Customer Login 0 Shopping Cart
Home Books eBooks Journals References and Proceedings Authors, Editors, Reviewers A-Z Product Index
Turbulence and Shear Flow Phenomena -1 First International Symposium

ISBN Print: 1-56700-135-1

A NUMERICAL INVESTIGATION OF THE TURBULENT BOUNDARY LAYER OVER A ROTATING DISK

Abstract

Large eddy simulation (LES) has been used to predict the statistically three-dimensional turbulent boundary layer (3DTBL) over a rotating disk. LES predictions are compared to the experimental measurements of Littell & Eaton (1994), obtained at a momentum thickness Reynolds number of 2660. Predictions of the mean velocities and second-order statistics are in good agreement with data. Conditionally-averaged velocities provide new evidence in support of the structural model of Littell & Eaton (1994) concerning the interaction of mean-flow three-dimensionality and shear-stress producing structures. Inside the buffer region under strong ejections, the conditionally-averaged crossflow (radial) velocity is larger than the unconditioned mean, and the profile conditioned on strong sweeps is smaller than the mean. This is consistent with the notion that streamwise vortices having the same sign as the mean streamwise vorticity, and beneath the peak crossflow location, are mostly responsible for strong sweep events; streamwise vortices with opposite sign as the mean streamwise vorticity promote strong ejections.
Home Begell Digital Portal Begell Digital Library Journals Books eBooks References and Proceedings Authors, Editors, Reviewers A-Z Product Index Prices and Subscription Policies About Begell House Contact Us Language English 中文 Русский 日本語 Português Deutsch Français Español