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PREFACE 

 
The objective of this monograph is to summarise the scientific 

research in the structural integrity analysis field as applied to Nuclear 
Power Plant reinforced concrete structures. The described research 
areas were performed by the authors of this monograph during the years 
1995-2006. The research presented in this monograph applies to 
structural integrity investigations of Ignalina NPP buildings due to static 
and dynamics loads.  

The nuclear reactors of the Ignalina nuclear power plant (NPP) 
belong to the RBMK class of reactors, designed and constructed by the 
Ministry of Nuclear Power Construction of the former Soviet Union. 
These reactors do not possess the conventional Western containment 
structure that could confine the radioactive products of a severe nuclear 
accident. Instead, the Ignalina NPP has a suppression type containment, 
which for Soviet-built reactors is referred to as the accident localisation 
system (ALS). The ALS encloses about 65% of the entire cooling 
circuit and this includes the most dangerous sections of piping to 
rupture in case of the loss-of-coolant accident (LOCA). 

The ALS reinforced concrete building for the RBMK-1500 reactors 
is comprised of two similar towers adjacent to the reactor unit. The ALS 
towers are interconnected through a system of the leak-tight 
compartments designed for steam discharge in case of rupture in the 
primary coolant circuit. The ALS is required to prevent the release of 
radioactive materials from reaching the atmosphere in case of the 
coolant piping rupture, including the Design Base Accident (DBA). The 
importance of the ALS analysis is the demonstration of the structural 
integrity of ALS in case of maximum design basis accident (MDBA) 
which refers to a guillotine rupture of the pressure header of the main 
circulation pumps. 

Both deterministic and probabilistic methodologies were used for 
structural analysis of reinforced concrete structures. These structures are 
made from materials with very different material properties, i.e. 
concrete and steel. Therefore, for strength analysis, sophisticated 
methods that account for these differences must be used. The finite 
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element method was applied for structural analysis of reinforced 
concrete structures. The deterministic structural integrity analysis 
considered loadings due to operation and accident conditions and was 
based on the accepted geometrical data and material properties of 
constructions. However, the loadings, geometrical data and material 
properties are uncertain. The estimation of the uncertainties of initial 
data to strength of structures is very important. Thus, probabilistic 
analysis methods are used for the evaluation of uncertainties. A 
probability-based structural integrity analysis was performed as the 
integration of deterministic and probabilistic methods using existing 
state-of-the-art software for Ignalina NPP buildings. The NEPTUNE 
and ProFES software were coupled for these analyses. Using the 
coupled software, the analysis of the dependence between loading, 
geometrical data, material properties parameters on the failure 
probability of reinforced concrete structures was obtained. 

Many individual and several cooperative projects designed for 
structural integrity analysis of Ignalina NPP buildings, mainly ALS, 
were performed in the years 1995 - 2006. In this respect the following 
projects should be mentioned: 

• Ignalina ALS Safety Case, Probabilistic Safety Analysis of 
Level 2;  

• Simulation of Ignalina RBMK-1500 ALS Containment 
Capacity Using NEPTUNE;  

• Evaluation of Pipe Whip Impacts on Neighbouring Piping and 
Walls of the Ignalina RBMK-1500 NPP;  

• Strength Evaluation of Steam Distribution Header and their 
Connections to the Vertical Steam Corridors of the Ignalina 
NPP;  

• Analyses of Ignalina RBMK Nuclear Power Plant Buildings 
and Structures for External Loading Conditions.  

Some of these projects were carried out in cooperation with 
specialists from Argonne National Laboratory. The material presented 
in this monograph describes the main results of the mentioned projects.  

The methodologies and results of linear and non-linear analysis of 
the reinforced concrete structures subjected to static and dynamic loads 
are presented in this monograph. Normal mechanical properties of 
concrete and reinforcement bars were used in the linear analysis. The 
concrete strength in compression was also considered and assumed to 
be equal to zero in tension. The results of the linear analysis are 
conservative. The experimental mechanical properties of the concrete 
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and reinforcement bars were used for the non-linear analysis which also 
evaluated the concrete strength for tension and compression. The 
failures of concrete and reinforcement bars as well as the thickness of 
destroyed concrete were determined in the non-linear analysis.  

The static structural integrity analysis of buildings was performed 
using internal pressure, concentrated and temperature loadings. The 
dynamic structural integrity analysis of buildings was performed using 
the loads from internal impact events onto the internal surface of walls 
and transient loads onto the external surface of walls from an aircraft 
crash. The non linear analyses under dynamic loads were performed 
using both deterministic and probabilistic structural integrity analyses. 
The following methods were used for numerical probabilistic analysis 
of reinforced concrete structures: Monte Carlo simulation, the First-
Order-Reliability- method and Response Surface / Monte Carlo 
Simulation. 

The deterministic and probabilistic methodologies for structural 
analysis of reinforced concrete structures are presented in this 
monograph. The applications of these methodologies were applied to 
Ignalina NPP buildings, as examples. However, these methodologies 
can be used not only for NPP buildings, but also for other reinforced 
concrete structures that have strict requirements for safety: for example, 
bridges, dams, chemical plants energy facilities, and pylons for 
electricity lines. In addition to reinforced concrete structures, these 
methodologies can be used for steel constructions where failure would 
create dangerous environment conditions: for example, heat, gas and oil 
pipeline systems, steel devices within chemical plants and energy 
industry. 

The authors of this monograph would like to acknowledge Professor 
A. Marchertas, who is one of the initiators of structural integrity 
analysis of the Ignalina NPP ALS in the Lithuanian Energy Institute. 
Prof. A. Marchertas provided the first lessons in strength analysis of 
reinforced concrete structures using the finite element method.  

The authors of this monograph would like to acknowledge the 
Pacific Northwest National Laboratory (USA), Argonne National 
Laboratory (USA) and Applied Research Associates Southeast Division 
(USA) for providing the NEPTUNE, TEMP-STRESS and ProFES code 
versions. The authors from LEI would like to acknowledge Dr. R. F. 
Kulak from “RFK Engineering Mechanics Consultants” (USA) for his 
technical consultation on using the above software packages. We also 
want to extend our thanks to the administration and technical staff of 
Ignalina NPP, for providing information regarding operational 



vi 

procedures and the operational data. The authors acknowledge the 
following scientists of Lithuanian Energy Institute: Mr. Renatas 
Karalevicius for contribution in preparing finite element models of 
Ignalina NPP reinforced concrete structures and Dr. Robertas Alzbutas 
for help in application of the probabilistic analysis methods for 
reliability analysis of reinforced concrete structures. 
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NOMENCLATURE 

 a, b, c, d – Failure parameters  
 A – Area of pipe, m2 
 Awall – Cross-section area of the pipe wall, m2 
 bw – Cross-section width, m 
 dp – Inner diameter of the pipe, m 
 Dp – Outer diameter of the pipe, m 
 Deng  – Equivalent diameter of the engine, m 
 D – Reference strain-rate, 1/s 
 Ered – Reduced modules of elasticity, MPa 
 Ec – Initial elasticity of the concrete, MPa 
 Es  Initial elasticity of the steal, MPa 
 fc – Uniaxial compressive strength of concrete, MPa 
 ft – Uniaxial tensile strength of concrete, MPa 
 fbc – Equal biaxial compressive strength of concrete, 

MPa 
 fpc, fcc – Combined triaxial compression of concrete, MPa 
 fy  Yield strength of reinforcement, MPa 
 fdc – Dynamic compressive strength, MPa 
 fcs – Static compressive strength, MPa 
 fdt – Dynamic tensile strength, MPa 
 fts – Static tensile strength, MPa 
 Fc – Load contribution from aircraft crushing strength, 

N 
 fiI

int – Internal nodal forces of node I in the i-th direction, 
N 

 fiI
ext – External nodal forces of node I in the i-th 

direction, N 
 ho – Thickness of the wall, m 
 h – Thickness of the spacing of reinforcement layers 

in the respective directions, m 
 h1 – Thickness of the reinforcement layer, m 
 I – Moment of inertia, m4 
 I1, J2 – Stress invariants, MPa, (MPa)2 
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 l – Length of the straight pipe, m 
 miI – Diagonal mass matrix of node I in the i-th 

direction 
 M  – Mass of the missile, kg 
 M2  – Bending moment with respect to axis 2, N-m  
 M3  – Bending moment with respect to axis 3, N-m 
 n – Step number 
 P – Axial force, N 
 pk – Pressure at the break location, Pa 
 pa – Outside (atmospheric) pressure, Pa 
 pwall – Pressure straight after the break location, Pa 
 p – Reinforcement ratio 
 q – Steel strain-rate amplitude parameter 
 Qx – Reaction force, N 
 S2 – Sectional modulus with respect to axis 2, m3 
 S3 – Sectional modulus with respect to axis 3, m3 
 t  Wall thickness, m 
 tc – Thickness of reinforcement with prevailing 

compression, m 
 tp – Minimum wall thickness to prevent perforation, m  
 tpd – Minimum design thickness to prevent perforation, 

m  
 ts – Minimum wall thickness to prevent scabbing, m 
 tsd – Minimum design thickness to prevent scabbing, m 
 tt – Thickness of reinforcement with prevailing 

tension, m 
 Δt – Time increment, s 
 U  – Reference velocity, m/s 
 uiI – Nodal displacement of node I in the i-th direction, 

m 
 ùiI – Nodal velocity of node I in the i-th direction, m/s 
 üiI – Nodal acceleration of node I in the i-th direction, 

m/s2 
 v – Velocity of the uncrushed part of the plane 

relative to the wall, m/s 
 V – Velocity of the engine, m/s 
 wk – Fluid velocity at the break location, m/s 
 x – Thickness of a concrete layer under compression 

in the corresponding part of the reinforcement, m. 
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Greek letters 

 α, αfy, αfu – Parameters 
 β, δ – Parameters 
 ε&  – Strain-rate, 1/s 
 sε&  – Static strain-rate, 1/s 
 μ – Mass per unit length, kg/m 
 ρk – Fluid density at the break location, kg/m3 
 σa – Axial stress, MPa 
 σb2/3 – Bending stress with respect to axis 2 and 3, MPa 
 σdyn – Dynamic flow stress, MPa 
 σ1 – Maximum principal stress, MPa 
 σy – Normal stress, MPa 
 σstatic – Static flow stress, MPa 
 σworst – Worst stress, MPa 
 τu – Transverse shear failure, MPa 
 
Abbreviations 
 
 ALS – Accident Localisation System 
 BSRC – Bottom Steam Reception Chamber 
 BWR – Boiling Water Reactor 
 CFAIL – Concrete Failure 
 DIF – Dynamic Increase Factors 
 DS – Deterministic Software 
 FC – Fuel Channel 
 FE – Finite Element 
 FOSM – First Order-Second Moment 
 FORM – First Order Reliability Method 
 GDH – Group Distribution Header 
 IS – Importance Sampling, 
 LOCA – Loss of Coolant Accident 
 LWC – Lower Water Communication 
 MCC – Main Cooling Circuit 
 MCP – Main Circulation Pump 
 MCS – Monte Carlo Simulation 
 MDBA – Maximum Design Basis Accident 
 MSRV – Main Steam Relief Valve 
 NPP – Nuclear Power Plant 
 PS – Probabilistic Software 
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 PWR – Pressurized Water Reactor 
 RBMK – Russian abbreviation for “Large-power channel-

type reactor” 
 RC – Reinforced Concrete 
 RS – Response Surface 
 SDH – Steam Distribution Header 
 SDD – Steam Distribution Device. 
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1 1 
Introduction 

Concrete is one of the most popular materials for buildings because 
it has high compressive strength, flexibility in its form and is widely 
available. The history of concrete usage dates back to over a thousand 
years. Concrete is the principal choice of material for the construction 
of large civil engineering structures. The developed world has 
demonstrated its faith in the material by choosing concrete for the main 
structures of industrial and chemical plant as well for transport, water 
and energy-related infrastructures [1]. However, concrete has limited 
tensile strength, which is only about ten percent of its compressive 
strength, whereas zero strength after cracks develops. In the late 
nineteenth century, reinforcing materials, such as iron or steel rods, 
began to be used to increase the tensile strength of concrete. Today steel 
bars are used as common reinforcing material. Reinforced concrete 
became the most important building material and is widely used in 
many types of engineering structures. The economy, the efficiency, the 
strength and the stiffness of reinforced concrete make it an attractive 
material for a wide range of structural applications. Reinforced concrete 
structures are widely used in nuclear energy plants. Reinforced concrete 
structures play an important role in the economic and social fabric of 
many countries and are required to perform their function with integrity 
and reliability for long-term serviceability in the case of nuclear safety 
related structures. Usually steel bars have over 100 times the tensile 
strength of concrete, but the cost is higher than that of concrete. 
Therefore, the most economical solution is when concrete resists 
compression and steel provides tensile strength. Also it is essential that 
concrete and steel deform together and deformed reinforcing bars are 
being used to increase the capacity to resist bond stresses. 



2 

Advantages of reinforced concrete can be summarized as follows 
[2]: 

• It has a relatively high compressive strength; 
• It has better resistance to fire than steel or wood; 
• It has a long service life with low maintenance cost; 
• In some types of structures, such as dams, piers, and footing, 

it is the most economical structural material; 
• It can be cast to take any shape required, making it widely 

used in precast structural components. 
Disadvantages of reinforced concrete can be summarized as follows: 

• It has a low tensile strength (zero strength after cracks 
develops); 

• It needs mixing, casting, and curing, all of which affect the 
final strength of concrete; 

• The cost of the forms used to cast concrete is relatively high. 
The cost of the forms used to cast concrete is relatively 
high; 

• It has a lower compressive strength than steel (about 1/10, 
depending on material), which requires large sections in 
columns of multi-story buildings; 

• Cracks develop in concrete due to shrinkage and the 
application of live loads. 

The economy, the efficiency, the strength and the stiffness of 
reinforced concrete make it an attractive material for a wide range of 
structural applications. For its use as a structural material, concrete must 
satisfy the following conditions [3]: 

• The structure must be strong and safe. The proper application 
of the fundamental principles of analysis, the laws of 
equilibrium and the consideration of the mechanical 
properties of the component materials should result in a 
sufficient margin of safety against collapse under accidental 
overloads. 

• The structure must be stiff and appear unblemished. Care 
must be taken to control deflections under service loads and to 
limit the crack width to an acceptable level. 

• The structure must be economical. Materials must be used 
efficiently since the difference in unit cost between concrete 
and steel is relatively large. 

One of the main requirements for reinforced concrete building 
structures is that during extreme internal and/or external loading, the 
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structural integrity of the buildings and components installed in the 
building should be retained. The design or structural integrity analysis 
of complex building structures are a sophisticated task. Analytical 
solutions and sophisticated numerical models are used to evaluate the 
structural integrity of these structures. The development of analytical 
models for the response of the reinforced concrete structures is a 
complicated task. Difficulty of the analysis of reinforced concrete 
structures is related with the following factors [4]: 

• Reinforced concrete is a composite material made up of 
concrete and steel, two materials with very different physical 
and mechanical behaviour; 

• Concrete exhibits non-linear behaviour even under low level 
loading due to non-linear material behaviour, environmental 
effects, cracking, biaxial stiffening and strain softening; 

• Reinforcing steel and concrete interact in a complex way 
through bond-slip and aggregate interlock. 

Accordingly, the analysis of reinforced concrete structures using 
classical analytical methods is complicated for reliability of the results 
and experimental studies are costly. Advanced sophisticated numerical 
tools can be an indispensable aid in the assessment of the safety and 
serviceability of reinforced concrete structures. This is especially true 
for many complex modern structures, such as nuclear power plants, 
bridges, off-shore platforms for oil and gas exploration and 
underground or underwater tunnels, which are subjected to very 
complex load histories. The safety and serviceability assessment of 
these structures necessitates the development of accurate and reliable 
methods and models for their analysis. Moreover, it should be noted 
that the transient behaviour of the structures during transient loading is a 
complex phenomenon due to various factors, such as inertia effects, 
large deformations, and inelastic behaviour. It is, thus, not possible to 
obtain analytical solutions for general cases; so sophisticated numerical 
models are necessary for the analysis. The most popular method for the 
advanced analysis of complicated structures is finite element method [5, 
6]. It is a general method of structural analysis in which the solution of a 
problem in continuum mechanics is approximated by the analysis of an 
assemblage of finite elements which are interconnected at a finite 
number of nodal points and represent the solution domain of the 
problem. Applications range from the stress analysis of solids to the 
solution of acoustical phenomena, neutron physics and fluid dynamic 
problems. The finite element method is established as a general 
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numerical method for the solution of partial differential equations 
subject to known boundary and initial conditions. In the case of linear 
analysis, the finite element method is widely used as a design tool [7]. 
In solving the problems of non-linear analysis, the use of the method 
depends on two major factors. First, the increase in computational effort 
required for non-linear problems necessitates that considerable 
computing power was available to the designer at low cost. The second 
major factor is related to the level of complexity of non-linear analysis.  

Nowadays the finite element method (FEM) has been extensively 
used to simulate many applications in structural dynamics [8 - 12]. 
Finite element codes are able to accurately model the plastic 
deformation via bending, compression or full collapse of the structures. 
After the terrorist attacks in New York and Washington D. C. using 
commercial airliners, the structural integrity assessment of civil airplane 
crashes into civil structures has become very important. During the 
recent years the researchers from many countries have been simulating 
aircraft crashes to building structures. The FEM methodology was 
mainly used for the aircraft crash analysis [13 - 17]. 

Due to the tendency of increased nuclear safety, the analysis of 
transient loading will demand multidisciplinary optimization of the 
methods used. However, simulation-based multidisciplinary optimization 
generates deterministic optimum design, which is frequently pushed to 
the limits of design constraints boundaries, leaving little or no room for 
tolerances (uncertainty) in modelling, simulation uncertainties, and 
manufacturing imperfections. Consequently, deterministic optimum 
designs that are obtained without consideration of uncertainty may 
result in unreliable designs, indicating the need for Reliability-Based 
Design Optimization [18]. 

In structural integrity analysis of the buildings it is very important to 
evaluate uncertainty associated with loads, material properties, 
geometrical parameters, boundaries and other parameters [19]. This can 
be resolved using probabilistic analyses methods [20, 21]. Therefore, a 
probability-based structural integrity analysis was performed as the 
integration of deterministic and probabilistic methods using existing 
state-of-the-art software for both the whipping pipe event and the 
aircraft crash event.  

The methodology of the deterministic structural integrity analysis of 
the reinforced concrete structures using finite element method and 
methodology probability-based structural integrity analysis that 
integrates deterministic and probabilistic methods is explained in this 
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book. The application of these methodologies to Ignalina Nuclear power 
plant (NPP) for postulated accidents is presented as examples. 

The Ignalina NPP has a RBMK type reactor that is quite different in 
comparison to the power plants with PWR or BWR type’s reactors. 
Several events have been identified for these plants that can 
compromise the integrity of critical structural components. The 
Chernobyl RBMK reactor accident is the most serious accident in the 
history of the nuclear industry. Typically, RBMK reactors do not 
possess the conventional containment structure. Only Ignalina NPP 
contains two RBMK 1500 reactors, which are the most advanced 
version of the RBMK reactor and have a pressure suppression type 
confinement, which is referred to as the Accident Localisation System 
(ALS) [22]. However the ALS encloses only about 65% of the entire 
cooling circuit. It does not enclose the sections of piping most 
vulnerable to rupture in case of the dangerous loss-of-coolant accident. 
The structures of ALS are very important system to nuclear power 
plants safety not only during operation, but also when it is shutdown. 
The fuel is located in the pools of ALS during shutdown. The unloading 
of the fuel after shutting down the reactor takes several years. 
Therefore, for the reliability of the analysis of these structures, 
deterministic and probabilistic methodologies of the structural integrity 
analysis were used. 

The finite element method is used for deterministic strength analysis 
of the reinforced concrete structures. The deterministic finite element 
software NEPTUNE [23] was used here for structural integrity analysis. 
This software can analyze the transient structural response of the 
concrete and steel structures, which undergo large displacements and 
non-linear material response in case of transient loading, including 
object impact onto the structures. 

The ProFES [24] software was used for the probabilistic analysis of 
structural failure. ProFES is a probabilistic analysis system that allows 
performing probabilistic finite element analysis in a 3D environment 
that is similar to modern deterministic finite element analysis. 
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