NOMENCLATURE

$D_{ m out}, D_{ m in}$	outer and inner diameters of tubular specimens
D_{ϵ}, D_{σ}	strain and stress deviators, respectively
E E	Young's modulus
$F_{\rm o}, F, F_{\rm c}$	original, current, and limiting (in the neck) cross-sectional areas
•	of a specimen
G	shear modulus
h	thickness of a flat specimen or of the wall of a tubular specimen
I_1, I_2, I_3	the first, second, and third invariants of the stress tensor
I_1', I_2', I_3'	the first, second, and third invariants of the stress deviator
I, k_{σ}	parameters of the stress state rigidity: $I = 3k_{\sigma}$, $k_{\sigma} = \frac{\sigma_{o}}{\sigma_{i}}$
$K_{\mathbf{o}}$	bulk modulus
M_T, M_{b}	
N	axial load
$p \\ S_{1c}, S_{2c}, S_{3c}$	pressure of the working medium (gas or liquid) ultimate principal normal stresses calculated from real dimensions
51c, 52c, 53c	of a specimen at the instant of fracture
s, s_{c}	current and ultimate reduction of the specimen cross-sectional area,
	$s = \ln F_o / F; s_c = \ln F_o / F_c$
T_{ϵ} , T_{σ}	strain tensor and stress tensor
$T_{\varepsilon}^{o}, T_{\sigma}^{o}$	spherical strain tensor and spherical stress tensor
γ12, γ23, γ31	principal shear strains
Yxy, Yyz, Yzx	shear strains in the planes xy, yz, and zx
$\gamma_{z\theta}$, $\gamma_{\theta r}$, γ_{rz}	shear strains in tubular specimens in the planes $z\theta$, θr , and rz
$\gamma_{\mathbf{max}}$	maximal shear strain
Yoct	octahedral shear strain
γ_i	shear strain intensity
$\dot{\gamma_i}$	shear strain rate intensity
γ_u	uniform limiting shear strain in pure torsion
$\gamma_{z\theta u}, \gamma_{\theta ru}, \gamma_{rzu}$	limiting shear strains in tubular specimens under multicomponent loading
Yumax, Yuoct	ultimate values of maximal strains and octahedral strains
γ_{iu}	ultimate value of the shear strain intensity
γ_{cmax}	maximal ultimate shear strain in the site of fracture
Υa	amplitude value of the shear strain
δ	relative elongation after fracture in uniaxial tension
$\varepsilon_1, \varepsilon_2, \varepsilon_3$	principal linear strains
$\varepsilon_x, \varepsilon_y, \varepsilon_z$	strains in the x , y , and z directions
$\varepsilon_z, \varepsilon_\theta, \varepsilon_r$	axial, circumferential, and radial strains in tubular specimens
$\epsilon_{ m o}$	mean strain
$\dot{\epsilon}_1,\dot{\epsilon}_2,\dot{\epsilon}_3$	strain rates
	

$oldsymbol{arepsilon_i}$	strain intensity
$\dot{arepsilon}_i$	strain rate intensity
ϵ_a	amplitude strain value under cyclic loading
ε _{ia}	amplitude strain intensity value under cyclic loading
ε_u	uniform limiting strain in uniaxial tension
$\varepsilon_{1u}, \varepsilon_{2u}, \varepsilon_{3u}$	uniform limiting principal plastic strains at a complex stress state
$\varepsilon_{zu}, \varepsilon_{\theta u}, \varepsilon_{ru}$	uniform limiting plastic strains in tubular specimens
$\varepsilon_{1c}, \varepsilon_{2c}, \varepsilon_{3c}$	ultimate plastic strains in the site of fracture
ε _{umax} , ε _{cmax}	maximal uniform and ultimate strains, respectively
$\epsilon_{iu},\epsilon_{ic}$	limiting value of uniform strain intensity and ultimate plastic strain intensity,
	respectively
$\epsilon_{ m oct}$	octahedral normal strain
$\varepsilon_{1t}, \varepsilon_{2t}, \varepsilon_{3t}$	limiting principal strains in creep
$\theta_1, \theta_2, \theta_3$	the first, second, and third invariants of the strain tensor
$\Theta_{\mathbf{o}}$	relative volume change
μ	Poisson's ratio
μ_{σ} , μ_{ϵ}	parameters of the stress and strain deviator types (Lode's parameters)
ν	coefficient of transverse strain in the elastoplastic range
$\sigma_1, \sigma_2, \sigma_3$	principal normal stresses
$\sigma_x, \sigma_y, \sigma_z$	normal stresses on the planes perpendicular to the axes x , y , and z
σ_z , σ_θ , σ_r	axial, circumferential, and radial normal stresses in a tubular specimen
$\sigma_{ m o}$	mean normal stress
σ_i	stress intensity
$\sigma_{ m oct}$	normal octahedral stress
σ_p	proportional limit in uniaxial tension
$\sigma_{02}^+, \sigma_{02}^-$	yield strengths in tension and compression determined by
	an offset residual strain of 0.2 %
σ_u^+, σ_u^-	ultimate strength in uniaxial tension and compression, respectively
$\overline{\sigma}_{u}^{+}, \overline{\sigma}_{u}^{-}$	true ultimate strength in uniaxial tension and compression calculated
	by the maximal load considering real dimensions of a specimen
$\sigma_{1p}, \sigma_{2p}, \sigma_{3p}$	stresses corresponding to a proportional limit under a complex stress state
$\sigma_{1y}, \sigma_{2y}, \sigma_{3y}$	stresses corresponding to the yield strength under a complex stress state
σ_{iy}	yield strength determined from the generalized curve $\sigma_i = \sigma_i(\varepsilon_i)$
	by an offset residual strain of 0.2 %
$\overline{\sigma}_{1u}, \overline{\sigma}_{2u}, \overline{\sigma}_{3u}$	true stresses corresponding to the maximal load under a complex stress state
$\sigma_{1u}, \sigma_{2u}, \sigma_{3u}$	conventional stresses corresponding to the maximal load
_	under a complex stress state
$\overline{\sigma}_{iu}$	true value of the stress intensity corresponding to the maximal load
σ_t^+, σ_t^-	long-term strength in tension and compression
$\sigma_{1t}, \sigma_{2t}, \sigma_{3t}$	stresses corresponding to the long-term strength under a complex stress state

σ_a, σ_m	stress amplitude and mean stress under cyclic uniaxial loading, respectively
σ_{ia}, σ_{im}	stress amplitude intensity and mean stress intensity under cyclic loading
σ_{-1b}	fatigue limit under fully reversed loading in bending
$\tau_{12},\tau_{23},\tau_{31}$	principal shear stresses
τ_{xy} , τ_{yz} , τ_{zx}	shear stresses on planes perpendicular to the y , z , and x axes
	and parallel to the x , y , and z axes, respectively
τ_u	ultimate strength in torsion
$ au_y$	yield strength in torsion
$\tau_{z\theta}$	shear stress in a tubular specimen
$ au_p$	proportional limit in torsion
$ au_{ m oct}$	octahedral shear stress
$ au_{ ext{oct}m}$	mean value of shear octahedral stress under cyclic loading
$ au_{ ext{max}}$	maximal shear stress
τ_{umax} τ_{uoct}	limiting values of the maximal and shear octahedral stresses
τ_{-1}	fatigue limit in torsion
$\tau_{ m o}$	fatigue limit in pulsating torsion
Ψ, Ψ_u	local (in the neck) and uniform reduction of the cross-sectional area
	after fracture in uniaxial tension