NOMENCLATURE

Latin	sym	bol	ls:
-------	-----	-----	-----

- in figures:

- liquid being investigated; Α B, C - liquid heat transfer agents;

ADC - analog-to-digital converter;

ASSR TPP - an automated system for the

scientific research of the thermophysical properties of liquids;

CD - control device;

DAC - digital-to-analog converter; DRD - the digital readout device;

FM - flow rate meter;

- measuring-computing system; MCS

MP - microprocessor; MT - the measuring tube;

SW - stopwatch; SM - servomechanism;

TPP - thermophysical properties;

VR - voltage regulator;

- in equations:

 \mathbf{C}

С

f

- thermal diffusivity tensor; Α

- the extradiagonal components of the $a_{\text{r} \phi}$, a_{or} , $a_{\text{x} \phi}$, a_{ox} , a_{xr} , a_{rx} thermal diffusivity tensor, A;

- the diagonal components of the $a_{\varphi\varphi}$, a_{rr} , a_{xx} thermal diffusivity tensor, A;

- constant coefficients; A_n - thermal diffusivity;

- the thermal diffusivity of tube wall; $a_{\rm w}$

- constant coefficients; $\mathbf{B}_{\mathbf{n}}$ - constant coefficient; - specific heat capacity;

d = 2R- internal diameter of the central tube;

- mathematical functions; $F(\overline{z}), f(\overline{\theta}), f_n(\overline{R})$

- index of the sample geometry

 $G(r, \xi, z, \eta), \overline{G}(\overline{r}, \overline{\xi}, \overline{z}, \overline{\eta})$

g

 $\begin{array}{c} g \\ K,\,k,\,k_{1},\,k_{2},\,k_{3},\,k_{4} \\ k \\ L,\,L_{1},\,L_{2},\,\,\ell_{\,1},\,\ell_{\,2} \,\,\,,\,\,\ell_{\,h}\,, \\ \ell_{\,h1}\,\,\,,\,\,\ell_{\,h2}\,\,\,,\,\,\ell_{\,is} \end{array}$

n P

 $Pe = \frac{\overline{\omega c}}{a}$

 q, q_w

 \vec{q} R R1, R2, R3 R₁, R₂, R₃, R₄, R_i, R_n

r, z

$$\bar{r} = \frac{r}{R}, \ \bar{z} = \frac{\pi az}{2g}$$

RK1, RK2, RK3, RK4

Re T T₀

 T_1, T_2

 $T_b,\,T_e,\,\,\overline{T}_{\!b},\,\,\overline{T}_{\!e}$

 $(T_e-T_w), (T_b-T_w), (T_e-T_b)$

(f = 0,1,2 correspondingly for flat, cylindrical and spherical systems);

- Green's functions in dimensional and dimensionless form;
- liquid volume flow rate through the tube;
- gravitational acceleration;
- constant coefficients;
- parameter of the power law /8.2/;
- lengths of the sections of the measuring tubes;
- heat transfer parameter;
- parameter of the power law /8.2/;
- electrical power, consumed by the electrical heater;
- Laplace transformation parameter;
- Peclet number;
- heat flux, heating the liquid flow on the heat exchange section of MT;
- heat flux vector;
- internal radius of the central tube;
- resistances;
- dimensional coordinates of the boundary surfaces;
- the radial and longitudinal coordinates of the heat exchange section;
- dimensionless radial and longitudinal coordinates of the heat exchange section;
- resistant thermometers;
- Reynolds number;
- temperature;
- the initial value of sample temperature;
- temperatures on the surfaces of the sample with coordinates $r = R_1$, $r = R_2$;
- bulk temperatures of the liquid in the beginning and end of the test section; are the temperature differences,

 $\frac{T_w}{\overline{T}},\;\overline{T}_1,\;\overline{T}_2$

 $U_{\text{b}},\,U_{\text{e}}$ V

 \mathbf{W} $\overline{\mathbf{w}}$

 $Y_1 = \frac{\pi a L_1}{2g}, Y_2 = \frac{\pi a L_2}{2g}$

Z

$$\overline{z} = \frac{\pi a z}{2g}$$

$$\widetilde{z} = \frac{z}{g}$$

Greek symbols:

 $\beta = \overline{T}_2 / \overline{T}_1$

$$\begin{split} \gamma &= \frac{d\omega}{dr} \\ \Delta\theta &= \frac{\Delta T \lambda}{q_{w}d} = \left[\theta \left(1, \overline{z}\right) - \overline{\theta} \left(\overline{z}\right)\right] \end{split}$$

measured on the MT of the different

- temperature of the tube wall;
- deviation of the mean integral value of the wall temperature on the measuring device central tube heat exchange section from the initial temperature T_0 ;
- output signals;
- velocity vector;
- liquid volume, which is gathered in the measuring vessel in time τ ;
- density of internal heat sources;
- dimensionless density of the internal heat sources;
- axis;
- values of dimensionless coordinate $\overline{z} = \frac{\pi a z}{2g}$ at $z=L_1$ and $z=L_2$;
- dimensional longitudinal coordinate of the tube;
- dimensionless longitudinal coordinate of heat exchange section;
- ratio of current value of a longitudinal coordinate z to the volume flow rate g;
- coefficient of volumetric expansion;
- ratio of experimentally measured average integral temperature values of tubes wall sections $[\ell_2, L_2]$ and $[\ell_1, L_1];$
- shear rate;
- is the difference between the demensionless temperature $\theta(1,\overline{z})$ of the tube wall and the dimensionless

ΔP ΔΤ

 ΔT_{max}

$$\Delta T = T(R, z) - \overline{T}(z)$$

$$\Delta g$$
, Δq_w , Δd , Δa , Δg , $\Delta \ell_h$, $\Delta (T_e - T_w)$, $\Delta (T_b - T_w)$

$$\begin{split} \delta a &= \frac{\Delta a}{a} \,, \; \delta g = \frac{\Delta g}{g} \,, \quad \delta_{q_w} = \frac{\Delta q_w}{q_w} \,, \\ \delta_d &= \frac{\Delta d}{d} \,\,, \quad \delta \ell_h = \frac{\Delta \ell_h}{\ell_h} \,, \\ \delta \Big(T_e - T_w \Big) &= \frac{\Delta \Big(T_e - T_w \Big)}{\Big(T_e - T_w \Big)} \,, \\ \delta \Big(T_b - T_w \Big) &= \frac{\Delta \Big(T_b - T_w \Big)}{\Big(T_c - T_w \Big)} \end{split}$$

 $\delta_{\mu a},\,\delta_{\lambda}$

 $\delta \overline{\theta}$, $\Delta \overline{\theta}$

 $\delta_{\!L}$

 $\delta_R = \delta_d$

 $\delta_{\Delta P}$

ε

bulk temperature $\overline{\theta}(\overline{z})$ of the liquid;

- the pressure difference;
- temperature difference
- the maximum rise of temperature at the distance x from heat source;
- difference between dimensional temperature T(R,z) of the tube wall and dimensional bulk temperature $\overline{T}(z)$;
- are the absolute errors of the measurement of the flow rate g, heat flux q_w , diameter d, temperature T, thermal diffusivity a, the volume flow rate g, the length ℓ_h of the heat exchange section and temperature difference (T_e-T_w) and (T_b-T_w) ;

- relative errors of a, g, q_w , d, ℓ_h , $(T_e\text{-}T_w)$ and $(T_b\text{-}T_w)$ measurements;
- relative and absolute errors of the dimensionless value $\overline{\theta}$ determination;
- relative errors of the thermophysical values μa and λ of the liquid measurements;
- relative error of the measurement of length L of the section;
- relative measurement error of inner radius of the measuring tube;
- relative error of the pressure difference ΔP measurement;
- systematic errors of measurements of thermal diffusivity a and thermal

$$\epsilon_n, \psi_n(\overline{r})$$

$$\begin{split} \theta &= (T - T_b) \lambda / (q_w 2R) \\ \overline{\theta} \Big(\overline{z} \Big) &= 4 \int_0^1 \theta \Big(\overline{r}, \overline{z} \Big) \overline{r} \bigg[1 - \Big(\overline{r} \Big)^2 \bigg] d\overline{r} \\ \overline{\theta} \ , \overline{\theta}_i &= \frac{T_{ei} - T_w}{T_b - T_{w}} \end{split}$$

$$\theta_{opt}$$

$$\overline{\theta}_{e} = \frac{T_{e} - T_{w}}{T_{b} - T_{w}}$$

$\overline{\theta}_{\mathbf{f}}$

$$\overline{\theta}(\overline{z})$$

$$\begin{array}{l} \Lambda \\ \lambda \\ \lambda_{r\varphi}, \; \lambda_{\varphi r}, \; \lambda_{x\varphi}, \; \lambda_{\varphi x}, \lambda_{xr}, \lambda_{rx} \end{array}$$

$$\lambda_{\phi\phi}$$
, λ_{π} , λ_{xx} ;

$$\mu_{ef} = k \gamma^{n-1}$$

$$\xi_1 = \frac{\ell_1}{L_1}, \; \xi_2 = \frac{\ell_2}{L_2}$$

$$\xi, \eta$$

$$\overline{\xi} = \frac{\xi}{R}, \quad \overline{\eta} = \frac{a\eta}{2\overline{\omega}R^2} = \frac{\pi a\eta}{2g}$$

conductivity λ ;

- eigenvalues and eigenfunctions of the Sturm-Liouville boundary value problem;
- dimensionless temperature;
- dimensionless bulk temperature;
- dimensionless bulk temperature;
- the optimal dimensionless temperature value;
- the dimensionless bulk temperature of the liquid at the end of the measuring tube;
- actual value of the dimensionless temperature;
- function which determine the change of the dimensionless bulk temperature;
- thermal conductivity tensor;
- thermal conductivity;
- extradiagonal components of the thermal conductivity tensor Λ ;
- the diagonal components of the thermal conductivity tensor Λ ;
- dynamic viscosity;
- complex thermophysical parameter:
- apparent viscosity of the Non-Newtonian liquid;
- the kinematic viscosity;
- ratio of the geometrical coordinates, determining the positions of resistance thermometers RK1, RK2 on the heat exchange section of the measuring tube;
- integration variables;
- dimensionless coordinates;

 ξ_n, ψ_n

$$\overline{\xi}(\overline{W},\overline{\theta})$$

ρ

ρg

σ

τ

 τ_{H}

 τ_0

$$\Phi(\beta), \Phi_1(\beta)$$

 $\varphi(\overline{z})$

$$\psi_n(\overline{r}), \psi_i(\overline{R})$$

$$\Omega = (T_w - T_e)/(T_e - T_b)$$

$$\overline{\omega} = \frac{4g}{\pi d^2}$$

$$\overline{\omega} = \frac{n}{n+1} k \left[R \left(\frac{R\Delta P}{2Lk} \right)^{\frac{1}{n}} \right]^{n}$$

$$\omega_0 = \left[\frac{3n+1}{n+1} \right] \overline{\omega}$$

 $\omega_z(r)$

 $\omega(\mathbf{r})$

- characteristic values and functions of the Sturm-Liouville boundary value problem;
- is the inverse function of the initial function $\overline{\theta} = \varphi(\overline{W}, \overline{z})$;
- density of the sample material;
- mass flow rate of the liquid;
- stress tensor; tangential or shear stress;
- time:
- is the relaxation time;
- time of filling the tank with capacity
- mathematical functions;
- axis of cylindrical coordinate system;
- is the mathematical function;
- eigenfunctions of the Sturm-Liouville boundary value problem;
- the dimensionless parameter;
- average velocity of liquid flow in the tube;
- is the average flow velosity of the sugar solution through the central tube at the differential pressure ΔP , applied over the heat exchange section of length L;
- maximum velocity of liquid flow;
- is the maximum non-Newtonian liquid flow velocity;
- velocity profile;
- profile of the velocity of flow of the liquid or gas, which, for fully developed flow in a tube, is given by Poiseuille's formula;