APPENDIX B

THE THEORY OF SURFACES

‘We shall be concerned here with the fundamentals of the theory of sur-
faces that are necessary for understanding the material of Chapter 5. A
more thorough knowledge of this theory can be obtained from the treatise
[10.2].

Let the surface in question be described by the equation
r = r(a', o?), (B.1)

where a1, o are curvilinear coordinates. Further, let n(o, a2) be a unit
normal vector to the surface (see Figure B:1), and let the radius vector of
an arbitrary point in the neighborhood of the surface be described by

R(a!, a?; €) = r(a?, &?) + En(a?, o?), (B.2)

where £ is the distance along the normal from the point to the surface.
Such a coordinate system is said to. be normally connected with the surface.
All the essential relations in the newly introduced coordinate system may
be obtained from the corresponding relations of Appendix A if we make
substitutions a® = ¢ and replace R by the expression (B.2).

Figure B.1 ' Figure B.2

Thus, formula (B.2) yields

Ry =r; +{ny, Ry =r3 +&nay, Ra=n

(1‘{ = 6r/6(¥i, n; — 611/60!"), (B3)

237



238 APPENDIX B. THE THEORY OF SURFACES

In this and subsequent formulas letter indices are assumed to take the values
1,2. Tt follows from the expressions (B.3) and (A.11) that

gij = aij — £2bi; + £%n; - n;j, 913 =g23 =0, ga3=1, (B4)
where
a;; =TiTj = G4i,
8%r;
b,’thi-nj =n.&¢j—al;i=rj'n"=bji' (B5)
(r; - n=0)

The material of this appendix is used in Chapter b for thin shells, in
which the surface in question is the middle surface (being equidistant from
the upper and the lower face surfacg). Therefore, only the closest proximity
of the surface is taken into account, in which case

— 1. B.6
¢ aas; (B0)
As is shown below, this inequality signifies that the shell thickness is small
compared with the radii of curvature of the middle surface. This implies
that all quantities to be considered are approximated by

¥(at, a?; €) = ¥0(al, o?) + €01 (al, a?), (B.6)2

i.e., the dependence on £ is assumed to be linear.
Thus, noting formulas (B.4), we immediately obtain

gij = aij — &bij, gi3 =0, gaz=1 (B.7)

and also see that a;; = gij|¢=q are the components of the symmetric metric
tensor of the middle surface.

It follows from (A.16) that g*/ are the reduced minors of the elements
gi; in the determinant g = |g;;|, which, in accord with (B.7), takes the form

gu g1z 0 g1 912
g=1|g21 g2 0f|= = 911922 — g12921- (B.8)
0 0 1 921 g22
Consequently
¢t =g2f9,  ¢2=¢"=-g2/9, 9P =9gu/y (B.9)

(g13 =g31 — 923 — g32 — O, g33 — 1)
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Recalling formulas (A.19), (A.26), (B.7), and (B.9), we have
ds? = (@ap — Ebag) da® dof, (B.10)
dS; = /g do' de = \fg5;dod de (i # §),
dSs = ﬁdal dao?,

Assuming in formulas (B.8),(B.9) that £ = 0 and noting (B.7), we find that
on the middle surface

(B.11)

all = ag/a, 6'? = a®' = —ay3/a, a*? = ajyfa, (B.12)
211 @12

a= = 11632 — 219031. B.13

49, G 11622 — G12d21 ( )

Further, formulas (B.10)—(B.13) and (A.22) yield

ds; = Jfaj; do? = Vaa¥ do? (t#7,4,i=1,2),

(B.14)
dS = dSs|¢—0 = Vada da?, (B.15)
cos x = cos xP|ezo = f12 (B.16)

Ve114/a22 '

where ds; is the length of an element of arc of the jth coordinate line of
the middle surface, dS is the area of an element of the middle surface, and
x is the coordinate angle.

The relations (A.9), (A.11), and (A.15) on the middle surface take the
form

r; -T; = aij, r.r’ =a’, rj-r =46,
r,-:a,-ar“, ol =a’ﬁr5, (B 17)
Ui = Giqu”, W = a'Pug,

= a“"t;;f = amtfﬁ = ai“ajﬂtap, e
The surface discriminant tensor is introduced with the aid of the follow-
ing relations [see formulas (A.23)—(A.25)]:
cij = &ijsle=o =m0 (ri X 15),
¢ =3 =mn- (v x 1),
€12 = —¢Cn =\/E, c11 =c22 =0,

2 = ¢ = 1//a, dl=c?=g,

(B.18)
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r'xr =¢;n, nXr; = c;or",
o 7o (B.19)
rxy =cn, nxr =cd°%,.
It is seen from formulas (B.12) and (B.18)
a = c**dPayg, aij = CiaCjga®?, (B.20)
afajs = 6;:, a®Pa,s = 2. (B.21)

Let us now consider differentiation of coordinate vectors. According to
formulas (A.32) and (A.31), we obtain

T =Tk = Glile=o = % (a% 4 Gaca aaﬁ) a®*,

dot ol Boo

GHle=o =bij,  Glle=o = biaa®* = b}, (B.22)

Gg3:G?3:Gg3:O (1,9,h=1,2),

5!‘; _ tra Br’. _ i a i

E = I‘,‘J‘ra + bz]l.l, a? = —I'jar + bjn, (B23)
On « e
Bl = —bjor® = —bir,.

It is also seen from (B.22) and (B.12) that

p L0 10V (B.24)

j“u2aw_%8aj'

Let T be a line on the middle surface (see Figure B.2). It is linked to
a triplet of unit vectors: a unit tengential vector t to the curve, a unit
normal vector n to the surface, a unit tangential normal vector v (being
the normal to the curve lying on the tangential plane). These unit vectors
are related by

txn=uv, nxv=t, vrxt=mn,
t-t=n-n=v-r=1, (B.25)

t-n=n-r=v.t=0.
Besides, the following relation holds:

_ dr _ Or dof _do’
T ds;  Oof ds;  ds; P
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le., ]
;  daot
t'= . B.26
s, (B.26)
According to formulas (B.25) and (B.19) we have
v =txn=1%, X n = cgat®r’,
i.e.,
v; = c;7t7. (B.27)

Let us write the relations (B.11); as the first of the following two ex-
pressions:

dSt = fggiidad d¢,  dS;=Vaatdol df (i #7), (B.28)

a normal section of the shell being considered. It will be noted that the
superscript £ refers to the area of a surface element which is at a distance
of £ from the middle surface (see Figure B.3, a). Similarly, substituting v/
for n and noting equality (A.29), we get

e 1 dst 1 dS;

vE = i V= B.29
Y Ve dSE Vai dS, (8.29)

where
dS, = ds; d€ ‘ (B.30)

(see Figure B.3, b). The entities dS%, dS, are the areas of surface elements
of the normal section passing through a tangent to the curve T, and ds; is
the length of the curve element.

Erlast | o

|

Ficure B.3

In the erthogonal coordinate system associated with the surface
ri/Vai =rai = e, (B.31)

where e;, es, n are the unit coordinate vectors. The physical components
of vectors and tensors associated with the surface are determined by the

formulas )
ug) = Vauu' = u;/\/a;;; (B.32)
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ti5) = tii [ /Bias; = \faaz;t
= Vit [\/3;5; = \/aiit; [ /855,
tin = tin/V/8ii = \/aat',.
[cf. formula (A.43)].

FIGURE B.4

Thus, noting Figure B.4, we find

V(1) = t(2) = cos7, Y(2) = —t(1) = —sin7y,
vy = +/a;;cosy, vy = \/azzsiny,

Sty = —+/a118iny, ty = \/azz cosy,
v! = cosy/+/a11, v? = siny/+/azz,
t! = —sin~/\/ar1, t? = cosv/+/azz.

Let

r(a’, o®) = z1(a', @®)g1 + z2(a’, o?)gz + z3(a’, 0%)gs

(B.33)

(B.34)

be referred to a space rectangular Cartesian coordinate system with unit

vectors g, ga, g3. First of all,

_ 0n; Oz Oz3
r; = ng + Wgz + Wga,

and according to formulas (B.5)
6231 3171 8272 % 6223 6553

% = 907807 ' BatBod " Bai Bad’

. r1-XTrs
SIN XN = —————— = [1381 + M23L2 + H33E3
@11/ Gag H138 H238 B3,

(B.35)

(B.36)
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where

O0zq Ozz  Ozs Oz
VALOS = 5 5eT  al BT

Oz3 0x1 Oz, Oza
V@11822423 = 3alda?  Baldal’

821 6.1:2 6:::2 6:1:1
VAN = 5ot 5a? ~ ol da?

siny = v s + p3s + pds,

and £ is the coordinate angle. In view of the expressions (B.5) and (B.36),
we obtain

(B.37)

32 6212 522:3
= + jia3 = + 33 St 0ol

)
ot 8ad Aot Bad (B.38)

sinx b;; = pus





