カスタマーログイン 0 ショッピングカート
ホーム 書籍 電子書籍 ジャーナル 参考文献と会報 著者、編集者、レビュー者 A-Z商品インデックス
Flexible Automation and Intelligent Manufacturing, 1997:
Proceedings of the Seventh International FAIM Conference

ISBN 印刷: 978-1-56700-089-4

ISBN オンライン: 978-1-56700-442-7

PRE-TREATMENT OF DATA FOR IMPROVED ARTIFICIAL NEURAL NETWORK MODEL GENERATION

要約

Neural networks are now being used extensively in many areas of control Model predictive control schemes and several other techniques have adapted rapidly to encompass the non-linear predictive capabilities of neural networks and many papers have been written looking at the feasibility of these systems. Much work has also been carried out in the area of neural network learning algorithms and architecture.
This paper deals solely with the pre-treatment of real data produced by a binary methanol/water distillation column to produce a prediction of top composition using variables other than top temperature. The predictor used is a Feed Forward Artificial Neural Network with a standard back error propagation teaming algorithm. The work covered shows that with additional pretreatment of the data the neural network model produced is an improvement over a neural network model produced using the untreated data, over the column operating range. The pretreatment techniques used are easily adaptable to other data sets and systems. Techniques used involve data smoothing, frequency content analysis and a trial and error based computational technique.
ホーム Begell Digital Portal Begellデジタルライブラリー ジャーナル 書籍 電子書籍 参考文献と会報 著者、編集者、レビュー者 A-Z商品インデックス 価格及び購読のポリシー Begell Houseの概要 連絡先 Language English 中文 Русский 日本語 Português Deutsch Français Español