INELASTICITY

VARIANTS OF THE THEORY

V. S. BONDAR

Dedicated to Aleksei Antonovich Ilyushin and Valentin Valentinovich Novozhilov, the distinguished mechanical scientists of our times
The simplest applied variants of the inelasticity theory that can be used to investigate the laws governing deformation and destruction of a material subjected to complex nonisothermal loading as well as to calculate the kinetics of the stressed-strained state and to predict the resource of light-parameters constructions are presented.

The book is intended for specialists of design organizations, scientific-research institutes, as well as for post-graduates and students dealing with computations and investigations of high-loaded structures.
TABLE OF CONTENTS

INTRODUCTION 1

PART 1. ELASTICITY

CHAPTER 1
THEORY OF STRESSES AND STRAINS
 1.1. Stress Tensor and Its Invariants 7
 1.2. Stress Deviator and Its Invariants 9
 1.3. Strain Tensor and Its Invariants 11
 1.4. Strain Deviator and Its Invariants 12

CHAPTER 2
VECTOR REPRESENTATION OF STRESSES AND STRAINS
 2.1. Stress Vector 15
 2.2. Strain Vector 16
 2.3. Vector and Scalar Properties 17

CHAPTER 3
THERMOELASTICITY
 3.1. Stress–Strain Relationships 21
 3.2. Matrix Representation of Stress–Strain Relationships 22
 3.3. Stress–Strain Rates Relationships 28
 3.4. Matrix Representation of Stress–Strain Rates Relationships 29

PART 2. PLASTICITY

CHAPTER 1
THEORY OF PLASTIC DEFORMATION
 1.1. Basic Principles and Equations 39
 1.2. Material Functions 42
 1.3. Relationship between the Plastic Strain Theory and the General Theories of Plasticity 44
 1.4. Matrix Representation of the Equations of the Theory 47
 1.5. Equations of the Theory in the Case of Generalized Plane State 49
 1.6. Equations of the Theory in the Case of Uniaxial Stressed State 52
 1.7. Low-Cycle Fatigue Criteria in Uniaxial Stressed State 54
 1.8. Computational-Experimental Method of Determining Material Functions 57
 1.9. Material Functions of Some Structural Steels and Alloys 63
CHAPTER 2
THEORY OF PLASTIC DEFORMATION OF MATERIALS SENSITIVE TO THE TYPE OF STRESSED STATE
2.1. Basic Principles and Equations of the Theory 67
2.2. Material Functions and the Method of Determining Them 71
2.3. Matrix Representation of the Equations of the Theory 74
2.4. Equations of the Theory in the Case of Generalized Plane State

CHAPTER 3
THEORY OF PLASTIC DEFORMATION OF EXTRA HARDENING MATERIALS
3.1. Basic Principles and Equations of the Theory 79
3.2. Computational-Experimental Method of Determining Material Functions 83
3.3. Matrix Representation of the Equations of the Theory 87

CHAPTER 4
THEORIES OF PLASTIC DEFORMATION UNDER NONISOTHERMAL LOADING AND IONIZING RADIATION CONDITIONS
4.1. Equations of the Variants of the Theories 89
4.2. Material Functions and the Method of Determining Them 92
4.3. Material Functions of Some Structural Steels and Alloys 95
4.4. Matrix Representation of the Equations of the Variants of the Theories 95
4.5. Equations of the Theory in the Case of Generalized Plane State 99

CHAPTER 5
THEORY OF PLASTIC DEFORMATION ON CYCLIC LOADINGS
5.1. Basic Principles and Equations of the Theory 107
5.2. Computational-Experimental Method of Determining Material Functions 112

PART 3. INELASTICITY
CHAPTER 1
THEORY OF INELASTIC DEFORMATION
1.1. Basic Principles and Equations 119
1.2. Material Functions 123
1.3. Relationship between the Theory of Inelastic Strain and General Theories 126
1.4. Matrix Representation of the Equations of the Theory 129
1.5. Equations of the Theory in the Case of Generalized Plane State 132
1.6. Equations of the Theory in the Case of Uniaxial Stressed State 135
1.7. Criteria of Long-Term Strength in Uniaxial Stressed State 136
1.8. Computational-Experimental Method of Determining Material Functions 146

CHAPTER 2
THEORY OF INELASTIC DEFORMATION OF STRESSED STATE-SENSITIVE MATERIALS
2.1. Basic Principles and Equations 155
2.2. Material Functions and the Method of Determining Them 160

CHAPTER 3
THEORIES OF INELASTIC DEFORMATION UNDER THE CONDITIONS OF NONISOTHERMAL LOADING AND IONIZING RADIATION
3.1. Equations of the Variants of the Theories 163
3.2. Material Functions and the Method of Determining Them 166
3.3. Material Functions of Some Structural Steels and Alloys 169
3.4. Matrix Representation of the Equations for the Variants of Theories 170
3.5. Equations of the Theory of Inelastic Deformation in the Case of Generalized Plane State 174

REFERENCES 185
INTRODUCTION

The problems of reliable functioning of the contemporary technological constructions, operating under the conditions of high-level power and temperature loadings, and of reduction of the amount of materials required per unit of output of them makes the problem of mathematical modeling of their inelastic behavior and failure extremely urgent. The increase of the working parameters of modern machines and devices leads to an increase in both the general and local strength of constructions. Real processes of loading such constructions lead to development of inelastic (viscoplastic) deformations in their material. The loading itself is a complex nonisothermal process, and the character of its change can be most arbitrary under the conditions of recurrence and duration of the effect of the thermal and force loadings and of ionizing radiation.

The currently used theories of plasticity, creep, and inelasticity generalized to nonisothermal loading can lead to reliable results only under restricted conditions, i.e., under loadings close to simple and stationary ones. Separate consideration of the processes of plasticity, creep, and damage accumulation without account for their mutual influence is practically typical of all the theories applied in calculations. Such important aspects that influence damage accumulation as embrittlement and healing are practically not considered. All the aforesaid substantially limits the fields of application of the theories of plasticity, creep, and of the kinetic equations of damage accumulation (failure criteria) used in calculations.

At the present time, the theory of inelasticity has been developed [1–3] which results from the generalization and evolution of the ideas contained in different variants of the theories of plasticity, creep, and inelasticity based on the concept of microstresses which was put forward by V. V. Novozhilov and his school [4–6]. The theory of inelasticity belongs to the class of single-surface theories of flow with combined hardening. The validity of the developed theory of inelasticity was justified in [3, 7–15] on a wide spectrum of structural materials (steels and alloys) and various programs of experimental investigations. Comparisons of calculations carried out according to various theories of plasticity, creep, and
inelasticity have shown that the results obtained with the use of the developed theory of inelasticity correspond best to experimental data. Based on the above-mentioned studies, the conclusion has been drawn that the developed theory of inelasticity can be used in practical calculations of inelastic behavior of the materials of constructions and damage accumulation in them in an arbitrary process of complex nonisothermal loading, and that based on this theory one can carry out a reliable prediction of the service life of high-parameters structure materials under recurrent and prolonged effect of thermal power loadings and ionizing radiation.

The range of application of the theory of inelasticity is limited by small strains of homogeneous and initially isotropic metals at temperatures, when there are no phase transformations, and deformation rates, when dynamic effects can be neglected.

Worthy of note are some of the characteristic features of the developed theory of inelasticity:

- deformation has both an elastic and inelastic components (there is no conditional division of inelastic deformation into plastic deformation and creep);
- the loading surface can be displaced, expanded or narrowed and can change shape;
- the trinomial structure of the equations for loading surface displacement stipulates the removal of limitations on the trajectories of complex loading;
- the kinetic equations of damage accumulation are based on the energy principle with account for the processes of embrittlement and healing;
- the equations of inelastic behavior and damage accumulation are interconnected, i.e., a damage influences the behavior, and the history of loading affects the process of damage;
- inelastic behavior and failure can depend on the type of stressed state;
- in the case of complex (disproportionate) cyclic loading an extra isotropic hardening is possible;
- analytical integration of the inelasticity theory equations for elementary stationary loading regimes leads to the well-known criteria of low-cycle and long-term strength;
- the processing of experimental curves which is not connected with determination of yield stress and other quantities with any allow-
ances serves as a basis of the experimental-computational method of determining the material functions of the inelasticity theory;
• standard testings of a material for low-cycle and long-term strength, and also for deformation under the conditions of plasticity and creep are the basic experiments underlying the experimental-computational method.

The present book sets out the simplest applied variants of the inelasticity theory which can be used in researching the laws governing deformation and destruction of a material on complex nonisothermal loading, in calculating the kinetics of a stressed-strained state and predicting the service-time of high-parameter structures.

The author would like to express his gratitude to Professors R.A. Vasin, Yu.I. Kadashevich, and I.A. Kiiko for their valuable advices and remarks made during the preparation of this monograph.

The author will be grateful to all who would send their advices and remarks to the address given below:

38 Bolshaya Semenovskaya Str., Moscow, 107023, Russia
MGTU (Moscow State Technical University) "MAMI"
The Engineering Mechanics Department
E-mail: tm@mami.ru
PART 1

ELASTICITY
CHAPTER 1

THEORY OF STRESSES AND STRAINS

1.1. Stress Tensor and Its Invariants

An element of a solid is chosen to describe the stressed state at a point of the solid. This element is represented as a rectangular parallelepiped the three edges of which do match with the coordinate axes (Fig. 1.1) [16, 17]. This is the way in which the stressed state at a point of a solid is determined by a symmetrical tensor of the 2nd order:

\[
T_\sigma = \begin{pmatrix}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{pmatrix} = \sigma_{ij}, \quad (i, j = 1, 2, 3). \quad (1.1)
\]

According to the pairing law of the tangential stresses

\[
\sigma_{ij} = \sigma_{ji} \quad (i, j = 1, 2, 3; \ i \neq j). \quad (1.2)
\]

The stress tensor has the following invariants:

\[
I_1(T_\sigma) = \sigma_{ii}, \quad (1.3)
\]

\[
I_2(T_\sigma) = \frac{1}{2} \sigma_{ij} \sigma_{ij} - \frac{1}{2} (\sigma_{kk})^2, \quad (1.4)
\]

\[
I_3(T_\sigma) = \frac{1}{3} \sigma_{ij} \sigma_{jk} \sigma_{ki} - \frac{1}{2} \sigma_{ij} \sigma_{ii} (\sigma_{kk}) + \frac{1}{6} (\sigma_{kk})^3. \quad (1.5)
\]

Here and below, the same indices in the monomial point to summation over all the values of these indices.

Based on Eqs. (1.3)–(1.5), the following expressions can be obtained for the invariants of the stress tensor:

\[
I_1(T_\sigma) = \sigma_{11} + \sigma_{22} + \sigma_{33}, \quad (1.6)
\]

7
Three different cases of loading a thin-walled tubular model are considered as an example: by an axial force (P tests), by a torsional moment (M tests), and by an axial force, torsional moment, and inner pressure simultaneously (P, M, and q tests). In the first two cases, uniaxial stretching (compression) and torsion are realized, and a generalized plane state is realized in the third case. For all the three cases, the stress tensor and its invariants have the following form (axis 1 is directed along the specimen axis):

1) uniaxial stretching (compression)

\[
I_1\left(T_\sigma\right) = \sigma_{11}, \quad I_2\left(T_\sigma\right) = 0, \quad I_3\left(T_\sigma\right) = 0,
\]

\[
T_\sigma = \begin{bmatrix} \sigma_{11} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},
\]

\[
I_1\left(T_\sigma\right) = \sigma_{11}, \quad I_2\left(T_\sigma\right) = 0, \quad I_3\left(T_\sigma\right) = 0.
\] (1.9) (1.10)

2) torsion

\[
T_\sigma = \begin{bmatrix} 0 & \sigma_{12} & 0 \\ \sigma_{21} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},
\]

\[
I_1\left(T_\sigma\right) = 0, \quad I_2\left(T_\sigma\right) = \sigma_{12}^2, \quad I_3\left(T_\sigma\right) = 0.
\] (1.11) (1.12)
3) generalized plane state

\[
T_\sigma = \begin{pmatrix}
\sigma_{11} & \sigma_{12} & 0 \\
\sigma_{21} & \sigma_{22} & 0 \\
0 & 0 & \sigma_{33}
\end{pmatrix},
\]

(1.13)

\[
I_1(T_\sigma) = \sigma_{11} + \sigma_{22} + \sigma_{33},
\]

\[
I_2(T_\sigma) = -\sigma_{11}\sigma_{22} + \sigma_{22}\sigma_{33} - \sigma_{33}\sigma_{11} + \sigma_{12}^2,
\]

\[
I_3(T_\sigma) = \sigma_{11}\sigma_{22}\sigma_{33} - \sigma_{33}\sigma_{12}^2.
\]

1.2. Stress Deviator and Its Invariants

The stress tensor \(T_\sigma\) can be represented as a sum of two tensors: the spherical tensor \(T_\delta\) and stress deviator \(D_\sigma\) [16, 17]:

\[
T_\sigma = T_\delta + D_\sigma = \begin{pmatrix}
\sigma_o & 0 & 0 \\
0 & \sigma_o & 0 \\
0 & 0 & \sigma_o
\end{pmatrix} + \begin{pmatrix}
s_{11} & s_{12} & s_{13} \\
s_{21} & s_{22} & s_{23} \\
s_{31} & s_{32} & s_{33}
\end{pmatrix} = \sigma_o \delta_{ij} + s_{ij}.
\]

(1.15)

Here \(\delta_{ij}\) is the Kronecker symbol (\(\delta_{ij} = 1\) at \(i = j\), \(\delta_{ij} = 0\) at \(i \neq j\)), \(\sigma_o = \frac{1}{3}\sigma_{ii}\) is the mean stress, and \(s_{ij}\) is the stress deviator component.

Thus, the stress deviator components are defined by

\[
s_{ij} = \sigma_{ij} - \sigma_o \delta_{ij}.
\]

(1.16)

The stress deviator \(D_\sigma\) has the following invariants:

\[
I_1(D_\sigma) = s_{ii} = 0,
\]

(1.17)

\[
I_2(D_\sigma) = \frac{1}{2}s_{ij}s_{ij},
\]

(1.18)

\[
I_3(D_\sigma) = \frac{1}{3}s_{ij}s_{jk}s_{ki}.
\]

(1.19)

or, expanding Eqs. (1.18) and (1.19), one can obtain the following expressions for the 2nd and 3rd stress deviator invariants:

\[
I_2(D_\sigma) = \frac{1}{2}(s_{11}^2 + s_{22}^2 + s_{33}^2) + s_{12}^2 + s_{23}^2 + s_{31}^2,
\]

(1.20)
REFERENCES

