カスタマーログイン 0 ショッピングカート
ホーム 書籍 電子書籍 ジャーナル 参考文献と会報 著者、編集者、レビュー者 A-Z商品インデックス
Proceedings of Symposium on Energy Engineering in the 21st Century (SEE2000) Volume I-IV

ISBN 印刷: 1-56700-132-7

HEAT TRANSFER AND FLUID FLOW FOR A THERMAL PLASMA JET IMPINGING NORMALLY ON A FLAT PLATE

要約

Modeling and experimental results are presented concerning the heat transfer and fluid flow for an argon d. c. arc plasma jet impinging normally upon a flat plate. Both laminar and turbulent flow regimes are involved in the study. Temperature- and concentration-dependent gas properties are used, and the mixing between the argon plasma jet and the ambient air is modeled by using the combined-diffusion-coefficient approach. For the case of turbulent flow, the K − ε two-equation turbulence model is employed in the modeling. The modeling results show an appreciable difference in the mixing processes for the laminar and turbulent regimes. A transient method is employed to measure the local heat flux distribution along the surface of flat plate impinged by the argon plasma jet, whereas the pressure distribution along the plate surface and the electron temperatures near the plate surface are measured by using a stationary water-cooled probe. Different gas flowrates, arc currents and plate-standoff-distances are covered in the measurements. The predicted and measured heat flux and pressure distributions can be well approximated by the Gaussian distributions. The measured electron temperatures near the cold plate are shown to be much higher than the plate temperature, implying that the near-wall boundary is in a state of highly thermodynamic non-equilibrium.
ホーム Begell Digital Portal Begellデジタルライブラリー ジャーナル 書籍 電子書籍 参考文献と会報 著者、編集者、レビュー者 A-Z商品インデックス 価格及び購読のポリシー Begell Houseの概要 連絡先 Language English 中文 Русский 日本語 Português Deutsch Français Español