Connexion utilisateur 0 Panier
Accueil Livres eBooks Revues spécialisées Références et comptes rendus Auteurs, éditeurs, examinateurs Index A-Z des produits
Flexible Automation and Integrated Manufacturing 1999

ISBN Imprimer: 978-1-56700-133-4

ADAPTABLE REAL-TIME SCHEDULING USING ARTIFICIAL NEURAL NETWORKS

Résumé

Over recent years there has been considerable work focused on enhancing the planning and control of manufacturing operations through 'real-time' reactive scheduling. A common characteristic of a large proportion of the developed systems is that they are only suitable for tightly prescribed control problems.To overcome this limitation a reactive scheduling system should have the ability to adapt its own computational process to the type of problems encountered and be applicable to a wide range of control situations. This paper discusses the on-going development of the architecture and underlying methodology used to build a real-time reactive production scheduling and control system, through the use of Artificial Neural Networks. The system, named ANNSR, has the capability to learn about the scheduling situation and can make accurate 'informed' judgements on 'new' conditions arising from the controlled environment. Furthermore, the ANNSR design means that ANNSR can be easily modified to handle a variety of the scheduling applications.
Accueil Portail numérique Begell Bibliothèque numérique Begell Revues spécialisées Livres eBooks Références et comptes rendus Auteurs, éditeurs, examinateurs Index A-Z des produits Prix et politiques d'abonnement A propos de Begell House Contactez-nous Language English 中文 Русский 日本語 Português Deutsch Français Español