Nomenclature

а	speed of sound (m/s), Chapter 3				
a_1 a_2 a_3	coefficients used in Eq. (9.2), Chapter 9				
a_{1}, a_{2}, a_{3}	area (m²) Chapters 2–9				
A'	parameter to be used in Bowring correlation, Chapter 8				
$A_{ m frontal}$	projected bubble area (m²), Chapter 1				
<i>b</i>	bubble height (m), Chapter 3				
B b_1, b_2, b_3, b_4	matrix, Chapters 4 and 7 experimentally obtained coefficients used in Kandlikar CHF correlation, Chapter 8				
B_1, B_2	constants in Bowring correlation, Chapter 8 ratio between the liquid and vapor kinematic viscosity, dimen-				
C	sionless, Chapter 5 Shah's fitting coefficient, dimensionless, Chapter 5				
	constant that depends on the flow regime, dimensionless,				
C	Chapter 5				
C'	parameter to be used in Bowring correlation, Chapter 8				
C_1 , C_2	constants, Chapter 3				
Ca	capillary number, dimensionless, Chapter 8				
C_D	drag coefficient, dimensionless, Chapter 1				
Co	confinement number, dimensionless, Chapter 1				
$\mathrm{Co}_{\mathrm{FG}}$	Fogg-Goodson confinement number, dimensionless, Chapter 3				
c_p	specific heat (kJ/kg°C), Chapter 4				
D	diameter (m), Chapters 4 and 8				
$D_{ m b}$	bubble diameter (m), Chapter 1				
D_h	hydraulic diameter (m), Chapters 1, 8, and 9				
D_{he}	hydraulic diameter to be used in Ong and Thome CHF correlation (m), Chapters 1 and 8 $$				
D_{th}	hydraulic diameter (m), Chapters 1 and 8				
f	friction factor, dimensionless, Chapters 3, 5, and 9				
F	dimensionless parameter to be used with Taitel and Dukler, Chapter 2				
F	shape factor, Chapter 3				

 F_1 F_2 F_3 F_4 constants used in Bowring correlation, Chapter 8 Froude number, dimensionless, Chapter 2 Fr $F_{\mathfrak{s}}$ surface tension force (N), Chapter 1 g gravitational constant (m/s²), Chapters 1, 5, and 8 g(x)function given in Eq. (9.2), Chapter 9 Gmass flux (kg/m²s), Chapters 1, 4, 5, 6, 8, and 9 heat transfer coefficient (W/m²K), Chapters 2, 3, and 8 h h channel height (m), Chapter 3 h specific enthalpy (kJ/kg), Chapters 8 and 9 channel height (m), Chapter 8 Н $h_{\rm LG}$ latent heat of vaporization (kJ/kg), Chapters 2–4 and 8 identity matrix, Chapter 7 Ι j superficial velocity (m/s), Chapter 2 kthermal conductivity (W/mK), Chapter 3 k constant, dimensionless, Chapter 4 dimensionless parameter to be used with Taitel and Dukler, K minor losses and losses across the valve, dimensionless, Chapters 3 K K parameter used in Eq. (8.2) (W/m²), Chapter 8 $K_{2.CHF}$ Kandlikar number used in Kandlikar CHF correlation, Chapter 8 Llength (m), Chapters 1, 3, and 5–9 $L^{\scriptscriptstyle +}$ dimensionless length, dimensionless, Chapter 5 mass flow rate (kg/s), Chapters 3, 4, 6,7, and 9 m Mmatrix, Chapter 7 pressure drop multiplier, Chapter 8 M \overline{M} molecular mass (g/mol), Chapter 8 polytropic constant, dimensionless, Chapter 6 n n constants to be used in Bowring correlation, Chapter 8 p pressure (N/m²), Chapters 2–9 Po Poiseuille number, dimensionless, Chapter 5 q''heat flux (W/m²), Chapters 3, 4, and 8 q_{co}'' heat flux parameter used in Eq. (8.2) (W/m²), Chapter 8 predicted maximum heat flux from the kinetic theory (W/m²), Chapter 8 volumetric flow rate (m³/s), Chapter 2 heat transfer rate (W), Chapters 2, 8, and 9

force per unit channel length (N/m), Chapters 4, 6, and 7

F

r r	radius (m), Chapter 3 pressure drop ratio, dimensionless, Chapter 4				
r_c	surface cavity's mouth radius (m), Chapter 3				
R					
\overline{R}	radius of curvature (m), Chapters 2 and 3				
Re	universal gas constant [kJ/(kmol K)], Chapter 8				
S S	Reynolds number, dimensionless, Chapters 1, 3, 5, and 8				
	specific entropy (kJ/kg K), Chapter 2 pressure drop gradient (with respect to mass flow rate) (m ² /s),				
S	Chapter 7				
t	time (s), Chapters 3, 4, 6, and 7				
T	temperature (K or °C), Chapters 2–5 and 8				
T	dimensionless parameter to be used with Taitel and Dukler, Chapter 2				
и	velocity (m/s), Chapter 3				
U	velocity (m/s), Chapters 1 and 5				
v	specific volume (m³/kg), Chapter 2				
V	volume (m³), Chapters 3–7				
w	channel width (m), Chapter 3				
W	channel width (m), Chapter 8				
We	Weber number, dimensionless, Chapter 8				
X	distance from channel's inlet (m), Chapter 3				
X	mass quality, dimensionless, Chapters 5, 8, and 9				
X	Martinelli parameter, dimensionless, Chapters 2 and 5				
X	dependent variable, Chapter 4				
X	mass flow rate perturbation vector, Chapter 7				
<i>y</i>	perpendicular distance from heat transfer surface (m), Chapter 3				
<i>z</i> <i>z</i>	distance from channel's inlet (m), Chapters 2 and 4–7 bubble length (m), Chapter 3				
Greek Symbols	cuccio iongin (m), emprei s				
α	void fraction, Chapter 5				
β	ratio between channel height-to-width, dimensionless, Chapter 3				
δ	boundary thickness (m), Chapter 3				
Δ	difference, Chapters 2, 3, and 8				
ϕ^2	two-phase frictional multiplier, dimensionless, Chapter 5				
λ	eigenvalue of matrix B, Chapter 7				
μ	dynamic viscosity (kg/ms), Chapters 1, 4, 5, and 8				
ν	kinematic viscosity (m²/s), Chapters 2–4				
θ	dimensionless temperature, Chapter 3				
θ	angle (rad), Chapter 5				
Θ_R	receding contact angle, 8				

ρ density (kg/m³), Chapters 1 and 3–9

σ surface tension (N/m), Chapters 1–3 and 8

τ time constant (s), Chapter 3

Subscripts

a accelerational

b bubble

c surface cavity's mouth, contraction, channel, critical pressure,

mass quality of unity at the exit

CC conventional scale channels

ch cross-sectional
CHF critical heat flux
CL contact line
con confinement
D demand

 D_h based on hydraulic diameter

 $egin{array}{ll} e & exit \\ f & frictional \\ F & Fanning \\ \end{array}$

fd fully developed g gravitational

G gas
h head
h hydraulic

HFM homogenous flow model

i initialin in

j index number

L liquid m mean

MC microchannel microchannel

ni no instability (without instability)

ns nucleation size

0 out

OFI onset of flow instability

or orifice orifice

s surface, surge tank

S supply

sat saturation

SFM separated flow model

spsingle phasesubsubcooledTthermalTtotal

tp two phase trans transitional visc viscous W wall

 ∞ at the bulk