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PREFACE

Beginning with the monograph of Hewitt and Taylor (1970), about a dozen
books dedicated to liquid film flows have been published around the world in the
last quarter century. Many of them were issued in the USSR: Vorontsov,
Tananayko (1972), Gimbutis (1988), Kholpanov, Shkadov (1990) etc.
Hydrodynamics and the processes of transfer in films constitute a rather small
part of the field of mechanics. Nevertheless, the interest in moving films is rather
great due to the distinguishing properties of the films and their broad application
in technics. The strong influence of both viscosity and surface forces is a
peculiarity of thin films: The interaction of inertial, viscous and capillary forces
results in flow instability and the emergence of nonlinear waves that strongly
influence the heat-mass transfer. The description of nonlinear wave formation
and its influence on the transfer processes is one of the basic problems of liquid
film mechanics. It should be noted that due to the variety of the observed
physical phenomena, the results of thin film flow study are of great interest not
only for liquid film mechanics, but also for more general scientific disciplines
such as wave theory, multiphasc media mechanics, and heat-mass transfer
theory.

The principal goal of this book is the generalization of existing knowledge on
the wave motion of gravitational thin liquid films and on the processes of transfer
in the wave regimes of a flow. This is the only book that is expressly dedicated to
wave phenomena in films. The greater part of the material is based on the works
of the authors of the present publication which were carried out during 1970-
1990.
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NOMENCLATURE

- thermal diffusivity, m?/s (see, 13.3)
- dimensionless amplitude of perturbation  (see, 6.5, 13.1.2, 13.5)
- characteristic length scale for standing (see, 10.2)
waves, m
- constant, 1/s (see, 14)
min - Wave amplitude, m
- initial dimensionless amplitude
of perturbation
- asymptotic value of dimensionless
amplitude
- maximum value of dimensionless
amplitude
' - hy - amplitude of localized perturbations, m  (see, 9)
 ax - Pres - amplitude, m (see, 8)
- dimensionless amplitude of soliton
- dimensionless amplitude of the first
harmonic

h

h min . amplitude

'max

" hmax+hrnin

- coefficient of wave thermal diffusivity,
m?/s
- coefficient of turbulent thermal diffusivity,
m?/s
- area of phase velocity profile, m?/s (see, 6.2; 6.4)



VII NOMENCLATURE

- amplitude of cross velocity perturbation,
m/s
- intermediate expression
- integration constant
max - amplitude, m
ctg ® / Re - dimensionless parameter
24 =hyyay - Pegint + Pimin2) / 2 - amplitude, m

<A> - average amplitude of large waves, m
A= v (hmm’l + P2 )/ 2 dimensionless
<h>
amplitude
A=(hypy — by )/<h > - dimensionless
amplitude
A, - integration constant, m?/s?
AA - distance between real and imaginary
" . _images of mark-particle on photographic
. film,m -
b " - interelectrode distance, m
. - constant
- parameter, m3/s
B=Re3/ W - dimensionless parameter
B - intermediate expression” ¢
c -.phase velocity, m/s
- phase velocity related to #,
- phase velocity related to g / <h >
- dimensionless phase velocity
¢, - group*velocity, m/s
- group velocity related to u,,
Cm - extreme value of phase velocity, m/s
Conax - maximum value of phase velocity, m/s
¢ - imaginary part of dimensionless
) complex velocity
c, - real part of dimensionless complex
velocity
¢,,c, -components of the vector of phase wave
velocity
(o - velocity of kinematic wave which is
equal to 3u,, m/s

- dimensionless velocity of kinematic
wave which is equal to 3
- velocity of gravitational wave on

(see, 6.6)
(see, 6.8.4; 6.9)
(see, 6.11)

(see, 6.11; 10.2)
(see, 11)
(see, 11)

(see, 3)
(see, 13.3)
(see, 14)

(see, 6.8.4)

- (see, 6.8 -6.12)

(see, 13.1.2)
(see, 6.5)

(see, 6.11)

(see, 6.11)



a shallow water which is equal to

Jﬁ;, m/s

¢, ¢,  -dimensionless velocities of inertial waves

E=ch /E - dimensionless phase velocity ,,

c* - dimensionless velocity of soliton
T = c/u, - dimensionless phase velocity
€ =¢/U - dimensionless phase velocity
Cy =Cq[uy - dimensionless group velocity
() - capacitance, F
- concentration, mol/m3
- integration constant, m?2/s2
- velocity of shock wave, m/s
- concentration, kg/m3
- concentration, kg/kg
Cj - intermediate coefficients, (f =2,...,9)
Cr =2ty / pUZ - shear stress coefficient
C, - mean flow rate concentration at a
distance L, kg/m?3
Cp - specific heat, J/(kg-K)
Cg - concentration on a free surface, kg/m3
Cw - concentration near the wall, kg/m3
Cy - concentration within volume, mol/m3
- concentration within volume, kg/m3
C, - concentration far from the wall, kg/m3
é‘.]- - crosscorrelation function, m?
Co=Q/liv - dimensionless parameter, Reynolds
number analogue
d - electrode diameter, m
- cylinder diameter, m
- constant,
- layer thickness behind a jump, m
D - diffusion coefficient, m?/s
- intermediate expression
E - intermediate expression
f - function
- frequency, Hz
S - frequency of feed current of the
i-th sensor, Hz
Af - difference in frequencies of currents

feeding two different sensors, Hz

(see, 6.3; 14)

(see, 12)

(see, 3.1.5)
(see, 3.3.4)
(see, 6.1)
(see, 6.4)

(see, 13.3)

(see, 13.1)
(see, 13.1)

(see, 3.3.4)

(see, 3)
(see, 8.1)
(see, 13.3)
(see, 14)

(see, 6.8.4)

(see, 1,4,13.1.2)



X NOMENCLATURE

f (k) - function of thickness probability density, 1/m
F = (Fi/sn®)"!" - modified film number

F(h) - function of probability distribution

Fs=F W5 _ modified film number

Fy - initial distribution of phase velocity, m/s
Fi=o?/p3gv* - film number (Kapitza number)
Fi=o/plgv} - film number for a "liquid-liquid" system
Fo=2L/3h,Pe;, -Fouriernumber (see, 13.2)

Fr =u2[ghycos® - Froude number

g - free fall acceleration, m/s?
g; - projection of gravity acceleration
onto the axis x; , m/s?
G, - function in the solution of Burgers
equation, m?/s
G = gh3sin®/gv - Galilei number determined
by the averaged values
G - irrigation density, kg/(m-s) (see, 13.3)

Ga=gh3 si'n®/v2 =3Re - Galilei number
Ga; = gI*sin®/v? - Galilei number

h - thickness of liquid film, m .
- dimensionless thickness related to A, (see, 6.8-6.12)
- film thickness related to </ > (see, 13.1.2)

h; - initial thickness of film, m

hy - film thickness by Nusselt, m
- unperturbed thickness, m

- film thickness by Nusselt related to <A >  (see, 13.1.2)

Ao - maximum thickness, m
Ain - minimum thickness, m
Ay - calculated thickness (by Nusselt)
on the cone atx =0, m (see, 5.4.2)
- calculated thickness (by Nusselt)
on the cylinder and sphere at ® = %, m (see, 5.4.3-5.4.5)
- calculated thickness (by Nusselt)
in the absence of shear stress, m (see, 12)
J<h> - average thickness, m
h - thickness averaged over the wave
length, m
AR - deviation of average thickness

from unperturbed value, m



h' - thickness of perturbed layer
("steps" or solitary perturbation), m

h* - dimensionless thickness

h, - thickness of radial film at r = r,, m

h= h/k - dimensionless thickness

H= % - dimensionless perturbation of film
thickness
H=nh/h, -dimensionless film thickness (see, 5.3)
H=h/1, -dimensionless film thickness (see, 5.4.1)
H=nh/hy, -dimensionless film thickness (see,5.42-54.5)
H;=h;/ hy - dimensionless initial thickness (see, 5.3)
H;=h;/1;, ofafilm (see, 5.4.1)
H;=h;/ hy, (see, 5.4.2-545)
Hy(E) - stationary periodic solution
i - number of primary dimensionalities (see, 1)
- number of pulses in a train (see, 3)
- imaginary unit
I - electric current, A
1, - diffusion current, A
Jj - density of mass flux, kg/(m?-s)
Jj= (ZT(?) - dimensionless density of mass flux  (see, 13.1.2)
Y=0
Jo - unperturbed value of mass flux density
J,Jo - intensity of passed and incident radiation, W/m2
k=2n/)\ -wave number, m-! (see, 6.1; 6.3; 6.6, 6.7)
k = 2mh, / A - dimensionless wave number,
modulus of wave vector (see, 6.9)
k - dimensionless x-component of
the wave number (sce, 6.5)
E - wave vector, m-!

k.

]

- imaginary part of dimensionless
complex wave number .
k,=2mn /A, -extreme value of the wave
number, 1/m ' (see, 6.1)
- wave number of maximum growth
waves, 1/m
- wave number of maximum growth waves

i

related to A}’ : (see, 6.8)
- minimum value of the wave number



X1 NOMENCLATURE

ky - wave number of neutral perturbations, 1/m (see, 6.6)
- dimensionless wave number of
neutral perturbations
k, - real part of dimensionless complex

of wave number

kg - dimensionless wave number

k., k, -components of wave vector

k. n - x-component of the wave vector
of neutral perturbations

k,, k, - wave numbers of neutral perturbations, 1/m
- k=2mn<h >/A - wave number measured experimentally
I;c, - critical wave number measured experimentally
q ln Cs —Co
L Cs-C,
- - proportionality factor (see, 3)
- curvature, m'! :
K, - theoretical value of mass transfer
coefficient, m/s
Ka=7,|d|/Cp -modified Kutateladze criterion
of phase transition .
l= (3v2/ g)l/ 3. length scale, m
l - longitudinal scale of wavelength order, m
= (xh3)"* - length scale, m

K= - mass transfer coefficient, m/s
K

(=]

L - film path length, m

L, - linear operator

L, - length of initial film region, m

Lfn - length of thermal initial region, m

Lt - dimensionless length

L, - length of smooth region on the film, m

L=1L/hy -dimensionless film length
Lu=a/D -Lewis number
m - maximum number of determining similarity
criteria (see, 1)
- z-component of dimensionless wave number (see, 6.5)
- dimensionless specific flow rate

in the z-direction (see, 6.12)
n - relative refractive index
n= 9—“—5& - coefficient (see, 13.1)

0
7} - unit normal vector



n; - i-th component of unit normal vector

N - magnification factor (see, 3.2.6)
- amplitude of interface perturbation, m
Nu - Nusselt number

Nu* = (;—h- - Nusselt number
T

<Nu*>== 0;‘> ko average Nusselt number

T

a [ v? v .
Nu, — - modified Nusselt number

Arl g
- - Nusselt number for isothermal absorption
P - pressure, Pa
- dimensionless pressure (or pressure
perturbation) (see, 6.5)
- pressure perturbation, Pa or
dimensionless (sce, 6.8; 6.9)
- pressure related to pgh, (see 6.10-6.12)
- parameter (integer) (see, 8.3)
- dimensionless function (see, 13.1.2)
) - pressure perturbation in the
o-th medium, Pa
P - unperturbed pressure, Pa or dimensionless
p® - i-th approximation for pressure
(i=0,1,.)
P - unperturbed dimensionless pressure
P, - atmospheric pressure, Pa
- unperturbed pressure at medium
interface, Pa (see, 6.6 -6.7)
Pe =g /a - Peclet number
Pe, =g/ D -diffusion Peclet number
Pr=v/a - Prandtl number

P - total pressure, Pa
P, - total pressure in the a-th medium, Pa
q - specific flow rate per wnit of film width, m?/s
- specific flow rate related to g, (see, 6.10- 6.12)

9 - specific flow rate in a smooth laminar

film, m?/s
q - specific flow rate average with

respect to wavelength

<q> -mean flow rate, m?/s



XIV  NOMENCLATURE

gr ~ -density of heat flux, W/m?
dps . -density-of heat flux on-a free surface, Wim?
drw - density of heat flux at the wall, W/m?
Q - volumetric liquid flow ‘rate; m3/s
- dimensionless pérturbation of speclﬁc
flow: rate related to'gy -
- parameter
r - radms-vector modulus m
¥
r a.
ry ne-wd
r - Jump radlus m
ry - coordinate of the point, where. & =/, m
r - dimensionless radial coordinate
A - dimensionless jump radius
R

- curvature radius, m

- maximum radius of cone, m
- radiu§ of cylindrical or spherical surface m-
R=R/hy, -dimensionless radius .
Re =q/v=hgu,/v -Reynolds number
Re =Q/2nRv - film Reynolds number at convergent
cone and sphere
Re =A/2v - effective Re number for the Burgers

equation
Re =hy,U/v; - Renumber fora "llquld-hqmd" system
Re - critical Re number of transition to

turbulent regime

Rel, - critical Re number according to linear theory

Re;=4q /v - Reynolds number determined by
hydraunlic film diameter

Re,=Q/vr -local Re number

Re,, - Reynolds number determined by the
thickness of residual layer

Rey, - critical Reynolds number of wave formation

Re . =xU/v - Reynolds number

Re=7/v - Reynolds number

Re* - critical Re number of standing wave
formation

Re' - Reynolds number for a step, solitary

- (see, 6.11,6.12)

(see, 8.3)
(see, 6.12)
(see, 8.3)

(see, 5.4.2)
‘(see; 5.43.-5.4.5)



perturbation
s - area, m?
S = ,/3ctg ®/Re - dimensionless velocity of
gravitational waves (see, 6.11)
- dimensionless parameter (see, 10.2)
- critical value of parameter S
S= S',-,- - spectral density normalized for
the second central momentum

S
S#

S',-j - spectral density of thickness
pulsations, m?/Hz
Sc=v/D - Schmidi number .
Sc, - turbulent Schmidt number
Sh=BL/D - Sherwood number
Sh, - theoretical value of Sherwood number
Shl = Kh,/ D - Sherwood number
Shi - theoretical value of Sherwood number
Sh, - Sherwood number for isothermal
absorption
Sh,=pr /D - Sherwood number
Sh, = _;(B*C} - Sherwood number
CW - CO ay y=0

<Sh* >=<B>h/D - average Sherwood number
t - temperature, °C (see, 13.1.1)

-time, s

- dimensionless time (see, 6.5,6.8-6.12,

12, 13.1.2)

At - time interval, s
t - time, s
t =tuy/hy - dimensionless time
T - wave period, s (see, 13.1)

- absolute temperature, K (see, 13.3)
T, - initial temperature, K
Ty - temperature at the wall, K
T, - mean mass temperature, K
Ty - temperature near the free surface
T - unit tangential vector
T; - the i-th component of unit tangential vector
u - longitudinal velocity component, m/s

- longitudinal velocity related to u, (see, 6.10 - 6.12)



XVI  NOMENCLATURE

- perturbation of longitudinal velocity,

m/s or dimensionless (see, 6.9)
- perturbation of longitudinal velocity (see, 6.5)
Uppax - maximum velocity, m/s
Upes - average velocity of residual layer, m/s
uy = ght /3v - average velocity of laminar
film by Nusselt, m/s
u, - mean flow rate velocity, m/s (see, 14)
u; - the i-th component of velocity vector, m/s  (see, 4, 6.1)
- dimensionless i-th component
(or perturbation) of velocity (see, 6.5)
Uy, Uy, u; - dimensionless velocities in a film,
the boundary layer of external medium,
outside the boundary layer, respectively (see, 12)
u® - the i-th approximation
u - unperturbed longitudinal velocity,
m/s or dimensionless
U, - perturbation of longitudinal velosity in the
o-th medium, m/s (see, 6.6, 6.7)
U - velocity at the film surface, m/s |
- velocity at the surface relatedto g/ <h > (see, 13.1.2)
- velocity at the surface related to u,, (see, 6.10-6.11)
- velocity outside the boundary layer (see, 13.2)
- dimensionless unperturbed longitudinal
velocity component (see, 6.5)
Uy = gh?/2v - surface velocity of laminar
vertical film by Nusselt, m/s
Uy - jet velocity in the minimum cross-section, m/s
U; - unperturbed dimensionless i-th velocity
component (see, 6.4)
U, - part of longitudinal velocity
perturbation depending on y in the a-th
medium, m/s (see, 6.6, 6.7)
U, - unperturbed velocity of moving medium, m/s 3
ug - critical value of unperturbed velocity, m/s
<U> - average surface velocity, m/s
v - cross velocity component, m/s
- cross velocity related to eu,, (see, 6.9 -6.12)
v, - perturbation of cross velocity in the

a-th medium, m/s
o® - the i-th approximation



vV - potential difference, V
v, - part of cross velocity perturbation
depending on y in the a-th medium, m/s
w - z-component of velocity, m/s
- z-component of velocity related to u,
w® - the i-th approximation

W= c/ pgh?sin® - Weber number
We = c/ phyu? - Weber number
We = o/hyU?%p, - Weber number for a "liquid-
liquid" system
W=oh /3p6v - Weber number determined by
average values
x - longitudinal coordinate, m
- longitudinal coordinate related to A,
- longitudinal coordinate related to /;
- longitudinal coordinate related to A
- coordinate of mark-particle at the
i-th flash, m
- coordinate of film formation onset, m
- Cartesian coordinate, i =1, 2, 3, m
- dimensionless Cartesian coordinate
} Udg
oc-U
absorption problems
- dimenstonless coordinate of maximum
points of augmentation factor
n=1,2,..)
X, X,, X, - lengths of regions of laminar, wave,
turbulent flow regimes, m
Ax - width of shock wave front, m
X =« / a - dimensionless coordinate for standing waves
¥ = x / h, - dimensionless longitudinal coordinate
X - point coordinate at the x-axis, m
X=x/h, -dimensionless coordinate
X=x/1, -dimensionless coordinate
X=x/L -dimensionless coordinate
Yy - cross coordinate, m
- distance from the wall, m
- dimensionless cross coordinate
- dimensionless cross coordinate
related to A,

-

- characteristic distance in

x1=

(see, 6.9, 6.12)

(see, 12)

(sce, 6.8 -6.12)
(see, 12)
(see, 13.12)

(see, 3.2.6)
(see, 5.4)

(see, 6.1)
(see, 6.5)

(see, 13.1.2)

(see, 13.1.2)
(see, 13.5)

(see, 6.10.2)
(see, 6.12, 10.2)
(see, 5.3)

(see, 54.1)
(see, 5.4.2)
(see, 6.5)

(see, 6.8 -6.12, 12)



XVIH NOMENCLATURE

Y. - cross dimensionless coordinate
of critical layer
Y; - cross coordinate of mark-partlcle

at the i-th flash, m

¥ = y/ a - dimensionless coordinate for standing waves

Yo - dimensionless characteristics of crest shape

of standing waves
Y - cross coordinate related to </ >
- part of potential ¢ depending on y, m?/s
- integration constant, m?/s
z - number of independent dimensional
constants
- coordinate, m
- dimensionless coordinate related 10 [,
- coordinate in a cylindrical system
of coordinates, m

- dimensionless coordinate

5= 2
)
VA - point coordinate at the z-axis, m
a - heat transfer coefficient, W/(m?2-K)
- coefficient characterizing the velocity
profile
- parameter

o=—Ar a (TW —Tf) - heat transfer
oy 4y=0

coefficient, W/(m?-K)

a =gy /. (T, - Ts) - heat transfer coefficient,
Wi(m?K}

<a>  -average heat transfer coefficient,
W/(m2K)

a = heat transfer coefficient averaged over

wavelength, W/(m2-K)

o, - heat transfer in the absence of waves,
W/(m2K)

a, a,, o, - average coefficient of heat transfer
in the regions of laminar, wave and
turbulent flow regimes, W/(m?2-K)

(-o) - spatial increment related to 4’

- coefficient characterizing the velocity
profile
- coefficient, m3/s2

(see, 13.1.2)

(see, 1)
(see, 6.9, 6.12)

(see, 14)

(see, 4, 6.10, 6.11)
(see, 10.2)

(see, 13.4)

(see, 13.5)

(see, 6.11,7)

(see, 4, 6.10)
(see, 6.3)



- complex increment, 1/s
- time increment related to %, / A,
- mass transfer coefficient

B =j/(Cy— Cg)- mass transfer coefficient, m/s
p* - dimensionless'mass transfer coefficient
Y - specific electric conductivity, S/m
- coefficient characterizing the velocity
profile

- coefficient, m3/s
- modulus of dimensionless wave number
- dimensionless parameter

y=c,/ c - group to phase velocity ratio
r - electric conduction, S
Oy - thickness of diffusive layer, m
- thickness of diffusive layer related to < h >
S - thickness of thermal layer, m
8 - Kroneker symbol
2 2
= —57 + —62—2 + —5—2 - Laplacian, 1/m?
ox* oy° 0Oz
A - "supercritical state" parameter,

~ thickness of boundary layer, m
8(x) - delta-function, 1/m
) - constant
- scale of film thickness perturbation
- dimensionless thickness of boundary layer
- thickness of boundary layer, m

8°d - unperturbed thickness of diffusive layer
Sy - pulsation amplitude of diffusive layer
thickness

€ =hy /I, -long-wave parameter
ge=<h>/MA -long-wave parameter
€ - relative dielectric permeability
g, = 8.854:10-12 - electric constant, F/m
€=x/t -self-similar variable, m/s
n - perturbation of layer thickness, m
- boundary deviation from unperturbed
state, m
- self-similar coordinate
N =y / h - self-similar coordinate
n=Y/8, - self-similar coordinate

(see, 6.6)
(see, 6.11)

(see, 13.1)

(see, 3)

(see, 6.3)
(see, 6.5)
(see, 13.12)
(see, 10.2)
(see, 3)

(see, 13.1.2)

(see, 4)

(see, 6.11)

(see, 12)

(see, 6.4)

(see, 6.5)

(see, 6.8 -6.11)
(see, 12)

(see, 13.1.2)
(see, 3)

(see, 6.1, 6.3)

(see, 6.6, 6.7)
(see, 14)
(see, 4)

(see, 13.1.2)
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3

n= y(ﬂ] - self-similar coordinate (see, 13.2)
gvDx

n - amplitude of layer thickness perturbation, m

v = DL/R?U - contact time

® - angle of film flow inclination to horizon, rad
®= €=Cs . dimensionless concentration (see, 13.1.2)
Co—Cs
G - initial angle of film flow, rad
K - linear absorption coefficient, 1/m
A - wavelength, m
A, - extreme value of wavelength, m
Ap - heat conduction coefficient, W/(m-K)
A - length of a smooth region between waves, m
7] - dynamic viscosity, Pas
- ratio of dynamic viscosities (see, 12)
My, By - dynamic viscosity in a film and external
medium, respectively, Pa-s
R; - central moment
\% - kinematic viscosity, m2/s
- coefficient in the Burgers equation, m2/s (see, 6.4)
- ratio of kinematic viscosities (see, 12)
v;, vV, - kinematic viscosity of the first and second
media, m?%/s
g - independent variable, m (see, 6.4)
& = kx + mz - ot - dimensionless "travelling"
coordinate (see, 6.5)
& = x - ct - dimensionless "travelling" coordinate (see 6.11, 8, 13.11)
& - independent variable
IT, - part of pressure perturbation
depending on y in the a-th medium, N/m?
T - polynomial, 1/m?
p - density, kg/m3
- density ratio (see, 12)
P, - density of the a-th medium, kg/m3
c - surface tension, kg/s?
- dispersion parameter (see, 6.4)
G - stress tensor, N/m?
oy - mean root square deviation of large
wave amplitude, m
T - time interval, s (see, 11)

T=1ghy/ WU - dimensionless shear stress



at interface
1
=] dF’U - dimensionless drift time of liquid
0C—
particle along the surface
T - unit tangential vector
T; - the i-th component of unit tangential vector
Tg - shear stress at interface, N/m?

- shear stress at the solid wall, N/m?

Tw

<1ty > -mean shear stress at the wall, N/m?

\/1:"3 - RMS. of shear stress pulsations at the
wall, N/m?

¢ - velocity potential, m%/s

- function in the Cole-Hopf transformation
- part of cross velocity perturbation
depending on y
- angle of wave propagation relatively to the
x-axis, rad
- perturbation of periodic solution,
- phase
@=h —1 - dimensionless thickness deviation from
the average value
@ - part of stream function perturbation
depending on y in the i-th medium

(see, 12)

(see, 13.1.2)

(see, 6.1)
(see, 6.4)

(see, 6.5)
(see, 6.12, 10.2)

(see, 8.3)
(see, 13.1.2, 13.5)

(see, 6.10.2)

P - characteristic angle of wave crest shape,
degree
@ =9.648-10* - Faraday' constant, C/mol
- dimensionless function (see, 6.11)
D) - periogdic function
®y(&) - initial distribution of function ¢ (x, 1)
x - independent variable, m (see, 6.4)
x=PB/a? - coefficient characterizing the velocity
profile (see, 6.11.1)
g - perturbation of stream function, m?/s
or dimensionless (see, 6.8)
- part of pressure perturbation depending
ony (see, 6.5)
v - unperturbed value of stream function, m?/s
or dimensionless
y - the i-th approximation for the stream function
W; - perturbation of dimensionless stream function

in the i-th medium
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NOMENCLATURE

- stream function, m?/s

- dimensionless stream function

- angular frequency, rad/s

- dimensionless frequency

- complex frequency, rad/s

- complex frequency related to u, / h,

- imaginary part of dimensionless complex
frequency

- real part of dimensionless complex
frequency

(see, 13.2)

(see, 6.5)
(see, 6.7)
(see, 6.8, 6.9)



1

INTRODUCTION

1.1. Basic Concepts

A film flow is defined as a liquid layer falling down at least one free boundary
under the effect of gravity, shear stress etc. Liquid films have a number of
peculiarities. They are, therefore, assigned to a separate class of flows. First of
all one should note the small thickness (0.1 - 1 mm) of the films compared to the
characteristic sizes which are usually encountered in nature and pattens of
liquid flows. The typical range of Reynolds numbers is 1~ 10 , i.e. where the
effect of viscosity forces is almost always essential. On the other hand, the
presence of a free surface with comparable scales of the film thickness and
capillary constant means a strong influence of surface perturbations on a film
flow. For these reasons the mathematical description of the perturbed motion of
a liquid film even in the simplest statement is extremely complicated. An
essential simplification is, however, possible for long-wave perturbations when
the boundary layer approximation seems rather appropriate.

Figure 1.1 illustrates the typical geometry for some types of film flows. The
gravitational flow of a film over an inclined plane and the outer surface of a
vertical tube has been studied most frequently though surfaces of any profile,
including the rough ones, are encountered in practice. The cases of film falling
down the moving bodies, in particular, vibrating and rotating ones, are the most
complicated examples.

A combined flow of the liquid film and gas, i.e. two-phase (annular) flow, is
frequently realized in engineering. An annular flow is one of the flow patterns of
vapour-liquid mixture motion in a vapour generating channel. The relative
motion of phases results in the appearance of additional shear and normal
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Figure 1.1. Geometry of film flows: (a) - film falling down an inclined surface; (b) -
flow past a cylinder; (c) - film flow along the internal surface of a tube; (d) - falling
down a curvilinear surface; (¢) - flow along the internal surface of a cone; (f) - jet

spreading along the surface

stresses at the interface and affects essentially the structure of interface. In this
paper, however, primary attention will be given to the purely gravitational
motion of filmis.

A spatial film which represents a continuous layer of the liquid with two free
boundaries is the particular case of the films. In fact such film is a plane liquid
jet, in which the viscous effects are negligible due to the absence of a solid
surface. - . :

1.2. Waves

The flow instability giving rise to the appearance of nonlinear surface waves
even at the Reynolds numbers of the order of one is the characteristic feature of
the films. Visual observations reveal a great variety of wave patterns from linear
two-dimensional waves to strongly nonlinear three-dimensional soliton-like
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