APPENDIX A

CURVILINEAR COORDINATES

Let
R =101 + Z292 + 2395 = Zaga (A1)

be the radius vector of a point in physical space (see Figure A.1). In this
equation the z; are rectangular Cartesian coordinates of the point, and g;
are coordinate unit vectors. In what follows, the repetition of a Greek index
implies summation with respect to that index from 1 to 3.

FIGURE A.1

3

Curvilinear coordinates al, a?, o are defined by the relations

z; = z;(a?, a?, a?) (:=1,2,3). (A.2)
The equation of = af = constant determines the ith coordinale surface,
and the relations of = af, of = o} define the kth coordinate line (k # i #
i # k). The vectors

R _ 6331 8272 8 Oz

=2 _9, 22, I8, = e
Ri= dad DSt + 58 T 5B = i Be (A-3)
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are tangent (see Figure A.1) to coordinate a'-lines and are of lengths

_ _ or 2 Ozo 2 Oza 2~_ Oz Oz 4
A‘:IR‘"_\/<W) +(5¢F) +(W) =V i 5ot A4

These are the so-called Lamé parameters. It is obvious that the quantities

=R _ 102
= A T A 9ai B

(i=1,2,3) (A.5)

are unit coordinate vectors that, in general, are not mutually orthogonal.
It follows from the system of equations (A.5) that

gr = (pr/1)ep, (A.6)
where
61}2 6.1:3 axz 3:123 89:2 31‘3 31:2 31‘3
ArAsl = 503 565 T 3a8ga2’ A2 =GR T 5,1 5.3
_ Oz9 8z Ozp Oz _ Oz3 0r; Oz3 dr;
A14213 = 5.7 5,7 ~ BaZaal’ AN =503 5.3 ~ 5.55a7"
_ Dz3 0z; O3 Oxy __ Ozg 0zy Oz3 01
ALl = 53 5l ~ al a3 MAMB = 51557 T 557351
3.’1:1 3.1:2 (9.1'1 3:!:2 3:1:1 3::2 3:[.‘1 61.‘2 (A 7)
AsA = — - ——— = _7e Tl 7L .
2A5K31 = 5 2 5ad T a3 Ga?’ 3= G E T T Fal Ba
a.’cl azg 32!3
9o Bal dal
A1Aopas = Oz, dra _ aﬂ CLP) [l dz1 dzg dz3

WW aazm’ A1A2A3= W (_9? m ‘
05, 9z, 95y
da® B8a® o
Apart from the basic coordinaie vectors
Rl = Alel, R2 = A262, R3 = A3e3, (A.8)1.3

the reciprocal coordinate vectors

Rl=_ 2xRs p?—_ BsxRi
R;-(Rz xR3)’ R; - (Ry x R3)’
R; xR (A-8)ss
RS = 1 X v
R, - (Rz x R3)
are also used; they satisfy the basic reciprocity conditions
; 3 1: Z = ja
R; R =6 = y (A.9)
0, i # J.
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It is casily verified that

- ; da’
AR = ”“ﬂg,, = A,-Egﬁ. (A.10)

The quantities

gij = Ri - Ry = gji, ¢/ =R'-R/ =g*

(A.11)
(Ai = 3ii)
connect the basic and reciprocal vectors by the relations
R; = gi.R?%, R/ = yﬁjRﬂ- (A.12)

Vectors and tensors are represented by the expansions in coordinate
bases:

u=1u,R* = u*R,,
T = t**RaRp = t%RoR? = tfR*R;y = tosR°R”, (A.13)
W = w?ﬁ';’RaRﬁ .RFRY = ....
The quantities R;R;, R;R/, R'R;, RiR’ are called coordinate dyads,

and R;R; ... R*R' are called coordinate polyads. In accord with formulas
(A.9) and (A.11), these quantities possess the following properties:

R.R/ -RF = ¢/*R;, RF . R;R/ = 6FR7,
R:R; -R*R; = §R;R;, R;R/ -R*R'=¢*R;R',..., (A.14)
.. ,RiR; ...R'Rp, - RjR; = g RiR; .. .R'Ry, ...,

The expansion coefficients in (A.13) with superscripts are called con-
travariant, those with subscripts covaeriant, and those with superscripts and
subscripts are called mized components. The points in mixed components
determine the sequence of indices. For symmetric tensors, there is no point
in indicating the arrangement of indices, and so the points are dropped.

With the help of the relations (A.14) the connection between different
components of one and the same tensor (vector) is established:

u; = giat”, v =g¢Pug,
1 = giat;_.{ = gjﬁtfp = giagjﬁtaﬁ’ (A'IS)

tii = gial% = 96t = giagist®”.
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Using scalar multiplication by R of the first of the relations (A.12) gives
giag™ = 6] (A.16)
The tensor
1= g,sR°R? = R°R, = R,R® = ¢*’R,R;G (A.17)
is called unitary, since by (A.14) for any tensor we have
T-1=1-T=T. (A.18)
This tensor is also called the metric tensor, because, knowing its com-

ponents, we can perform various metric operations. Thus the length of an
element of arc is determined by the formula

ds? = gag da® doP. (A.19)

In particular, for an element of arc belonging to the ith coordinate line we
have

ds; = /7 do* = A; da’. (A.20)

The angle between the elements of tangents to the intersecting curves
dR(dat, do?, do®) and §R{Sc!, 6a?, §a®) is determined by

fR-dR gap 6a® daP
- - . A21
X = PRI [dR]  Jgas da" daP faos bo= 5a? (A-21)

In particular, the angle between the ith and jth coordinate lines is given
by

cos x*) = 79_-"—\”: (k#i#i#k) (A.22)

The discriminant tensor is determined by its covariant and contravariant
components

gijk = R - (Rj x Ry), e = Ri. (R7 x RY). (A.23)
Observe that only the components

€123 = €231 = €312 = —€132 = —&€321 = —€213 = \/E,

6123 — 6231 — 6312 — "-6132 — w5321 — —6213 — 1/\/“7 (A24')
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are different from zero (here g = |g;;|). Further, we have
R: x R; = €;joR°, R’ x R/ = £7°R,,. (A.25)
The area of the ith coordinate surface element is determined by
dS;i=Vggiidod doa* (i £ j#k#1i). (A.26)

A volume element dV is equal to

dV = \/gdo' do? do®. (A.27)
Finally, we have
Ra
ndsS, = —=dS,, A28
o (4.28)
1 ds;

(A.29)

n; = ——,-....gi'_ E

where n is the unit normal vector to the oblique face (see Figure A.2).

FIGURE A.2

For differentiation of unit coordinate vectors, the following formulas are
used:

R,

k
u_‘;ilj = -Gt R2, (A.31)

where

r _ L1 (09  Ogip 09\ s
Gi; = 3 (Baf *t et " 5P Y (A.32)
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are the Christoffel symbols of the first kind.

In the study of general problems of the theory of elasticity covariant
derivatives of components of vectors and tensors are often used. Thus the
quantities

Viu; = g ; G’Z‘u-y, V;uj gg— +GJ TN (A.33)
o' .
Vit = o —L 4 G - Gt
. -J
th;'] = o m tJ + G’?k HE
ga_ (A.34)
. TAd] . .
Vit? = g+ Gopt™ + Gt
Otij
Vitij = BaF — Glityj — ktVY

are covarient derivatives of the components of an arbitrary vector and of a
tensor of rank two. (The rank of a tensor is equal to the number of indices
of the components.)

Covariant differentiation adds a covariant (lower) index to the com-
ponents of the tensor, making them components of a tensor whose rank
is larger by one; this tensor is the so-called tensorial gradient [see for-
mula (A.13)]: :

T = (V4tas)RR*R? = (V)RR Ry = - - - (A.35)
The covariant derivative has a number of remarkable properties:
ViR; =0, V;R/ =0,
Vigi; =0, Vig¥=0, Vi =0, (A.36)
Ve =0, Vkeijl =0.
Thus, in covariant differentiation, coordinate vectors, components of the
metric and discriminant tensors behave like constants.
Observe that the operation of covariant differentiation was defined for
the components of vectors and tensors. The tensors (vectors) themselves are
invariant (with respect to the choice of the coordinate system) quantities

(having no indices). The covariant derivative for them coincides with the
partial derivative. Therefore

% = Viu = V; (4, R?) = (Viu,)R”
=V(x'R,) = (Viv")R,, (A.37)
8T

s = ViT=V (tapR*R?) = (Vitag)R°RF = - ..
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The order of covariant differentiation is immaterial (in Euclidean space).
The following useful relations are valid:

Vi =0, Vo= =PIy () = S

Vg o 007 () 38)
N 1 a\/—t‘YJ
Vot = — ( + G" \/Et"ﬂ) ,
A (A.39)
AV vi a\/_t f —rﬁ
HVard) = +Gl /it
y—="C . A 40
4 995 (A.40)

In applications orthogenal coordinates are mostly used, in which case
the unit vectors e; (A.5) are unit base vectors, i.e.,

91'91———32-82=63-63=1, e1-e2=e2-e3=e3-e1=0;
e Xey; —e3, ey X ez = €1, €3z X e1 =e3;
j (A.41)
R; = A;e; = \/a;:e, R’ =ej/A; =e;/ /055 ;
9% =95, g=gugaz, 95=0, ¢gv=0 (i#))
The components of vectors and tensors in the representations
u = Ug)eq, T = {(apeaes, (A.42)

W= W(af..pr)€alP - - -€pey

are called physicel. In view of (A.41), a comparison of these expressions
with the expansions (A.13) gives

Uy = ui\/gii = ui/ V3iis
tij) = 4 /9555 = 1Y /9ud55 (A.43)
= t';/9i://955 = ¥ /953 [ V53,

wiij. k) = W 9iig55 - - Y e

Apart from the original coordinate system, we shall consider a new
“primed”) coordinate system, which is also orthogonal. We have
g

€ = €alaj;  ©k = GkpSs, (A.44)
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where the g;; are the cosines of angles of rotation, which are connected with
the components of the rotation vector w = wye, by the relation

11 12 Q13 100 sinw 0 —ws wp
g21 ¢22 Qas| =cosw|0 1 Of+ ” w3 0 —w
431 g3z Qa3 0 01 —wsg w1y 0

W wiwr wiws
wiwy wi  waws
Wiwsg Wala w§

(w = y/w? + wi +w§) . , (A.45)

The inverse relations hold:

1—cosw
2

cosw = 2(qu1 + g22 + qaz — 1),
Wi _ 432 — 423 Wz _ 13— 4¢3 wa — 221 — q12 (A-46)
w  2sinw ’ w 2sinw w 2sinw
It follows from the relations (A.44) and (A.42) that the physical components

of vectors and tensors in the old and the new coordinate system are related
by
alN=a ; ooy =1 i93;
(i) (a)leaj, () (aB)4aiqB;j A 4T
; _ (A.47)
Weij..kh) = W(ep..v6)qailj - - - Ty qsl-

If the passage from one orthogonal coordinate system to another one is
associated with the transformation of coordinates

ot = a'i(a!, a?, ) (:i=1,2,3),

aan'
%k = \/ggi/gkk'a“zyc"- (A-48)

Suppose that the transformation of coordinates reduces to reflection in
the mth coordinate plane (tangent to the coordinate surface). In this case

then

a(j) = a,(j)(—l)p, tfij) = t(,-j)(—l)p, A
/ = P (A.49)
Wi k) = Wik (—1)F,

where p is the number of indices of the component, which is equal to m.
In conclusion, let us cite the relations

T-.-a=a.T", T™".a=a-T (A.50)

that connect arbitrary quantities—a vector a, a tensor T, and the conjugate
tensor T~.





