NOMENCLATURE

a – thermal diffusivity, m²/s area of the undisturbed flow, m² A_{v} - reduced area, m² - maximum dimension of the oval profile of the rod, m d_{h} - hydraulic diameter, m - effective coefficient of diffusion - open area of the bundle, m² F_{rods} - total cross-sectional area of rods in the bundle, m^2 G,g – flow rate of the coolant, kg/s acceleration due to gravity, m/s2 i, h - enthalpy, J/kg I – momentum transfer, kg/(m²·s) l - diffusion length, m distinctive length, m - bundle porosity with respect to the coolant, m F/F_{rods} - flow rate of the coolant in the k-th cell, kg/s m_{ι} number of rods in the bundle p_k - pressure in the cell, N rem - root-mean-squere; s - rod spacing, m; T, t – temperature, K pitch of the wire wrapping, m u – flow velocity, m/s x - bundle length, m Q, q - heat flux, W/m² y_{kn} – width of the velocity profile, m

 α - heat transfer coefficient, W/(m²·K) β_{q} - coefficient of interchannel mixing β_{q} - coefficient of volumetric expansion δ_{kn} - characteristic momentum mixing length

 Δh - pressure difference on the Pitot tube, N

 ε_q , μ_q - thermal diffusivities, m/s

 ε_{r} , μ_{τ} - turbulent viscosities, m/s

 ε - blockage ratio of the flow area, $\varepsilon = A_n/A_c$

 φ – angle, °

 χ - shape factor

 λ - thermal conductivity of the coolant, W/(m·K)

ν - kinematics viscosity, m²/s

 Π_{k_n} - length of the gap in which the cells interact, m

 ρ – density, kg/m

 τ - shear stresses, N/m

 ξ - resistance coefficient of the bundle

 ψ - relative heat transfer coefficient

 ζ - resistance coefficient of the spacer grid

 Fr_m - dimensionless number, characterizing the intensity of the flow swirl in the bundle of rods with a wire wrapping (modified Froud number $\operatorname{Fr}_m = T^2/d_1d_h$)

Pr – Prandtl number (Pr = $\mu c_p/\lambda$)

Nu – Nusselt number (Nu = $\alpha d_{\nu}/\lambda$)

Ra – Rayliegh number (Ra = $g\beta \Delta t l^3/va$)

Re – Reynolds number (Re = ud_h/v)

Le – Lewis number (Le = $\rho c_n D_i / \lambda$)

St – Stanton number (St = $\alpha / c_p \rho u$)

Subscripts and superscripts

 ∞ – in the free flow

ad - adiabatic

b – bundle

c - calculated

ch - channel

cr - critical

en - entrance

ex - experiment

f – conditions as to the flow temperature

i – cell number

is - isolation conditions

j - surface number

k, n – between the cells k and n

lar – laminar

q – heat

r - rough

ran - random

rem - root-mean-squere

ss - self-similar

sg - spacer grid

sh - shell

sm - smooth

st - stabilization

syst - systematic

t – tube

ts - two-sided

w - conditions at the wall

 τ – friction

Abbreviations

DARS - Lithuanian abbreviation for calculation of gascooled reactors

FA – fuel assembly

MVL - maximum velocity line

N – normal

PMV - point of maximum velocity

PN - principal normal

SG - spacer grid