D. Canca
Department of Industrial Management, University of Seville
L. Onieva
Department of Industrial Management, University of Seville
F. Guerrero
Department of Industrial Management, University of Seville
J. Racero
Department of Industrial Management, University of Seville
Résumé
Cellular manufacturing consists in decomposing the system into a number of manufacturing cells, each one dedicated to the processing of a family of similar part types. Most neural networks approaches proposed to solve the part-machine grouping problem are based on the competitive learning paradigm or some of its variants (ART, SOFM). In this paper we use a cell formation approach that has two steps: either machines are grouped first and then parts are assigned or viceversa. The first step is modelled as a grouping problem using weighted similarity coefficients that are an extension of the commonly used Jaccard similarity coefficients. The resulting quadratic programming problem is solved using a Hopfield-Tank neural network. The second step is a straightforward LP assignment problem. The performance of the proposed approach is benchmarked against Simulated Annealing and Tabu Search-based approaches, a Maximum Spanning Tree heuristic and a Self-Organizing Neural Network.