significance. But the advantage of
K. F. Chernykh’s treatment is in that he knows how to overcome difficulties
of that sort. In this book a successful (and in many ways original) classi-
fication of formulas belonging to the linear theory of elasticity is given as
well as a detailed treatment of the nonlinear theory, even including specific
strain-energy functions for the most important types of anisotropy. The
problems of large deformations of thin anisotropic shells are dealt with in
great detail. Since anisotropic and constructively anisotropic (i.e., compos-
ite) materials are used more and more extensively, this book containing a
wealth of information about their elastic properties will find, undoubtedly,
its reader.

V. V. Novozhilov, Member of the Russian Academy of Sciences

vi



PREFACE

From a formal point of view, this monograph may be regarded as the
second edition of the author’s book “An Introduction to Anisotropic Elas-
ticity” (Nauka-Fizmatlit, Moscow, 1988). However this is, essentially, a
new book updated and considerably extended. Since it has preserved its
character, I think it to be worthwhile to retain the preface written by my
teacher and friend Valentin Valentinovich Novozhilov (see preceding page).

It is impossible even to list all the numerous publications in which various
problems in the analysis and the design of structures of anisotropic materi-
als are discussed. In this connection, the fundamental work of N. G. Chen-
tsov and S. G. Lekhnitsky must be mentioned above all. At the same time
the number of publications on the anisotropy of elastic properties is strik-
ingly small. Among them the following ones [1.1,1.2,2.4-2.6, 2.8, 3.4, 3.5,
4.1, 7.1-7.3, 11.6] should be noted.

The present volume was designed as a brief systematic account of the
class of problems that are connected with the laws of elasticity of anisotropic
materials. Emphasis is placed on either new problems or those that are sel-
domly treated in the literature—problems that are of great significance
(generalized plane strain and plane state of stress, incompressible and rein-
forced materials, geometrical and physical nonlinearity, the nonlinear the-
ory of shells, plane problem, brittle fracture, nonlinear Volterra’s disloca-
tions).

A few words on the contents of the book.

In Chapter I a brief but systematic account is given of the use of sym-
metry considerations in the mechanics of solids (deformable bodies). The
concept of a symmetry group for a finite body is made clear. Restrictions
on possible types of symmetry due to the existence of a space crystal lat-
tice are revealed. The existing crystal classes and textures are listed. The
Neumann principle is formulated.

In Chapter II the structure of Hooke’s law for anisotropic materials
is discussed. A nontraditional approach makes it possible to introduce
symmetric Poisson coefficients of different orders. This enables solution of
P. Bekhterev’s problem [2.2] of finding narrowest (unimprovable) bounds
on the variation of elastic constants [3.2]. The ideas of V. V. Novozhilov

vii



viii PREFACE

concerning the principal axes of anisotropy and the reduction in the number
of essentially different elastic constants are further developed. Attention is
given to the problem of unification of elastic constant matrices within each
crystal system.

In Chapter III nonlinearly elastic anisotropic materials are dealt with.
The structures of strain-energy density functions corresponding to vari-
ous anisotropic materials are investigated. For small deformations, the
conditions for the appropriate law of elasticity to acquire the form of the
corresponding Hooke’s law are given.

In Chapter IV we deal with deformation anisotropy which occurs for large
deformations of an elastic material. An incompressible isotropic material
reinforced by families of cords (filaments) is considered.

In Chapter V the results obtained are used for shells subjected to large
deformations. A brief outline of the simplest “working” nonlinear theory
of elastic shells (without loss of generality) is given. The problem of the
choice and design of strain-energy density functions is treated.

In Chapter VI we are concerned with shells reinforced by two families
of inextensible or slightly extensible filaments. Two types of reinforcement
are considered: in the middle surface and continuous through the shell
thickness. Solutions to a number of applied problems are given.

In Chapter VII the linear plane problem for an orthotropic material is
discussed. Extensive use is made of the complex variable method developed
by the author and also of his algebraic method for solving boundary-value
problems.

In Chapter VIII we deal with the nonlinear plane problem. An original
approach makes it possible to obtain in finite form solutions to geometrically
nonlinear problems.

In Chapter IX a brief outline of the results obtained by the author on
the nonlinear theory of cracks in an isotropic material is given. The ways
to extend the theory to anisotropic materials are discussed.

In Chapter X we deal with the essentials of the nonlinear theory of
Volterra’s dislocations. The wedge disclination is considered in detail.

In Chapter XI we are concerned with those aspects of theory that are
closely connected with the subject matter of the preceding chapters. The
theoretical material was published at different times by the author [11.2-
11.6] and is, essentially, an extension of the fundamental wotk of V. V. Novo-
zhilov and L. 1. Sedov. The relevant published theoretical results bear wit-
ness to the undiminished attention paid to the problems of the structure
and properties of the constitutive equations of the mechanics of deformable
bodies. Instead of going into the contents of this chapter, we shall only
mention that in §12 the general relations for large deformations are intro-
duced, and in §13 the reasons are given for the substantial advantages of the
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conventional stresses (the Biot stresses) over the true stresses (the Cauchy
stresses) in geometrically nonlinear mechanics.

Appendices A and B are given for the convenience of the reader. They
contain the fundamentals of curvilinear coordinates, curves, and surfaces,
which are needed for reading the book.

At the end of the book a list of references and a subject index are given.
The bibliography mostly contains references to Russian authors that are
not widely known cutside the former Soviet Union.

Many of the chapters in the book may be read independently of the other
chapters, yet there are many cross references. Equations within the same
chapter are referred to by the section number followed by the number of
the equation, and equations in the other chapters are indicated using the
triple-number notation, the first number being that of the chapter in which
the equation is given. A similar triple-number notation is used for both
figures and tables throughout the bock. In the book the repetition of a
Greek index implies summation with respect to that index.

When writing this book, the author sometimes felt as if he were per-
forming a sort of a balancing act on a nebulous boundary between the
fundamental theoretical results and their applications. While having pref-
erence for the former, the author, nevertheless, also wanted to show how
the theory works (naturally, trying not to get bogged down in cumbersome
details). The book contains both the standard material and some of the
new results obtained by the author and his colleagues. Certain “nonhomo-
geneity” of the material may be justified by the attempt to stimulate the
interest of the reader in doing research work in this difficult but promising
area of the mechanics of solids.






CHAPTER I

SYMMETRY CONSIDERATIONS

It is difficult to find an area of knowledge where symmetry considerations
are not taken into account to a greater or lesser degree. They are widely
used in theoretical elasticity when dealing with natural (crystal) or artificial
(composite) materials.

The mechanical properties of media depend largely on whether the ma-
terial structures in question have some symmetry elements of finite bodies.
Therefore, at the beginning of this chapter we provide a short, elementary,
though systematical, treatment of all possible symmetry groups for a fi-
nite body. Further the restrictions on the form of symmetry imposed by
the presence of a space (crystal) lattice are discussed. Crystal classes and
textures are listed.

The reader who wishes to gain a more thorough knowledge of the clas-
sical topics of symmetry presented below and also of some of the extended
versions of the symmetry notion are recommended the monograph [1.2].

§1. Symmetry of finite bodies

Consider an arbitrary three-dimensional body. We may talk of its sym-
metry only if the body can be split up into several identical parts forming
some regular configuration. The laws of regularity are defined by the sym-
metry transformations that carry the identical parts of the body into one
another. If no distinction is made between the identical parts of the body,
we can say that symmetry transformations carry the original body into
itself.

Simple geometric constructions show [1.2] that symmetry transforma-
tions can be reflections in planes, rotations about the axes of symmetry
and rotoflections (rotary reflections).

Figure 1.1.1 shows a body consisting of two tetrahedrons with bases in
the plane of the figure. A reflection in the symmetry plane passing through
the common edge of the tetrahedrons at right angles to the plane of the
figure carries the two parts of the body into each other.

Figure 1.1.2 shows bodies having axes of symmetry passing through the
points of contact of the tetrahedrons at right angles to the plane of the

1



2 MODERN ANISOTROPIC ELASTICITY

figure. An axis of revolution is called an azis of n-fold symmetry if by a
complete revolution it is carried n times into itself. Axes of 2-, 3-, and
4-fold symmetry are shown in Figure 1.1.2.

Figure 1.1.1

a b <

FiGuURE 1.1.2

If under a rotation through 27 /n about an axis placed at right angles to
a plane and a subsequent reflection in the plane, the body is carried into
itself, then the axis is called an azis of n-fold rotoflection. Axes of 2-, 4-,
and 6-fold rotoflection are shown in Figure 1.1.3.

Simple geometrical considerations imply [1.2] that in a finite body all
symmetry transformations must leave at least one point immovable. Thus,
if a body possesses several symmetry elements (axes and planes), they all
have to pass through one immovable point called a singular point. This
point may be outside the body itself (for example, the center of a pinion
with an orifice).

Besides the symmetry transformations listed, the theory of elasticity also
deals with inversion, under which the points of the body are carried into
the points that are symmetric with respect to a particular point called the
center of symmeiry, and also with furning-over, in which the points of the
body are carried into the points that are symmetric with respect to a given
line (see Figure 1.1.4).

Symmetry transformations are said to be equivalent if each carries the
body into itself (i.e., each part of the body will occupy exactly the same
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position as before). It is seen from Figure 1.1.4 that inversion is equivalent
to 2-fold rotoflection, and turning-over to 2-fold rotation. Below we will
show that an odd-fold rotoflection can be obtained by combining a suitable
rotation with a reflection in the plane placed at right angles to the axis of

revolution.

a b c

FIGURE 1.1.3

FiGUure 1.1.4 FIGURE 1.1.5

The description of all nonequivalent symmetry transformations is of
particular interest. Therefore, we shall no longer be concerned with the
turning-over transformation. The inversion transformation, though not of
major importance by itself, is convenient to use. Finally, observe that a re-
flection in a plane is equivalent to a rotation about an axis perpendicular to
the plane followed by an inversion with respect to the point of intersection
of the plane and the axis.

§2. Notion of a symmetry group

The set of all nonequivalent transformations that carry a symmetric
body into itself is called a symmetry group. Thus, the symmetry group
of a body having one symmetry plane (see Figure 1.1.1) contains two
transformations: the identily transformation (under which all identical
parts continue to occupy their respective positions) and a reflection in
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