INDEX

\mathbf{A}		F	
aftermarket	Ch 1	fanning friction factor	Ch 3
air cooled heat exchangers	Ch 2	fixtures and jaws	Ch 4
allotted space	Ch 4	flash devices	Ch 1
available pressure drop	Ch 4	flow boiling	Ch 3
В		fluid flow considerations	Ch 3
basic heat transfer conditions	Ch 3	fluidic connections	Ch 4
boundary condition		folded fin types	Ch 4
constant surface heat flux	Ch 3	formed tube cold plates	Ch 4
constant wall temperature	Ch 3	Fourier Law	Ch 3
special note	Ch 3	friction factor	
brazing	Ch 4	circular tube	Ch 3
C		rectangular channel	Ch 3
coatings	Ch 4	frictional pressure drop	Ch 3
cold plate		fully developed	
classification	Ch 4	flow	Ch 3
designs	Ch 3	laminar flow	Ch 3
mounting	Ch 4	G	
conduction heat transfer	Ch 3	geometric considerations	Ch 3
contraction and expansion loss coefficients	Ch 3	Н	
convection heat transfer	Ch 3	hazardous substances	Ch 4
convective heat transfer coefficients	Ch 3	heat distribution	Ch 4
conversion factors	A1-2	heat flux	Ch 3
customer requirements	Ch 4	heat transfer coefficient	Ch 3
D		high power	
decision tree	Ch 4	component cold plate	Ch 4
deep drilled cold plates	Ch 4	electronics cooling	Ch 1
design		I	
examples	Ch 4	IGBT	Ch 1
of cold plates	Ch 4	IGBTs	Ch 4
designing cold plates	Ch 4	industrial cold plates	Ch 2
developing flow	Ch 3	initial cold plate design	Ch 4
dissimilar metals	Ch 4	ITRS	Ch 1
dual inline memory modules, DIMM	Ch 1	L	
E		laminar	
effective thermal conductivity	Ch 3	developing flow	Ch 3
emissivity	Ch 3	fully developed flow	Ch 3
energy efficiency in cold plate	Ch 3	leakage current	Ch 1
epoxy bonding	Ch 4	LED cold plates	Ch 4

M		R	
machine		radiation heat transfer	Ch 3
programming	Ch 4	research on cold plates	Ch 2
tooling selection	Ch 4	S	
machined channel cold plates	Ch 4	SCR	Ch 1
machining processes	Ch 4	SCRs	Ch 4
manifolds in cold plates	Ch 4	single-phase heat transfer	Ch 3
manufacture of cold plates	Ch 4	soldering cold plates	Ch 4
manufacturing cold plates	Ch 4	steady-state heat transfer	Ch 3
material		surface finishing	Ch 4
properties in cold plate design	A3	T	
selection	Ch 4	temperature specifications	Ch 4
maximum temperature silicon devices	Ch 1	testing for function	Ch 4
microelectronics cooling	Ch 1	thermal	
		efficiency	Ch 3
Moore's Law	Ch 1	resistance	Ch 3
multichip conduction module (MCM)	Ch 2	resistance due to conduction	Ch 3
multicore processing	Ch 1	resistance due to convection	Ch 3
O		resistance in multiple mode	Ch 3
overclocking	Ch 1	thermofluid coefficient of performance	Ch 3
P		total heat load	Ch 4
packaging and shipping	Ch 4	transient heat transfer	Ch 3
pocket folded-fin cold plates	Ch 4	turbulent flow	Ch 3
Poiseuille number	Ch 3	U	
pool boiling	Ch 3	unnecessary dimensioning	Ch 4
power consumption	Ch 1	${f V}$	
pressure drop	Ch 3	volumetric flow rate	Ch 4
pressure drop in turbulent flow	Ch 3	W	
purpose-optimized graphic processing units	Ch 1	weight concerns	Ch 4
Q		welding	Ch 4
quality assurance	Ch 4	working fluids	Ch 1, Ch 4