NOMENCLATURE

```
ultimate (nominal) stress or yield stress, respectively;
\sigma_b, \sigma_\tau
           ultimate shear strength;
\boldsymbol{\sigma}_{\!S}
           strain values at ultimate (nominal) strength or fracture stress, respectively;
\boldsymbol{\epsilon}_{b},\,\boldsymbol{\epsilon}_{f}
           cross-head speed (tension or compression) of the test machine;
\mathbf{v}_{\mathbf{d}}
ε*
           creep-strain rate (creep rate);
           diffusion-controlled flow strain in solid helium;
\varepsilon_0^*
           longitudinal or transverse sound speed, respectively, in a crystal;
v_{l}, v_{t}
a, b, c
           crystal lattice parameters;
           Burgers vector;
b
           locked dislocation density;
\rho'
           mobile dislocation density;
\rho_0 \\
C_{ij}
B_{T}, B_{S}
           elastic constants;
           isothermal or adiabatic elastic modulus, respectively;
           adiabatic Young's modulus or adiabatic shear modulus, respectively;
E_{\rm S}, G_{\rm S}
E_{\rm c}^{\rm S'}, G_{\rm c}^{\rm S}
T_{\rm m}
\eta^*
           static Young's modulus or static shear modulus, respectively;
           melting temperature;
           solid-state viscosity;
           substance density;
ρ
U
           activation energy of plastic deformation of a crystal;
           energy barrier for dislocation motion in a crystal;
U_0
           activation volume of plastic deformation of a crystal;
\tau, \tau_0, \tau_f current, initial, or limiting stress, respectively, in a crystal under stress-
           relaxation condition;
ξ
           width of dislocation;
xii
```

ζ ξ*, s* Η stacking-fault energy; stress-relaxation constants; hardness; oscillation frequency of atoms or molecules; ν_0 fimpact toughness; frequency of torsion oscillations; Δ low-frequency damping; Q^{-1} internal friction; $\sigma_{\rm L}, \, \varepsilon_{\rm L}$ Mpotential constants of atomic (molecular) interaction; work-hardening coefficient of crystals; $\lambda_{t}, \lambda_{\phi}$ De Boer's parameter of translation or libration oscillations, respectively; Planck's constant; indentation depth (hardness measurements); h_0 logarithmic-creep constant of crystalline materials; β^{α_0} exponential-creep coefficient of crystalline materials; strain exponent for high-temperature creep of polycrystalline materials.

m