PREFACE

The fundamentals of the theory of ill-posed problems, the regularization theory, were
developed in the 1950's-1960's by Soviet mathematicians A. N. Tikhonov,
V. K. Ivanov and M. M. Lavrentiev. Its rapid development in recent years, especially,
after publication of A. N. Tikhonov's fundamental articles [190, 191] can be attrib-
uted, first, to continuous expansion of the field of practical applications of the theory
and second, to substantial advances in computer science. The wide use of computa-
tional experiment which reduces not only the time but also the cost of research and
development has encouraged practical application of the ill-posed problem theory.
The computational experiment is of special importance in computerization of re-
search and design of structures in modern engineering. The problems of structural
and parametric identification of mathematical models often appear ill-posed. Ill-posed
problems frequently arise in data processing in physical experiments.

In recent years a number of theoretical monographs concerned with the theory of
ill-posed problems have been published [72, 90, 117, 122, 142, 187, 193, 196]. How-
ever, the monographs actually ignore one of the promising direction in the develop-
ment of the regularization theory which is widely used, in particular, when solving
thermophysical problem. That direction, which can be called "iterative regulariza-
tion", consists in the construction of regularizing algorithms on the basis of various
iterative methods, with an iteration number as the regularization parameter. Many
iterative methods, including gradient techniques, are rather resistant to errors in the
input data: in the initial iterations the produced approximations differ very little from
the corresponding approximations obtained with exact input data and the errors
gradually increase as the iteration number rises. Therefore, it is natural to try to get
stable approximations, by stopping the iterative process at a certain iteration number
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consistent with the error in the initial data. M. M. Lavrentiev was the first who used
the idea [116].

The simple iteration method is the most convenient for the analysis because it is
linear. With exact initial data, its convergence for equations with a continuous linear
operator, having no bounded inverse, has been proved by V. M. Friedman [208] who
also proved convergence for nonlinear gradient methods of the steepest descent type
[207]. B. A. Morozov [140] and A. B. Bakushinsky [40] have obtained complete
enough results on the regularizing properties of the simple iteration method. This
method was then analyzed in [42, 111, 171, 182, 183, 234, 235]. However, no spe-
cific ways were indicated in the publications for the choice of the regularization pa-
rameter (the iteration number). The residual criterion for choosing the regularization
parameter when the operator is exactly prescribed has been justified in [40, 83]. A
thechnique for the choice of the parameter, taking into consideration computational
errors, has been suggested and justified in [84). In [56, 57], techniques for choosing
the regularization parameter are considered by accounting errors in both the right-
hand side and the operator, in particular, a residual criterion and a generalized resid-
ual criterion, estimation of errors in corresponding regularization algorithms is given
and their optimality in order is shown. In [61] choice of the regularization parameter
based on the iterative process "stacking"” is justified when both errors in the operator
and the right-hand side and the computational errors are taken into account. It should
be noted that error estimates for regularizing algorithms were obtained under the as-
sumption of source-like representability of a desired solution that could be a strong
enough condition. For example, in boundary inverse heat conduction problems of
reconstructing the boundary condition of the first or second kind #(z) defined at the
interval [0, 7,,], the equality u(z,,) = 0 is the necessary condition for the source- like
representability of u(zr), i.e. at least u(z,,) must be known which is extremely rarely
occure in practice.

It is known that the gradient minimization methods of the steepest descent and
conjugate gradient types are more effective when solving well-posed problems com-
pared with the simple iteration method. However, investigation of applicability of the
methods to ill-posed problems is very difficult because of their nonlinearity even for
linear problems. Therefore gradient-based regularizing iterative algorithms for linear
operator equations have been obtained only recently. Convergence of the gradient
methods with exact initial data is analyzed in [68, 207, 228, 231]. Regularizing al-
gorithms built on their basis when errors in the operator and the right-hand side take
place, including the justification of the residual criterion and generalized residual
criterion, are considered in [24, 25, 69, 70, 169, 174, 175]. Publications [38, 39, 170]
deal with taking into account of apriori information on the unknown solution in the
regularizing gradient algorithms. A regularizing iterative algorithm besed on the
implicit iterative scheme is considered in [198].

It should be emphasized that the methods with a higher convergence rate, such
as the Newton methods, are invalid for iterative regularization since in a linear case
they are reduced to direct inversion of the operator in the initial equation, but in non-
linear problems they require inversion of the derivative of the operator that has no
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bounded inverse in ill-posed problems. Of course, this fact does not exclude applica-
tion of the Newton methods in other regularization forms, e.g., in that analyzed in
[41, 59] where regularization is performed by introducing appropriate additives into
the iterative algorithm itself.

The above studies concerned with iterative regularization were fundamental for
this branch of the theory of ill-posed problems. Consistent presentation of correspond-
ing results and their further development is the main goal of this book.

Whereas the iterative regularization of linear ill-posed problems has been stud-
ied at present fully enough, there are actually no publications devoted to nonlinear
problems; isolated results are presented in {92, 149]. Meanwhile, as it has been
shown by computational experiments, the iterative algorithms for nonlinear ill-posed
problems formally based on the same scheme as for the linear problems, appear to be
quite effective. The results encourage further investigations of iterative algorithms for
nonlinear inverse problems in a general case.

Great attention is paid in the book to the various computational aspects of itera-
tive regularization implementation, particularly, that associated with determination of
residual functional gradients, development of modified gradient algorithms for multi-
parametric problems, including those taking into consideration the qualitative and
quantitative apriori information on the unknown quantities.

The second goal of the book is application of the method developed to some ill-
posed thermal problems, namely, inverse heat transfer problems. Among them,
boundary and coefficient inverse heat conduction problems (IHCP) can be mentioned
primarily which certainly do not exhaust the sphere of applications of iterative regu-
larization. IHCPs have been chosen by two reasons. First, it is an important enough
class of the problems of mathematical physics that has recently become widely used
in some fields of science and technology such as mechanical engineering, aerospace
industry, power engineering, metallurgy, etc. Second, inverse heat conduction prob-
lems are diverse in forms and statements, ill-posedness degree, and, therefore, they
appear to be very convenient for testing the efficiency of methods and algorithms of
the regularization theory.

The methodology based on solving inverse problems is a new lead in the investi-
gation of heat and mass transfer processes, development and optimization of thermal
conditions of engineering objects and production processes. Rather high interest to
solution of these problems is induced by practical needs of including of nonstationary
and nonlinear effects in heat and mass transfer processes. These effects restrict es-
sentially the application of classical methods and necessitate the development of new
approaches, among which there are methods based on solving inverse heat and mass
transfer problems. Their main advantage is that they allow experiments to be con-
ducted in conditions maximally close to real ones, or directly during operation of real
objects. Besides, the new approach increases the informativeness, saves experimenta-
tion time compared with conventional methods. A reduction of the cost is an impor-
tant quality of the methods as well.

At present, to solve inverse heat transfer problems algorithms are extensively
developed on the basis of the variational technique for construction of regularizing
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operators, step regularization of approximate analytical and difference forms of solu-
tion and step regularization of linear filtration algorithms [2, 3, 5, 9, 51, 85, 105,
106, 112, 130, 131, 147, 151, 179, 195, 211, 214, 221). Now there is a large amount
of relevant publications. They are surveyed in {9, 106, 131]. The analysis of results of
computational experiments and practical applications of the above approaches to the
solution of inverse heat transfer problems in comparison with iterative regularization
has allowed a conclusion to be made that regularizing gradient algorithms are ex-
tremely advantageous for inverse problems of various forms and statements, includ-
ing nonlinear, multidimensional, overdefined ones, because of their simplicity and
versatility of algorithmic constructions. Their important strength is the ability to use
this approach for problems, whose statements include limitations on the class of ad-
missible solutions. This factor is of special importance since the quality of approxi-
mations to the desired solution of an ill-posed problem depends essentially on the
completeness of taking into consideration apriori information on that solution.

The accuracy of recovering characteristics from the inverse problem solution can
essentially depend on the experiment design, in particular, measurement design.
Therefore, of great importance is an optimal design of thermophysical experiments
that is closely related to the method of inverse problem solution.

In view of the above said, the authors have tried to consider systematically the
theoretical aspects of iterative regularization, to outline the ways of using this method
in solution of applied problems, to present iterative algorithms for solving inverse
heat transfer problems and the principles and algorithms for the design of thermo-
physical experiments.

Results given in the book were obtained by the authors. Section 1.6 was written
by M. V. Klibanov, D.Sc.(Math) and the authors wish to express their gratitude to
him. The structure and contents of the book can be inferred from the Contents List.
Chapters 1 and 4 were written by O. M. Alifanov, Chapters 2, 3, and Appendix, by
S. V. Rumyantsev, Chapters 5 and 6, by E. A. Artykhin.

Information for Readers. The following formula numbering system is adopted.
The ordinal numbers of formulas, tables, and figures are given by the second digit.
The first digit is the numbers of formulas refers to the Section number, in tables and
figures it indicates the chapter number. The theorems and lemmas are numbered by
one figure throughout each section, while referring to theorems and lemmas from
another section, double numbering is used (the first figure refers to the section num-
ber where the theorem or lemma is presented).





