NOMENCLATURE a – thermal diffusivity, m²/s area of the undisturbed flow, m² A_{v} - reduced area, m² - maximum dimension of the oval profile of the rod, m d_{h} - hydraulic diameter, m - effective coefficient of diffusion - open area of the bundle, m² F_{rods} - total cross-sectional area of rods in the bundle, m^2 G,g – flow rate of the coolant, kg/s acceleration due to gravity, m/s2 i, h - enthalpy, J/kg I – momentum transfer, kg/(m²·s) l - diffusion length, m distinctive length, m - bundle porosity with respect to the coolant, m F/F_{rods} - flow rate of the coolant in the k-th cell, kg/s m_{ι} number of rods in the bundle p_k - pressure in the cell, N rem - root-mean-squere; s - rod spacing, m; T, t – temperature, K pitch of the wire wrapping, m u – flow velocity, m/s x - bundle length, m Q, q - heat flux, W/m² y_{kn} – width of the velocity profile, m α - heat transfer coefficient, W/(m²·K) β_{q} - coefficient of interchannel mixing β_{q} - coefficient of volumetric expansion δ_{kn} - characteristic momentum mixing length Δh - pressure difference on the Pitot tube, N ε_q , μ_q - thermal diffusivities, m/s ε_{r} , μ_{τ} - turbulent viscosities, m/s ε - blockage ratio of the flow area, $\varepsilon = A_n/A_c$ φ – angle, ° χ - shape factor λ - thermal conductivity of the coolant, W/(m·K) ν - kinematics viscosity, m²/s Π_{k_n} - length of the gap in which the cells interact, m ρ – density, kg/m τ - shear stresses, N/m ξ - resistance coefficient of the bundle ψ - relative heat transfer coefficient ζ - resistance coefficient of the spacer grid Fr_m - dimensionless number, characterizing the intensity of the flow swirl in the bundle of rods with a wire wrapping (modified Froud number $\operatorname{Fr}_m = T^2/d_1d_h$) Pr – Prandtl number (Pr = $\mu c_p/\lambda$) Nu – Nusselt number (Nu = $\alpha d_{\nu}/\lambda$) Ra – Rayliegh number (Ra = $g\beta \Delta t l^3/va$) Re – Reynolds number (Re = ud_h/v) Le – Lewis number (Le = $\rho c_n D_i / \lambda$) St – Stanton number (St = $\alpha / c_p \rho u$) ## Subscripts and superscripts ∞ – in the free flow ad - adiabatic b – bundle c - calculated ch - channel cr - critical en - entrance ex - experiment f – conditions as to the flow temperature i – cell number is - isolation conditions *j* - surface number k, n – between the cells k and n lar – laminar q – heat r - rough ran - random rem - root-mean-squere ss - self-similar sg - spacer grid sh - shell sm - smooth st - stabilization syst - systematic t – tube ts - two-sided w - conditions at the wall τ – friction ## **Abbreviations** DARS - Lithuanian abbreviation for calculation of gascooled reactors FA – fuel assembly MVL - maximum velocity line N – normal PMV - point of maximum velocity PN - principal normal SG - spacer grid