Stephane Abanades
Laboratoire Procédés Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu, France
J. M. Badie
C. N. R. S., Institut de Science et de Genie des Materiaux et Procedes B. P. 5, Odeillo, F-66125 Font-Romeu Cedex
Gilles Flamant
CNRS PROMES UPR 8521, Tecnosud, Rambla de la Thermodynamique, 66100 Perpignan, France
L. Fulcheri
Centre D'Energetique, Ecole Des Mines De Paris; Rue Claude Daunesse, B. P. 207, F-06904 Sophia Antipolis Cedex
J. Gonzalez-Aguilar
Ecole des Mines de Paris, B.P. 207, F-06904 Sophia Antipolis, France
T. M. Gruenberger
Ecole des Mines de Paris, B.P. 207, P-06904 Sophia Antipolis, France
Frederic Fabry
C. N. R. S., Institut de Science et de Genie des Materiaux et Procedes B. P. 5, Odeillo, F-66125 Font-Romeu Cedex
Vaporization of carbon particles injected in a plasma flow is an alternative to existing processes for mass production of fullerenes. In order to obtain a large fullerene-soot production the residence time of particle at temperature larger than the vaporization temperature must be large enough. This critical point was checked in the pilot reactor by OES.
The helium plasma was generated inside a carbon nozzle by a 3-phase AC plasma source using graphite electrodes. The plasma flow was then cooled in a graphite cylinder. Plasma temperature was measured using Hβ line and C2 Swan band in the upper part of the nozzle and at the entrance of the cylinder respectively. The results show that inside this volume, the plasma temperature is larger than or equal to 4500K and is very sensitive to the arc current.