- a thermal diffusivity; absorptivity;
- B velocity-profile constant; particle relative concentration; dimensionless complex;
 - c specific heat;
 - c_f coefficient of aerodynamic drag of particles;
 - \dot{D} channel diameter; diffusion coefficient;
 - d diameter;
 - E electric-field strength; radiation density; energy spectrum of turbulence;
 - F force; surface area;
 - f shape factor; frequency; focal distance;
 - G flowrate; radial temperature distribution;
 - g acceleration of gravity;
 - H height of reactor;
 - I intensity of radiation; dimensionless particle mass flux;
 - j particle mass flux density; emissivity;
- K transport coefficients; Gasterstädt coefficient; overall heat transfer coefficient; acceleration parameter;
 - K^* flow-through number; thermal accommodation factor;
- k correction factors; adiabatic exponent; coefficient of particle interaction with radiation; turbulent kinetic energy;
 - L reference dimension; length in direction of flow;
 - 1 molecular mean free path; radiation wavelength; flow-cell size;
 - M moment of force; Mach number;
 - m mass; coefficient;
 - N number of particles; number of transfer units; power;
 - n rotational frequency; index of refraction; normal to a surface;
 - P thermal resistance; volumetric radiation density;
 - p pressure;
 - Q heat flux;
 - q heat flux density; charge of particle;

R - dimensionless radius; correlation coefficient;

r - radius;

S – shearing-rate tensor; distance between two points;

s - entropy;

T – temperature; time scale;

U – dimensionless velocity;

u - velocity;

V – volume, dimensionless transverse velocity;

v - transverse velocity;

 v_{ff} - terminal setting velocity (free fall);

 v^* - friction velocity;

W – flow heat capacity rate; dimensionless relative velocity;

w - relative velocity;

X - dimensionless coordinate;

x – coordinate:

Y - shift; dimensionless coordinate;

y - transverse coordinate;

Z - heat capacity rate ratio;

z - coordinate;

 α - heat transfer coefficient; amplification factor;

 $\alpha_{\rm g}$ - coefficient of mass transfer in transport of particles;

 β – particle concentration by volume;

 Γ - strength of vortex;

 γ - probability of capture of particles on the wall; scattering function;

Δ - relative thickness of boundary layer;

 δ - thickness of boundary layer; scattering-function shape factor;

 ε – porosity ($\varepsilon = 1 - \beta$); viscous dissipation of the energy of turbulence; emissivity factor; fouling factor; dimensionless eddy viscosity;

 ζ – momentum loss factor;

 η - dynamic viscosity; particle collection efficiency; thermodynamic efficiency;

 θ - polar angle; relative temperature;

 ϑ – excess temperature; dimensionless temperature;

æ - radiation absorption or attenuation factor; contribution of particle to eddy thermal conductivity;

Λ - macroscale of turbulence; dimensionless eddy thermal conductivity;

 λ – thermal conductivity; microscale of turbulence; friction factor;

 μ - solids loading ratio (solids mass flow rate ratio);

ν - kinematic viscosity;

 ξ – flow resistance coefficient;

Π - group of geometric characteristics;

 ρ – density; diffraction parameter; distance from point to coordinate origin;

 σ – Boltzman constant; tensor of viscous stresses; thermal effectiveness;

 τ - time; shear stresses; optical thickness;

 τ_{rel} - relaxation time;

- Φ relative contribution of particles to momentum transfer; dimensionless force; light flux;
 - φ slip coefficient;
 - ϕ angular coordinate;
 - χ velocity profile constant; absorption factor; configuration factor;
 - Ψ stream function;
- ψ phase shift; nonuniformity coefficient; dimensionless relative velocity; configuration factor;
 - Ω albedo; channel cross section;
 - ω angular velocity; frequency of fluctuations, solid angle.

SUBSCRIPTS

```
0 - value in particle-less flow; non-disturbed value; value at start;
i - component corresponding to Cartesian coordinate;
max, min - maximal and minimal values;

 a – value on flow axis; adhesion;

r - radial distribution;
R - quantity of radiative nature;
conv - quantity of convective nature;
ce - cell in suspension flow;

 c - flow core; circulation;

t - tangential component; quantity of thermal nature;
w – value on the wall;
x – lengthwise local value;
fin - final value;
cr - critical value;

 l - local value; layer of deposit;

in - initial value;
opt - optimal value;
f – suspension flow;
inc, abs, res, em - incident, absorbed, resultant and emitted radiant fluxes;
b – boundary layer;
s - solid particle;
imp - impact-related quantity;
sph - sphere;
e - effective or equivalent value; quantity of electrical nature;
* - quantity of turbulent nature; effective value;
' - fluctuating component; inlet value of quantity; "- exit value of quantity;
⟨ ⟩ − averaging;
- averaged by volume;
D – diffusion;
v - volume; velocity; vibration;
sl – slip flow regime;
d – drag force; diffraction;
```

```
int - internal;
ext - external;
mol - molecular;
inj - injection;
lim - limiting;
n - normal;
sed - sedimentation;
T - turbulent;
M - modified value;
act - actual;
g – gravity;
ac - acceleration;
st - stabilized; steady;
fr - friction; flow rate;
sh - shear;
j – jet;
un - unsteady;
rot - rotation;
\Sigma - resultant value;
id - ideal;
ap - aperture;
red - reduced;
m - melting;
rel - relaxation;
L - laminarization;
noz - nozzle;
sc - scattering;
itc - intercomponent;
d.p - dew point;
g – flue gas;
tu - tube;
sp - specific.
```